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Abstract
Very recently, new exact analytical solutions of the Fourier heat equation have been proposed by Zhukovsky. 

Since the Zhukovsky solutions are very powerful we applied the Zhukovsky formalism to a specific experimental 
situation, i.e. to a one dimensional (1D) lattice composed of Au nanoparticles of radius 20 nm in water media, under 
20 ns laser pulse irradiation. In addition, we calculated the thermal field in the 2D spatial dimensions case for a single 
Au nanoparticle in water irradiated under the same conditions but with a different fluence. These results exemplify 
how the new Zhukovsky formalism contributes to the real physical view of such laser thermalized processes. This 
new theoretical approach could be easily extended to laser processing in general, and laser additive manufacturing 
in special.
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Introduction
In the present paper we study some problems related to heat 

transport using the Fourier heat differential equations [1], which 
describe a wide range of physical processes. A parallelism between 
Zhukovsky solutions [2-4] and the integral transform technique (ITT) 
[5-7] is suggested. The thermal fields of nanoparticles under laser 
irradiation deduced using the ITT [5-7] was studied in reference [8].

The Mathematical Formalism
In reference [3] the following heat equation is considered:
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Here T is the temperature, x is the spatial coordinate, t is the time 
parameter and a, b, c and d are real constants unit less. First we set: 
b=c=0, a=d=1 and obtain the simplified form of the heat equation:
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The ITT boundary condition T(x,0) corresponds to the heat source 
term in the Fourier-Zhukovsky model i.e.:

T(x,0)=δ (x)					                   (3)

After some algebraic manipulations, we obtain the following 
solution for eqn. (2) with the boundary condition (3):
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Considering the case of the thermal field produced by laser 
irradiation of a nanoparticle-cluster [8], we have the following source 
term of a given nanoparticle (p) in a particles linear 1D lattice the 
following expression:

( ) ( ) ( )( ) ( ) ( )( )0,  I , ,p pA x t x t x p u t u t tα δ= − −  	                 (5)

where I (x,t) is the incident laser intensity, u is the step function, αp is 
the optical absorption coefficient of the particle and t0 is the irradiation 
exposure time i.e., the laser pulse duration .

In the specific typical case of a constant spatio-temporal laser 

irradiation intensity I (x,t)=I0, the source term for a 1-D lattice of 
nanoparticles system is given by:

( ) ( )( ) ( ) ( )0 0, I , ( )p
p

A x t x p u t u t tα δ= − −∑  		                  (6)

where the sum is over all p nanoparticles of the 1-D lattice.

One may observe that the heat source terms from both formalisms 
(Zhukovsky and integral transform technique - ITT) are the same up to 
a given constant. As a consequence we can consider the source term of 
ITT as the Fourier-Zhukovsky thermal parameter h in eqn. (3).

Simulations for the 1D Model
In the present chapter we deal with simulations regarding the 

thermal model applied to a 1D lattice of nanoparticles under a laser 
flash of irradiation using the Fourier-Zhukovsky thermal model. 
From the above discussion it is clear that the boundary condition (3) 
represents “the heat source term” from the standard heat equation. In 
order to be able to plot the thermal fields, we use the following delta 
Dirac equation:
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Here W is a parameter which gives the strength of interaction (the 
interaction parameter being the absorption coefficient) and xp is the 
position of the particle p. Let us consider a nanoparticle under the 
ultra-short laser irradiation time: tpulse=20 ns and fluence of F=2J/cm2. 
The laser beam is incident perpendicularly onto the nanoparticles 1D 
lattice. First we observe the thermal field increment of a nanoparticle 
with radius of 20 nm at x1=0, as shown in Figure 1.
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In Figure 2 we show a nanoparticle thermal field at a different 
position: xp=50 nm. In Figure 3 we simulate the thermal distribution 
for the whole 1-D lattice, formed from three nanoparticles at the 
coordinates xp=-50 nm, xp=0 nm and xp=50 nm.

If we analyze Figures 1-3 we observe that for a given particle p of 
radius 20 nm, the thermal field is maximum at the centered position 

xp and decreases along the radius direction. One can notice that as 
the distance between xp and x increases the temperature decreases. 
It is important to notice also that at the boundary between the Au 
nanoparticle and the water media the temperature is different from 
zero. In conclusion the nanoparticle transfers a part of the heat to the 
water [9]; which for a single particle case goes to zero at about 120 nm 

Figure 1: The thermal field given by Fourier-Zhukovsky model for a 20 ns pulse laser heating of the nanoparticle positioned at x1=0 with 
b=c=0, a=d=1.

Figure 2: The thermal field given by Fourier-Zhukovsky model for 20 ns duration of laser pulsed heating of a nanoparticle positioned at 
xp=50 nm with b=c=0, a=d=1.
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For instance, we consider the results obtained in Figures 4-6 for: 
d=5 (b=c=0, a=1), and plot also the thermal field for the nanoparticles 
positioned at xp=0, and xp=50 nm. In Figure 6 we plot the overall 
result which is the superposition of the thermal distributions for 3 
particles located at xp=0, xp=50 nm and xp=-50 nm. We used a fluence 
of F=0.2 J/cm2 for the Figures 4-6. We observe a continuous decrease 
of the temperatures and an almost zero value where the thermal fields 
interfere.

The thermal field obtained by the Fourier-Zhukovsky model for a 
laser pulsed heating in the casen when there is a very high heat transfer 
coefficient at the same incident fluence is presented in Figure 7. A 

distance from the center of the nanoparticle. If we analyze Figure 3, 
we can observe that the temperature increases drastically along the 1D 
lattice for the case of three Au nanoparticles from which we conclude 
that we have a superposition of the thermal fields from the individual 
particles. We may also observe from Figure 3 that is possible, to have an 
increase of the temperature which is higher than the Au melting point.

For the case d # 1(b=c=0, a=1) we have the following solution for 
the eqn. (1):
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Figure 3: The thermal field given by the Fourier-Zhukovsky model for a pulsed laser heating of a 1-D lattice of nanoparticles, positioned 
at xp=0, xp=50 nm and xp=-50 nm with b=c=0, a=d=1)

Figure 4: The thermal field given by Fourier-Zhukovsky model for a laser pulsed heating during 20 ns of a nanoparticle positioned at xp=0 with d=5.
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If we set: T (x, y, 0)=δ (x, y); a=d ≠ 0 and b=c=0, we have the 
solution:
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The 2D case plot of the temperature distribution for a one 
nanoparticle under laser irradiation is given in Figure 9.

Figure 5: The thermal field resulting from the Fourier-Zhukovsky model for a laser pulsed heating of 20 ns, of a nanoparticle positioned at xp=50 nm with d=5.

Figure 6: The thermal field given by Fourier-Zhukovsky model for a laser pulsed heating of 20 ns duration in a 1-D lattice of 3 nanoparticles, positioned 
at xp=0 nm, xp=50 nm, xp=-50 nm, with d=5.

detailed discussion about the influence of the heat transfer coefficient 
is given in reference [10].

In Figure 8 we present the thermal field of the same irradiation 
conditions but for only a single Au nanoparticle, with radius of 10 nm. 
We push here the theory to its limits because 20 nm is usually regarded 
as the upper theoretical limit still usable with the Fourier equation [11].

Simulations for 2D Particles Lattice Model
In the two dimensions model we have the following heat equation 

[2]:
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Discussions
We have plotted the thermal fields using the “Fourier-Zhukovsky” 

formalism for various values of the parameter “d” using eqn. (1). 
Analyzing Figures 1-6 we observed that the greater is d the lower is the 
temperature of the 1D lattice of nanoparticles. This observation leads 
us to the assumption that the term “d” is similar to the heat transfer 
coefficient H in the ITT-integral transform technique.

Our 1D and 2D results are in accordance with other thermal 
models, such as the example given in reference [9]. Comparing to the 
theory described in reference [12-16], our model has the advantage that 

it can produce 3D graphs, showing the temperature as a function of 
both space and time. We are also dealing with short laser pulses of the 
order of ns magnitude. In other words our model is valid providing the 
absorption law is described correctly by a Dirac Delta function. We have 
thus realized two main achievements in the present paper: i) we have 
introduced a new thermal exact theoretical analytical model; namely: 
“Fourier-Zhukovsky” and ii) we arrived to the conclusion that in high 
vacuum conditions when we irradiate a 1D lattice of nanoparticles with 
ns intense laser beam pulses we observe the phenomena of the thermal 
field superposition from one nanoparticle onto the another. When we 

Figure 7: The thermal field given by Fourier-Zhukovsky model for a laser pulsed heating for the case of a material with very high heat transfer coefficient.

Figure 8: The thermal field given by Fourier-Zhukovsky model for a laser pulse heating in the spatial limit of the Fourier equation applicability e.g.: 10 nm.
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do not use high vacuum conditions the superposition leads to a drastic 
thermal field amplitude decrease.

Conclusions and Outlook
In the present paper we considered a parallelism between the very 

new formalism: “Fourier-Zhukovsky” for solving the heat equation 
and the “old” integral transform technique (ITT) . We have applied the 
“Fourier-Zhukovsky”, to a 1-D lattice formed by three nanoparticles 
with a very high absorption coefficient. The key point of our comparison 
between the two models was given by the fact that the heat source term 
in the model “Fourier-Zhukovsky”, (given by the boundary condition 
T (x, 0)=δ (x) it is the same as the heat source term (A). In comparison 
with other models our proposed model has the advantage that it can 
resolve 3D thermal fields and does not require a too complicated 
formalism.

In conclusions we showed here that the “Fourier-Zhukovsky” 
is compatible with the integral transform technique (ITT) and it is 
indeed an excellent tool for calculating the thermal fields of individual 
nanoparticles arranged in a 2D model or 1D lattice interacting with 
ns-short laser pulses.

This approach can be useful for thermal fields simulations of 
carbon nanoparticles embedded in a vitreous matrix activated by laser 
pulses and electrical fields.

This new theoretical approach could be easily extended to laser 
processing in general, and laser additive manufacturing in special.   
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Figure 9: The simulated thermal field produced by a laser pulsed nanoparticle centered at (0, 0) using the “Fourier-Zhukovsky” model.
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