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Editorial
Human brain derives over 60% of its energy from ketones when

glucose availability is limited. After prolonged periods of fasting or
Ketogenic Diet (KD), the whole body utilizes energy obtained from
Free Fatty Acids (FFAs) released from adipose tissue. However, the
brain is not capable to obtain significant energy from FFAs, thus
hepatic ketogenesis converts them into ketone bodies: β-
Hydroxybutyrate (BHB) and acetoacetate (AcAc), while a percentage
of AcAc spontaneously decarboxylates to acetone [1]. To date, it has
been broadly demonstrated how the metabolic state of mild ketosis,
which can be induced through KD administration, calorie restriction
or fasting, represents a valid tool for the metabolic management of
epilepsy and a number neurodegenerative diseases [2], Amyotrophic
Lateral Sclerosis (ALS) [3], and some types of cancer [4,5]. In addition,
nutritional treatments represent an effective alternative where
pharmaceutical approaches fail or produce unbearable side effects and
costs for public health worldwide. However, before analyzing how
benefits from therapeutic ketosis could be exploited, let us mention
some pivotal concepts about metabolism. Under normal conditions
and mostly in western societies, a healthy brain utilizes glucose as
primary energy source, which unbalance can lead to a number of
neurodegenerative disorders often associated with mitochondrial
impairment and glucose transport-related dysfunctions, such as in
epilepsy, Traumatic Brain Injury (TBI), Parkinson’s and Alzheimer’s
diseases [6,7]. Ketone bodies and Krebs cycle intermediates represent
the best fuels for brain and other organs. In fact, through their
utilization, impaired glucose metabolism may be bypassed and their
neuroprotective properties may be exploited [8]. However,
neuroprotective mechanisms of ketosis are currently object of studies
as mechanisms of action are still not sufficiently understood. It has
been shown that ketone bodies are neuroprotective as they induce a
consistent increase in mitochondrial biogenesis regulating the synaptic
function, and also generate ATP increases, thus reducing the reactive
oxygen species production in neurological tissues [9,10], and notably
inhibit superoxide synthesis in primary rat neuronal cultures exposed
to hyperoxia [11]. Moreover, the main reason why the KD has been
proven so effective as an anticonvulsant aFpproach is because it
significantly reduces the metabolism of glucose [12]. In addition, Ma
and colleagues [13] demonstrated that, at physiological concentrations,
BHB and AcAc reduce spontaneous discharges of GABAergic neurons
in the rat substantia nigra, through ATP-sensitive potassium channels.
Also, a reduction of total CNS aspartate levels in association with an
increase of glutamate concentrations was found during ketosis,
observing a significant increase of decarboxylated glutamate to GABA,
the main inhibitory neurotransmitter [14,15]. Moreover, a remarkable
increase in mitochondrial transcription enzymes and proteins was
observed in rat hippocampus after the administration of a KD [16].

Taken together, these findings suggest that neurons may resist to
depolarization through ionic gradient and rest potential homeostasis,
which explains the analogy between anticonvulsant mechanisms of
orally administered ketone bodies and KD. Epilepsy represents one of
the most frequent neurological pathologies as it affects about 43
million people worldwide. It results from a variety of CNS disorders
and can be determined by vascular damages, genetic factors or
malformations, cancers, pre-/post-natal injuries, traumatic brain
injury. It has been demonstrated that the KD is one of the most
effective non-pharmacological approaches in refractory epilepsy [17],
although it is still unknown to and underestimated by many
neurologists. Furthermore, the KD can be associated with classic
antiepileptic drugs, thus significantly increasing their therapeutic
results [18]. The KD induces a consistent increase in blood ketone
concentration, notably AcAc and acetone [19] and it has been shown
fully effective in about 50% of epileptic cases (complete seizure
elimination), and partially efficient in the remaining half of patients,
where it significantly improves their quality of life [20]. On another
note, ketones show a neuroprotective effect also against
neurodegenerative pathologies characterized by deficits in glucose
metabolism, since impairment of mitochondrial function represents
the main cause of a high number of neurological diseases. In fact, the
following findings were published in response to ketosis: Increased cell
survival and decreased seizure frequency in kainate-induced seizure
models [21]; consistent reduction in lesion volume after TBI induction
[22]; suppressed inflammatory cytokines and chemokines in an
experimental model of multiple sclerosis [23] increase in motor
neuron number in ALS transgenic models [3,24]. Notably, studies on
ALS mouse models have suggested that targeting energy metabolism
with metabolic therapy may prolong survival and quality of life in ALS
patients. However, to date there are no clinical trials underway to test
such metabolic therapies.

In addition, the KD has been shown to be effective in Alzheimer’s
disease (AD) models, especially since AD symptoms include seizures
[25], neuronal excitability is enhanced [26,27] and mitochondrial
homeostasis is altered [28]. AD progression mainly affects memory
and concerns about 44 million people worldwide and this number is
expected to double by 2050 (Alzheimer’s Association, 2012). The main
pathological hallmarks of the disease are extracellular deposits of
amyloid beta, intracellular accumulation of neurofibrillary tangles
(known as “tau deposition”), and progressive loss of neurons [29]. In
addition, hypometabolism can be observed in several brain areas,
especially in the hippocampus [30] as well as impaired mitochondrial
function [31], associated with a decreased cerebral glucose utilization
[32,33]. Providing ketone bodies as an alternative fuel for neurons may
bypass such metabolic deficits. In order to elucidate the disease
mechanism, different transgenic mouse models have been employed.
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Notably, it has been shown that the KD exhibited better mitochondrial
function and less oxidative stress and β-amyloid deposition when
compared with normally fed controls [34]. Furthermore, KD improved
rotarod performance in young (1-2 month) non-transgenic and APP
+PS1 mice when fed on a KD for one month [35], while no effects on
the soluble amyloid in brain or muscle could be detected by ELISA, in
agreement with a previous study [36]. Additionally, it has been
extensively reported that ketosis may be beneficial against cancer by
decreasing blood glucose levels, the primary metabolic fuel for cancer
cells [4,5]. In fact, previous work highlighted that blood ketone
concentration was negatively correlated with tumor growth [37].
During the past decade, a number of researchers have been testing
ways to bypass the standard/low-compliance methods to induce
ketosis by developing energy intermediates to provide ketone
exogenous supplementation. The main issues encountered were
represented by tolerability, palatability, long term safety and costs.
Notably, medium chain triglyceride oil is poorly tolerated by the
gastrointestinal system. However, Dr. Henderson showed cognitive
enhancement benefits from mild ketosis in tolerant subjects [6]. In
addition, it has been observed that orally administered BHB and AcAc
free acid forms are ineffective and pricey, whereas BHB sodium salts
significantly induce a blood ketone increase in animal models [19], as
well as BHB or AcAc esters, which showed a promising therapeutic
potential [10,38,39]. In particular, these esters provide the advantage of
generating fasting-level ketosis without any dietary restriction and
were proven to be safe and well tolerated in rats [40] and humans [41].
Thus, ketone esters may represent the future “ketogenic diet in a pill”
[42] paving the road to further testing. Through the past decades,
confusion on physiological state of nutritional ketosis has generated
some misunderstanding within the medical community [7], such as
the wrong association of “therapeutic ketosis” (blood ketones
comprised between 0.5 and 8 mM) with “diabetic ketoacidosis” (>10
mM). In addition, another frequent observation is that initial stages of
ketosis induce a transient blood pH drop [43] due to ketone bodies
accumulation in the bloodstream. However, some following works
have highlighted that mild H+ load and blood pH typically return to
normal ranges as long as blood ketones are maintained below 10 mM
[44,45].
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