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Abstract
 The method of Laplace Adomain Decomposition has been used to obtain a semi-analytical solution of the three-

dimensional steady state advection diffusion equation for dispersion of air pollutant from a point source. The present 
treatment takes into account a realistic boundary condition which considers the ground surface as an absorber-
reflector surface for the pollutant, simultaneously. This physical consideration is achieved by assuming that the vertical 
eddy diffusivity coefficient should be non-zero at the ground surface for vertical diffusion to be possible. The wind 
prevailing speed is parameterized in terms of vertical height using the power law profile. An upper boundary condition 
assuming capping inversion is considered which means that pollutant is subjected to a boundary Condition of zero flux. 
The present model calculations are compared with the available data of the atmospheric dispersion experiments that 
were carried out in the Copenhagen area (Denmark) and the semi-empirical model for Gaussian plume model with the 
same input data. In both comparison tasks, the results are reasonably good which indicates that the present treatment 
performs well as a simple analytical dispersion model.
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Introduction
In the last few decades, special attention has been devoted to the 

task of predicting analytical solutions for the atmospheric dispersion 
of pollutants in the planetary boundary layer (PBL). Presently, 
analytical solutions of the advection diffusion equation are usually 
obtained for steady state conditions with assuming specific formulae 
for both eddy diffusivity (k) and (u). They are assumed as constants 
through the PBL or follow a power law [1]. Despite that k profile is 
not physically realistic; the solutions of the dispersion equation are 
widely used for regulatory application, because they can give generally, 
a qualitative concepts and reasonable description of the pollutant 
dispersion within the PBL. In the frame work of analytical solutions 
for the sake of illustration, we draw the attention to the work of 
Sharan et al. [2], Moreira et al. [3] and Wortmann et al. [4]. For more 
details, refer to the work of Vilhena et al. [5] and Degrazia et al. [6]. 
Different mathematical treatments have been adopted in the above 
mentioned literatures such as, Laplace transform technique with 
numerical inversion. A step forward is taken by Wortmann et al. [4] 
by application of the generalized integral Laplace transform technique 
(GILTT) to solve the two-dimensional advection diffusion equation. In 
general, dispersion modeling depends principally on parameterization 
of the eddy diffusivity in terms of the physical parameter of the 
dispersion process. Also it depends on the suitable realistic boundary 
conditions assumed at the ground level and the top of the PBL which 
work reasonable well during most meteorological regimes. Various 
parameterizations for the diffusivity have been made in the literature to 
explain dispersion process. As examples of these researches, Sharan et 
al. expressed the diffusivity coefficients ky and kz in y and z directions 
in terms of the standard deviations ¾y and ¾z, the standard deviations 
of the crosswind and vertical concentration distribution respectively. 
Moreira et al. [3] put forward a new parameterization of the diffusivity 
coefficient kz by assuming that the height of the PBL can be discretized 
in N sub-intervals in such a manner that inside each interval kz take 
an average constant value. In this work, we will present the solution 
for the 3-dimensional advection diffusion equation in non-stationary 
condition applying Laplace Adomain de-composition technique. 
Laplace Adomain decomposition is used for solving our problem; this 
method is a numerical algorithm to solve linear and non-linear partial 
differential equations and ordinary differential equations. Khuri is the 
first one who used this method. Agadjanov applied this method for 
the solution of Duffing equation, Sujit Handibag and . Karande solved 
linear and non-linear heat equation using this method. This numerical 

technique basically illustrates how Laplace transform may be used to 
approximate the solutions by manipulating the de- composition method 
which was first introduced by Adomain. Also, the optimal homotopy 
analysis method (HAM) and Differential Transform Method (DTM) 
are applied to study the magneto-hemodynamic laminar viscous flow 
of a conducting physiological fluid in a semi-porous channel under 
a transverse magnetic field [7], Erfani and Rashidi use the modified 
differential transform method to solve an off-centered stagnation flow 
toward a rotating disc [8] The paper is organized in 3 sections. Section 
1 is an introduction. Section 2 presents the mathematical formulation 
of the solution of the advection-diffusion equation together with a brief 
exhibition to Gaussian plume model (the most widespread dispersion 
model). Section 3 presents the application of this solution and their 
comparison with both experimental data which were collected from the 
northern part of Copenhagen [9] and the most widespread dispersion 
model, namely Gaussian plume model output.

Mathematical Treatment
The advection diffusion equation of an air pollutant in the 

atmosphere is essentially a statement of conservation of the suspended 
material. The concentration 2 due to turbulent fluxes are assumed to 
be proportional to the mean concentration gradient which is known as 
Fick-theory. This assumption, combined with the continuity equation, 
leads to the steady-state advection diffusion equation Blackadar [10]

z
C C C C C C C

x y z x x y z zX yu v w K K K
t y

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + = + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
		

					                                    

(1)

Where C(x, y, z) denotes the concentration, kx; ky and kz are the 
Cartesian components of eddy diffusivity and u; v and w are the 
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Cartesian components of wind speed. In order to solve the equation 
(1) we included the following assumptions: (i) the pollutants are inert 
and have no additional sinks or sources downwind from the point 
source, (ii) the vertical w and lateral v components of the mean flow are 
assumed to be zero, kx is function of down distance (x) and the ground 
is considered as an absorber-reflector surface for the pollutant. This 
realistic boundary condition is achieved by expressing the diffusivity 
coefficient kz as a sum of two terms. The first one is of constant value 
which represents the value of kz at the ground level (z = 0), this is an 
essential requirement for the absorptive of the ground surface to the 
pollutants. The second term which is z-dependent (power law profile), 
represents the diffusivity coefficient at different heights above the 
ground (z > 0) and indicates the reflectivity of the ground surface to 
the pollutants, and (iii) the mean horizontal flow is incompressible and 
horizontally homogeneous (steady state). Then, we have where  		
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yx y zu k k k

x x x y z z
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K0 is the eddy diffusivity at the ground, k1 is turbulent parameter, 
n and p are constants depend on the atmospheric stability classes. The 
mathematical description of the dispersion problem (2) is completed by 
the following boundary conditions:
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Where vd is the deposition velocity which is constant forever 
element and Q is the emission rate. Taking integration for equation (2) 
with respect to y, we get:
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Where C (x, y, z)dyy C
∞

−∞

= ∫  is the cross-wind concentration. Applying 
Laplace transform (LT) for equation (8) with respect to x, we obtain:
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where C0 = Cy(0; z). By taking inverse Laplace transform for 
equation (10), we

get:
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In Laplace decomposition method, the solution is assumed in 
infinite series form,

Therefore we suppose that:

0
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By substituting from Eqs. (12) and (6) into equation (11), we obtain:
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Comparing the two sides of the above equation, we get: u; 
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In general, the recursive relation is given by:
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Using the above relation, n ≥ 0; we can find the components of V 
(x, z), namely

V0, V1, V2,::::,Vn.
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and so on. In this manner the rest of the components of the series 
(12) have been calculated using mathmod (mathematica programme). 
Substituting all these values in equation (12) in series form, we get the 
exact solution for general case:
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Where *u is the fraction velocity and 0z is the roughness length.

Gaussian model

The ground level Gaussian model of the concentration for an 
elevated source in the form [9]:

2 2
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Describes the relationship between the ground level concentration 
C, source emission rate Q, effective height H, downwind speed u and 
the lateral and vertical dispersion coefficients ¾y and ¾z [11,12]. The 
dispersion coefficients determine how much the plume is dispersed 
and spread out in cross-wind direction y and in the vertical direction 
z as it is transported by the effect of the wind u in the x-direction and 
atmospheric thermal stability conditions (i.e. stability class). Integrating 
equation (18) w.r.to y, we obtain:
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Where
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sH h h= + ∆ , 3 wh D
u

 ∆ =  
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Where is the exit velocity, hs is the stack height and D is the external 
diameter of the plume.

Applications
In order to examine the performance of the present model, cross-

wind integrated concentrations predicted by the model have been 
compared with the observed experimental data collected from the 
diffusion experiment carried out in the northern part of Copenhagen 
(Denmark) [9] and k1 is taken in the form [13]:
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Where *w  is the convective velocity, L is the Monin Obukhov
length and k = 0.4. Table 1 shows the comparison between our results 
using Laplace Adomain decomposition method and both the observed 
data [9] and the output of Gaussian plume model (Figure 1).

Results and Conclusions
We have solved the three-dimensional steady state advection 

diffusion equation with a realistic boundary condition which considers 
the ground surface as an absorber-reflector surface for the pollutant 
from a point source using Laplace Adomain Decomposition method. 
The main advantage of this method is that it can be applied directly 
for all types of differential and integral equations, linear or nonlinear, 
homogeneous or inhomogeneous, with constant coefficients or 
with variable coefficients. Another important advantage is that the 
method is capable of greatly reducing the size of computation work 
while still maintaining high accuracy of the numerical solution. The 
present model calculations are compared with the available data of 
the atmospheric dispersion experiments that were carried out in the 
Copenhagen area (Denmark). Further, the model is also validated with 
the simple Gaussian plume model output for the same input data. In 
both comparison tasks, the results have shown that there is agreement 
between observed and calculated data for general case while in Gaussian 
plume model the agreement has been validated for four runs only. We 
have found that for every run there is value of k0 (eddy diffusivity at the 
ground surface) which depends on the physical properties of the run 
(where k0 physically depends on the type of the earth surface over which 
the diffusion occurs). It is our intention to perform the mathematical 
analysis of this method for the case of high penetrated inversion layer 
(i.e. different stability conditions that permits the pollutant penetration 
and diffusion through the mixing height.)
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Figure 1: Comparison between the observed and calculated concentration 
with the downwind distance.

Run.no PG stability h(m) k0 
down 

distance
Χ(10-4sm-2)

observed present  Gaussian
1 C 1980 -1.29 1900 6.48 5.98
2 C 1920 -0.32 2100 5.38 5.06 5.32
3 C 1120 -0.58 1900 7.26 7.3 8.17
4 C 390 -0.39 4000 11.7 11.15
5 C 820 -0.35 2100 6.72 6.53
6 D 1300 -0.32 2000 3.76 3.15
7 B 1850 -1.09 2000 6.7 6.6 5.78
8 B 810 -0.32 1900 4.16 3.15 4.25
9 D 2090 -0.51 2100 4.58 4.2

Table 1: Comparison between observed, Gaussian plume model and calculated 
concentrations (s/m-2).
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