Mini Review
Volume 14:03, 2023

The Iterative Solution of Taylor Formula for Partial Differential

Journal of Physical Mathematics

Equation

Yang Gao*
Department of Science, Binzhou University, Binzhou, China

Abstract

This paper discuss the relation between Taylor's formula and partial differential equation. Taylor formula iteration method can resolve partial
differential equation u(x,t) be expanded at t=0 or t=1 by Taylor formula. Coefficient of Taylor formula u,(x,0), u,(x,0). . . can be expressed by partial
differential equation. The method can solve nonlinear differential equation. Generalized Taylor's formula can solve fractional partial differential
equation. The method is very important way that resolving partial differential equation. This article refers to the literature. Taylor formula iteration

method belongs to logical thinking.
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Introduction
Uy = Uy + —ulx, (10)
This paper introduces that Taylor formula iteration method resolve partial X
differential equation. In this paper, six examples are used to introduce Taylor B 1 )
formula iteration method to solve partial differential equation. This paper u, (x,0) =u, (x, 0)+;'4n(x’0),
also introduce that Generalized Taylor's formula can solve fractional partial u (x,0)=0
differential equation. The iterative method of Taylor formula is an important and o ’ 12)
useful method to solve partial differential equation [1-10]. The solution of Taylor
formula iteration method belongs to C~. U, (x,0)=0, (13)
Variable coefficient problem
P U, (x,0)=0, (1)
We consider equation as following:
XU, (X, t) - (xux ()C, t))x = Oa @) , (x,0)=0, (15)
2 .
u(x’ 0) =x7, ) And we have:
u, (x,0)=u, (x,0)=..=0 (16)
ut (X, 0) — X2 . (3) utt wttt
By Taylor's formula, we get as following:
We solve (1) by Taylor formula iteration method as following:
tZ t3
xu, (x,t)— (xu, (x,1)), =0, ) u(x,t) = u(x,0) +u,(x,0)t +u, (x, 0)5+um(x,0)§+... an
1
u,=u,+—u, (6) u(x,t) = x> +2£%. (18)
X
1 Solution of equation (1), u(x,?) = x* +2¢>.
u, (x,0)=u_(x,0)+—u,(x,0), (6)
X Two dimensional heat conduction equation solution
N
u, (x,0)=(x"),, =2, () We study the equation as following:
2
u, =(x,0)=(x"). =2x, ®) u —tx(u, +u,)=t, (19)
3
u(x,y,0)=xy=y". (20)
1, (x,0)=2+2=4, © (3,00 =xy =y
Next, we solve (19) by Taylor formula iteration method,
. . ut =t\*(u\*v+uv')+t2’ (21)
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On equation (21), finding 1-order partial derivative of t on both sides,

We have:
u, =x(u, +u,)+ix(u, +u,)+2t,
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uxx (x7 y’ 0) = 07
u,,(x,,0)=6y,
Next, t = 0 on (23),

u,(x,y,0) 6xy,

On equation (23), finding 1-order partial derivative of t on both sides,

We have:

=2x(u, ) +ox(u,, + Uy )+2,

Uy (X, ,0) = (6x7),, =0,
ut)cx(x9 yso) =0,
uryy(x9y90) =0

Next, t = 0 on (27),
U, ()C, yao) = 23

=3x (uzm Uy
Uy (x’ Y, 0) =0,

So we have:

utlttt (‘x’ y9 0) = utttttt (‘x’ y’ O) == 0

By Taylor's formula, we get as following:

tltt ) + tx(umrx tltyy )’

u(x,y,t) =u(x,y,0)+u,(x,,0)t +u,(x,y, 0) +um(x ¥, 0)—+...,

3

u(x, , ) = 3£ + Dy + 37 +%.

3
Solution of (18), u(x, y,#) = (3¢* + )xy+ »° +%_

The third problem with boundary values

We consider following equation:
u,—4u_ =cost,
u(x,0)=cosx,

u (0,6)=u_(,7)=0.

By Taylor formula iteration method, we have:

u, =4u_ +cost,
u,(x,0)=4u_(x,0)+1,

u,(x,0)=-4cosx+1,
u, =4u, —sint,

u,(x,0)=4u, (x,0),

u,(x,0) =4’ cos x,

L =4u, —cost,

ttxx
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u,(x,0)=4u, (x,0)—1,

ttt ttxx

u, (x,0)=-4"cosx—1,

ttt

u,. =4u

2224 ttlxx + Slnt

u,(x,0)=4u, (x,0),

tttl tixx

u,, (x,0)=4"cosx,

u,  =4u,  _+cost,

ttt ttttxx

(x,0)=—4cosx =1,

ttttl‘

(55)
By Taylor's formula, we get as following:

2 3

u(x,t) =u(x,0)+u,(x,0)t +u,(x,0) ;' u,(x, 0) +

m

u(x,t)= Z(;( .)t cosx +Z(;(2(nl)1)' 1,

sint = Ziﬂ" +1,
= @2n+1)!

We have:

u(x,t)=e* cosx+sint.

We take the best of Fourier expansion:

1
a (f)=2 j (e cos x)cos(nzx)dx,

We get the solution of (38):

u(x,t) = Z a"(t)cos(nzx)+e " sinl+sint.

n=1
Fractional partial differential equation
We consider following fractional partial differential equation:
0”“u(x,y,0)
ot*

u(x, y,t)=q(x, ).

= Dlu(x, y, 1)+ D} (x,y,0) +u(x, y,1),

Where q(x,y)is known integral polynomial.

The definition of Caputo fractional derivative about t:

u(x,y,t) 1 j@u(x,y,n) dn
or* r(l-a)y on (t-na

O<axl

0’ -y[u(x,a),t)da)
r(z_}/)ayzo a

Du(x,y,t)=
’ (y- o)
1<y<2.

(61)

(64)

(65)

(66)
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a 0*“u(x, y,0) 0 u(x, y,O) . 0 u(x,y,0)  0*“u(x,y,0)
We consider M P =Dlu e T T e T o (80)
ot”
a 640( , ’0
FUOLD  prue iy Dy vue ), O SO gy )+ D)+ g3y, @
% D’u(x, »,0)+ Dlu(x, y,0)+u(x, y,0), (68) Where
0*u(x,,0
2 u(x,,0) Ty) =q4x. ), ®2)
u(x,y,0) 4 y
—22 2 = DPq(x,y)+ D q(x,y)+q(x,y), (69)
ot £ q(%, ) Y q(x%,y)+q(x.y) q4(x, y) is known function. We have:
Where 0" u(x,,0)
— o =qn(x, ), (83)
5 0 ot
u(x,y, . .
% ql(x, ), (70) a,(x, y) is known function.
e
By Generalized Taylor's formula:
1(x,y) is known function. J
e u(x,y,0)= Z o p.0), (&)
We consider % On equation (62), finding & -order partial ’ s [(ja+1) o’
derivative of t on both sides, So we have the solution of (62):
We have: _ | © ) 2“ 85
y ) ) ) u(xy )= q(07) + g ) po s 2 et (85)
CUCYL) _ o U |y SuCD) | DU
or*® o or* or* Nonlinear KdV equation
0*“u(x, ,0) s 0“u(x, y,O) I 0“u(x,y,0) 0u(x,y,0) (72) We consider the wave equation as following:
/' a + a 2
or’ o or or u,—6uu_+u_ =0, (86)
0> u(x, y,0)
-2 _ PPyl +D’gl +ql (73)
Py . q1(x, y) + Diql(x, ) +q1(x, y), u(x,0) = x. @)
Where We have:
2a
: ua(;—ay’o) =4q2(x, ), (74) Uy = 6ut, —t ®
= - (89)
g2(x,y) is known function. U, (x, O) 6u(x, O)ux (x, O) Uox (x, 0)’
63(1 , ,0 —
We consider % on equation (62), finding 2 ¢¢ -order partial u(x, 0) X (90)
derivative of t on both sides, u, (x,0)=1, (o)
We have:
u_(x,0=0
0u(x, y,1) D/’a “u(x, y,t) D’ 0"“u(x, y,t ) 0"u(x, y,1) wr(1,0) =0, (92)
atSa at2a atla atva ) (75) ut (_x, O) = 6x, (93)
3a f\Za
0 ua()i ) D/* & "6(); ) + D)_ 6()2 24 ’0) ”a()g’y ’O), (76) On equation (88), finding 1-order partial derivative of t on both sides,
t a a t a t a
We have:
0 u(x, y,0) = —
T“y =D/q2(x,y)+D!q2(x,y) +q2(x, y), (7 u, = 0Quu, +uu, )=, (94)
u, (x,0) = 6(u, (x,0)u,(x,0) +u(x,0)u,(x,0) —u,,(x,0), (95
Where =
u, (x,0)=06, (96)
*“u(x,y,0
—a( tgay ) q3(x,y), (78) u, . (x,0)=0, o
4a
q3(x,y) is known function. We consideraL;Ry’O), on equation (62), 2
finding 3 ¢¢ -order partial derivative of t on both sides, (98)

We have:

U D) _ O ) | 8 rn) | 0t D)

at4a ot 3a at3a at3a
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s

(79)

On equation (94), finding 1-order partial derivative of t on both sides,

We have:
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u, =6(uu, +2uu, +uu,)-u, ., (99) u,,(x,0)=ac’sinx+a’ sinxcosx +asinx, 120)
u,, (x,0) = 6(u, (x, 0)ut, (x, 0) + 2u, (x, 0)ut,, (x, 0) + u(x, 0)ut,, (%, 0)) = 14, (x, 0), (100) U, (%,0),U,,,,(x,0)....is known function.
u, ( X, 0) =6, 10D By Taylor's formula, we get as following:
uttx (x’ 0) — 2.62, u(x,t):u(x,O)+u,(x,0)t+u,,(x,0)%+um(x,0);—3;+um,(x,0)%+.,., (121)
4 So we can get the solution of (107).
u,(x,0)=6"x. 102)
By Taylor's formula, we get as following: CO“C' usion
2 3 Iterative solution of partial differential equations by Taylor formula is

t t
u(x,t) =u(x,0)+u,(x,0) +u,(x, 0)5 +ut,, (X, 0)§+ ey (103) important and good methods that solve linear and nonlinear partial differential
' ' equations. And the method also can solve fractional partial differential

We have: equations.
— 22 3.3 g4 4
u(x,t)=x+6xt+6"xt"+6 xt" +6"xt" +..., (104)
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) 2 .
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