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Abstract
The property of water is highly related to the earth's environment and climate change. The fundamental 

dynamical process of water is include formation and breaking of hydrogen bonds. This dynamic process, so far, is 
still poorly understood. We investigated weakening of the hydrogen bonds of water after ceramic Far-Infrared Ray 
(cFIR) irradiation and the resulting effects on physical and chemical properties of water. In this study, the Fourier 
transform infrared spectroscopy (FT-IR) was used to explore hydrogen bonding change of cFIR-irradiated water; in 
addition, capillary viscometers, Gas Chromatographs (GC), Differential Scanning Calorimetry (DSC), contact angles, 
Franz cells, High-Performance Liquid Chromatography (HPLC), and capillary electrophoresis analysis were used 
to evaluate its physical characteristics, such as viscosity, volatility, temperatures of water crystallization, surface 
tension, diffusion, hydrogen peroxide dissociation, solubility of solid particles, and changes in pH of acetic acid. 
The cFIR treated water decreased in viscosity and surface tension (contact angles), but increased in the solubility 
of solid particles, hydrogen peroxide dissociation, temperatures of water crystallization, and acidity of acetic acid. 
The weakening of water hydrogen bonds caused by cFIR irradiation is correspondent with our previous medical-
biological studies on cFIR.

Keywords: Contact angle; Ceramic far infrared ray (cFIR);
Irradiation water; Fourier transform infrared spectroscopy (FT-IR); 
Hydrogen bonds; Solubility; Volatility 

Introduction
Water possesses important properties required for life-giving 

processes. These properties are effectuated by a hydrogen-bonded 
environment particularly evident in liquid water. Each liquid water 
molecule is involved in approximately four hydrogen bonds with 
strengths considerably less than covalent bonds but considerably 
greater than natural thermal energy. These hydrogen bonds are roughly 
tetrahedrally arranged, such that when strongly formed local clustering 
expands, the density decreases. It is different from actual chemical 
bonds such as ionic and covalent bonds. Hydrogen bonding is at one-
tenth of the strength of normal covalent bonds within a molecule. 
Hydrogen bonding in water, combined with its tendency to form open 
tetrahedral networks at low temperatures, and possess its characteristic 
properties [1-9].

The cluster formations where all water molecules are linked by 
three or four strong hydrogen bonds. The characteristics of hydrogen 
bonding that are responsible for the special properties of water allow it 
to act in diverse ways under different conditions, such as the clustering 
of water molecules [10-12]. For example, Stronger hydrogen bonds 
decrease viscosity because they decrease the liquid's interactions 
between molecules (Table 1) [1,3-9,13,14]. 

By decreasing the size of water clusters, the physical properties 
of water, including permeability and diffusibility, may be improved 
[1,2,15]. Many other properties and characteristics of hydrogen 
bonding relating to the weakening effect of hydrogen bonds of water 
may also exist (Table 1). 

Many methods have been used to reduce the size of water clusters, 

such as magnetic fields, electric fields, heat, and far-infrared ray (FIR) 
irradiation [13,14]. Previous studies demonstrated that FIR with 
wavelengths of 4–16 μm appears to non-specifically induce an increase 
in the temperature of body tissues and elevate the motility of body fluids 
because of decreases in the size of water clusters in living organisms 
[1,2,15]. Researchers have deduced, but lack of strong evidence, that 
FIR could break the intermolecular hydrogen bonds by exciting 
stretching or bending vibrations in water clusters, and reducing the 
size of water clusters [10-12]. Ceramic material irradiate far infrared 

Property Weakening Hydrogen bond
Viscosity Decrease
Solubility of solid particles Increase
Water cluster frequencies (cluster size) Decrease (cluster size decrease)
Volatility Increase
Diffusion Coefficient Increase
Surface tension Decrease

Table 1: Potential changes in the properties of weakening hydrogen bonds of liquid 
water.
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ray under room temperatures (cFIR) was developed and applied in 
our laboratory, which was proven to have various biological and 
medical effects [16-25]. However, its fundamental physical-biological 
mechanism has not been fully explored. Various tests were performed 
to investigate its effects on the hydrogen bonding of liquid water.

Materials and Methods
cFIR ceramic powder

 The FIR-emitting ceramic powder is micro-sized particles 
composed of numerous elemental ingredients, including calcium (Ca), 
zirconium (Zr), sulfur (S), silicon (Si), aluminum (Al), magnesium 
(Mg), iron (Fe), oxygen (O), and carbon (C), which were developed by 
the biomaterials laboratory of Taipei Medical University, Taiwan [16-
25]. A Scanning Electron Microscopy (SEM) image on the cFIR powder 
was demonstrated in this study (Figures 1a and 1b), and emitted a high 
infrared ray with the emissivity at 4 to 16 μm; the ratio of radiation 
energy irradiated from the sample to an ideal black body as described 
by the Planck’s Law was determined by a CI SR5000 infrared spectro-
radiometer (CI, Ltd., Migdal HaEmek, Israel).

Fourier transforms infrared spectroscopy (FT-IR) measure-
ment

 The non-cFIR double distilled water (DDW) and cFIR-irradiated 
DDW treated for 1 h was prepared for the infrared measurement. The 
liquid specimen was sealed between a pair of CaF2 windows (Beckman 
FH-01) with a thin Teflon spacer approximately 150 ƞm in thickness. 
Infrared spectrum was recorded at 25°C using a Nicolet Magna 550 
spectrometer equipped with a dTGS detector. Each spectrum was 
recorded at a resolution of 2 cm-1, 32 scans was carried out and merged 
for each sample. The data were then calculated from absorption 
spectrum in the FIR region (3400 cm-1).

Fluid viscosity test by an optically trapped Brownian particle

Recently, we have presented an image-based approach for a non-
intrusive fluid viscosity measurement in micro domains [26,27]; details 
of this system has been described previously [27]. We applied optical 
tweezers to control the position of optically trapped bead in confined 
region and use fluctuation of the trapped bead as a micro domain sensor 
to probe the local viscosity. Here, the two-dimensional mean square 
displacement (2-D MSD) was applied to capture the characteristics of 
the motion of a Brownian particle trapped by optical tweezers, where 
MSD is proportional to diffusion coefficient (D) in diffusive Brownian 
motion regime, namely, MSD=4D∆t [28] and diffusion coefficient is 
proportional to (T/ƞ), where ∆t, T and ƞ are time lag, temperature and 
temperature-dependent fluid viscosity, respectively. This approached 
were further applied to evaluate the possible effect of cFIR on fluid 
viscosity. In this study, the optical tweezers system was applied to trap 
polystyrene bead (1.87 μm, Bangs Laboratories, Fishers, IN), where 
sequential images of the trapped bead were acquired by the EMCCD 
camera (LucaEM DL6581, Andor) and were used to track the fluctuation 
of an optically trapped bead in a fluid with or without the effect of cFIR 
(Figure 2).

Viscosity test by a capillary viscometer

The effects of the cFIR irradiation on the intra-molecular hydrogen 
bonding of water were indirectly assayed by a capillary viscometer. 
Figure 3 show the specimen received the cFIR treatment, setup by 20 
ml aliquot DD water for 1 min at ambient temperature. The kinematic 
viscosity (v) was measured by a calibrated Cannon-Ubbelohde 
capillary viscometer (Schott, 532 03/ 0C, Germany) with a control 
unit (Lauda, PVS1-X02004, Germany). The viscometers were placed 
inside the thermostat with a water bath (Lauda, E200, Germany) at 
25°C. Data were correlated using the statistical analysis system (Lauda 
DR. R. WOBSER GMBH & CO.) package. Kinematic viscometry is 
defined as the quotients of the dynamic viscosity by the density 

ην
ρ

=kin  
and has the unit mm2/s (or centistokes, cst). Kinematic viscosities ν, 
expressed in centistokes, were calculated from the measured flow time 
θ and instrument constant c by using the following equation: ν= cθ. 
The values for c are provided by the viscometer manufacturer. The 
viscometer constants were calibrated for effects of temperature.

Volatility

GC-SPME analysis of the sorghum wine after direct cFIR 
irradiation: Samples of 58% sorghum wine were mixed with the cFIR 
ceramic powder (20 g) and irradiated for 20 min in a sealed glass vessel. 
Control samples were prepared following the same procedures as the 
experimental group, and placed in an isolated system for 20 min without 
irradiation. Sample volatility was tested using the Gas Chromatograph 
(GC) analyses of the solid-phase micro-extraction (SPME) fractions, using 
a Varian STAR 3400Cx series The mobile phase ratio was acetonitrile-

7 µm Electron Image 1

Figure 1a: Electronic microscopic image of the cFIR powder.
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Figure 1b: The range of wavelengths representing FIR is from 8 to 
approximately 14 μm, and the average emissivity of the BIOCERAMIC powder 
is averaged over .90



Citation: Leung TK, Lin SL, Yang TS, Yang JC, Lin YS (2014) The Influence of Ceramic Far-Infrared Ray (cFIR) Irradiation on Water Hydrogen 
Bonding and its Related Chemo-physical Properties. Hydrol Current Res 5: 174. doi:10.4172/2157-7587.1000174

Page 3 of 10

Volume 5 • Issue 3 • 1000174
Hydrol Current Res
ISSN: 2157-7587 HYCR, an open access journal 

water (0.1% TFA) 80:20, and the flow rate was 1 ml/min. Indomethacin 
was detected at a wave length of 320 nm [15].

II GC, equipped with a 30 m×0.5 mm I.D. and 0.25μm film 
thickness DB Waxter fused with a silica capillary column, connected to 
a Varian Saturn III mass selective detector using split less injectors. The 
initial oven temperature was set to 50°C (3 min), and then increased to 
200°C, and was maintained at a constant temperature for 5 min. The 
injector temperature was 240°C, and the transfer line was maintained 
at 220°C, using nitrogen N60 carrier gas, with a column-head pressure 
of 13 psi (1 psi=6894.76 Pa).

GC-SPME analysis of the sorghum wine after indirect cFIR 
irradiation: The 20 g power of cFIR ceramic, enclosed in plastic bags, 
was used to irradiate various water samples (10 ml in a glass dish) for 
20 min. Samples of 58% sorghum liquor (2 ml each) were irradiated 
by the cFIR-irradiated water samples (indirect contact separated by 
collection tubes) for 1 min in a closed system. The control samples were 

also prepared using the same procedure as the experimental groups 
but using usual water samples. GC analyses of the SPME experiments 
were also conducted using a Varian STAR 3400Cx series II GC. The 
following procedures and conditions were identical to those described 
in the previous section.

Diffusion test model by passing drug (Indomethacin) through 
the artificial membrane

Franz cell apparatus: Cellulose acetate membranes with a 
molecular weight (MW) cutoff of 10,000 (Spectrum, Laguna Hills, CA) 
were trimmed into circular discs (diameter approximately 10 mm) 
sufficient to cover the effective diffusion area of the receptor, and then 
soaked in a phosphate buffer (pH 7.4) for at least 12 h. Cellulose acetate 
membranes, which contained glycerin, were rinsed once with the 
receptor fluid before placing them onto the receptor. Membranes were 
hydrated and sandwiched between two microscope glass slides and 
submerged in receptor fluid in a Petri dish to prevent creases or folds 
when wetted. Air bubbles are trapped within the interface of membrane 
and receptor. The donor compartment was then covered and closed 
up tightly by a pinch clamp. During the operation of the Franz cell, 
we collected 500 μl from the receptor buffer through a sample port by 
using a pipette [15]. Drug content was assessed by HPLC methods. 
HPLC analysis was performed using a Waters 2487 HPLC UV-Visible 
Detector (Milford, MA, USA) with an auto sampler equipped with a 
quaternary pump and a variable-wavelength detector. All samples were 
analyzed using a reverse phase C18 column (Microsorb-MV C18 15 
cm, 5 μm). The mobile phase ratio was acetonitrile-water (0.1% TFA) 
80:20, and the flow rate was 1 ml/min. Indomethacin was detected at a 
wave length of 320 nm. 
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Figure 2: Schematic diagram of the optical tweezers system with the image acquisition arrangement for detecting Brownian motion before and after cFIR 
irradiation, where the laser beam is expanded fivefold with lens pairs (L1:L2) to slightly overfill the back aperture of the objective lens (Plan Apo 60x/1.40 oil, 
Nikon), and directed into objective lens via a dichroic mirror D1 (780dcspxr, Chroma). Here we apply Fourier-based cross-correlation processing to determine 
the lateral displacement of the optically trapped bead; therefore, both the mean square displacement (MSD) and the diffusion coefficient (D) can be obtained.
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Figure 3: The schematic diagram for water irradiated by a silicon ring with or 
without cFIR powders.
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Surface tension-measurement of water contact angles: We used 
a remote-computer-controlled goniometer system (Digidrop, GBX, 
France) to measure the contact angles. The cFIR-irradiated water and 
control water’s contact angle to the surface were measured at 25°C 
and 70% relative humidity. A minimum of three readings were made 
on each sample, and the values from a minimum of 30 samples were 
averaged.

Analysis of Hydrogen Peroxide (H2O2) dissociation - direct 
scavenging of H2O2: An H2O2 solution (Sigma, St. Louis, MD, USA) 
with 1M concentration was prepared, and equal amounts of 9 ml H2O2 
solution was added to the test tubes. H2O2 solution was categorized into 
two groups: the control and cFIR. For the cFIR group, test tubes were 
incubated at room temperature and externally covered by plastic bags 
filled with 100 gm cFIR powder for 3 h of irradiation. The control group 
was treated similarly, with the exception of the cFIR treatment. After 
the incubation period, 7.5 mM phenol red (Sigma, St. Louis, MD, USA) 
and 5 mg/ml horseradish peroxidase (Sigma, St. Louis, MD, USA) were 
added to each test tube. The mixture was allowed to react for 10 min, 
and absorbance was observed at 550 nm by an enzyme-linked immune 
sorbent assay (ELISA) reader (Gemini XPS Molecular Devices, 
Sunnyvale, CA, USA), with lower absorbance values representing 
higher H2O2 scavenging ability.

Solubility-measured by capillary electrophoresis analysis: 
Water samples were prepared from ultra-pure water with 18.2 MΩ 
resistance (Satorius 337070, Germany). The water samples were pre-
irradiated by FIR ceramic powder at room temperature for 20 h, and 
the control water samples were covered with aluminum foil and stored 
in a dark environment at room temperature. After 20 h, the water 
samples were aliquot into 25 ml in the 50 ml polypropylene centrifuge 
tubes. Aqueous extracts were prepared by infusing 0.1 grounded and 
homogenized dry green tea leaves into each of the 25 ml water samples 
at room temperature for 10 min. This was repeated five times for cFIR 
irradiation treatment for the statistic analysis. A thermal-controlled 
(25oC) capillary electrophoresis (CE) system (G1600A, Agilent) was 
used and controlled by 3D-CE ChemStation software (Agilent) to 
obtain quantitative measurements of various components in the green 
tea samples. An untreated fused-silica capillary tube (Beckman; total 
length 48.5 cm, effective length to detector 40 cm, I.D. 50 μm, O.D. 
375 μm) was thoroughly flushed with 1.0N NaOH for 50 min and then 
deionized water for 30 min before use. Before injection, the initialized 
capillary was preconditioned by rinsing sequentially with 1.0N NaOH 
for 2 min, water for 1 min, and a running buffer for 2 min. The sample 
solution was injected at 30 mbar for 5 s, and then followed with an 
injection at 30 mbar for 1 s of the running buffer to minimize the 
sample loss. The electrophoretic separation process was monitored 
with a built-in photodiode array (PDA) detector at 200, 205, 220, 266, 
and 280 nm. After electrophoresis, the capillary was cleaned by flushing 
with deionized water for 2 min.

Because of the better separation efficiency, better separation speed, 
and less consumption of water samples and reagent, CE has been used 
to be the complement to ion chromatography [29]. In this study, CE 
was used to verify the categories and the quantity of each catechin. 
A mixture of 13 main standards (include GC, caffeine, EGCG, EGC 
and EC) in tea was analyzed using the micellar electrokinetic capillary 
electrophoresis (MEKC) method [30]. 

Analysis of water crystallization temperature (Tc): Water 
samples treated by cFIR for 5 min were used as experimental group 
to contrast with control group in Tc analysis (DDW without cFIR 
treatment). About 5 mg water sample was individually loaded into 

a volatile aluminum sample pan with cover and hermetically sealed. 
The specimen was placed in the chamber of the differential scanning 
calorimetry (DSC) apparatus (Model DSC2920, TA Instruments, 
Newcastle, Del., USA) and set the following procedures: cooling rate of 
-5°C/min from 40°C to -40°C, and then keep the temperature for 5 min. 
The procedure was repeated 5 times in a dry nitrogen environment. 
The enthalpy of crystallization during cooling ΔHc was measured.

pH value determination of weak acid: Glacial acetic acid (1 ml) 
was added to double-distilled (dd) H2O (9 ml) in a glass tube, to form 
a 10% acetic acid solution. After 2 min equilibration time, solution pH 
was measured and recorded. The glass tube was then covered with cFIR 
powder and irradiated for 2 min, the solution pH was recorded, and 
changes in pH were noted. 

Statistical analysis

 Measurements were performed in multiple tests. Statistical 
evaluation between cFIR and control groups was determined by 
the paired t test method, and data with a p value less than .05 were 
considered significant. 

Results
Fourier transforms infrared spectroscopy (FT-IR)

 IR spectroscopy is one of the most precise methods to provide 
information on H-bonds. In this experiment, we found the quantitative 
difference of cFIR-irradiated DDW and non-cFIR DDW in the FIR 
region (3400 cm-1), with a significant decrease in the absorbance 
of cFIR-irradiated DDW. This result indicates a hydrogen bond 
weakening effect of DDW after cFIR irradiation (Figure 4).

Because of the unusually strong absorption of liquid water in 
this mid-IR region, this spectrum of liquid water mainly consists 
of three types of vibrations of H2O molecules: the most intense νs 
(O-H ∙∙∙) stretch band with a maximum at approximately 3400 cm-

1, the δH-O-H bending band (vibration of the H-O-H angle) with the 
maximum at approximately 1640 cm-1, and the “librational” band ρH2O 
at approximately 700 cm-1 (relative rotations of rigid H2O molecules, 
also called hindered rotations). The intra monomer bands ns and δH-O-H 
correspond to those of water vapor.

Fluid viscosity (by Brownian particle) or Effect of cFIR 
irradiation on fluid viscosity

We then investigate the relationships between MSD and time lag 
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∆ t to evaluate the possible effect of cFIR on fluid viscosity at room 
temperature. Figure 5 showed the MSD plots of an optically trapped 
polystyrene bead in a fluid with (cFIR irradiation for three minutes, 
solid symbol) or without the effect of Cfir (empty symbol). We find 
that MSD and time lag ∆ t is linear within ∆ t = 40 ms; however, 
significant deviations from linearity have been found at time intervals 
above 80 ms due to the optical confinement. This relation revealed that 
the motion of optically trapped bead showed a random walk during 
short time interval. In addition, as we mentioned earlier that diffusion 
coefficient (D ∆ T / ∆) could be obtained from the linear slope of 
2-D MSD plot, namely, MSD=4D∆t, the present results showed that 
in short-time interval regime values of the linear slope of MSD plots 
in the experimental group (cFIR irradiation for three minutes) were 
larger than that in the control group (without cFIR irradiation), which 
implied cFIR irradiation  decreased a fluid's viscosity, as can be seen 
in Figure 4. Note that the present result showed that change ratio of 
fluid's viscosity, (ƞw/o-ƞw/)/ƞw/o, ƞ 0.12, which implied fluid's viscosity 
is decreased to 12%, where ƞ w/o and ƞ w/ represent are fluid viscosity in the 
absence and presence of the effect of cFIR, respectively.

Viscosity
The flow time and kinematic viscosity of water samples determined 

by the capillary viscometer for the control water and the cFIR-
irradiated water were 300.37 ± 0.91 s and 293.39 ± 0.05 s, and 0.92 
± 0.00 cSt (centistokes) and 0.90 ± 0.01 cSt, respectively. The flow 
time and viscosity reduction for water treated by cFIR irradiation was 
statistically significant from that of the control group, implying the 
weakening of intermolecular hydrogen bonding, respectively (p<.01; 
Table 4). 

Volatility result of GC-SPME analysis of sorghum wine 
irradiated either directly or indirectly by cFIR ceramic 
materials

We determined changes in volatility of the cFIR-irradiated alcohol-

water mixture. Figure 6a shows elevation in ethanol volatility for the 
cFIR directly irradiated samples compared to the control group; Figure 
6b shows elevation in ethanol volatility for the indirect cFIR-irradiated 
samples compared to the control group, as measured by GC-SPME. 
The change in mean volatility of the cFIR groups, expressed as the total 
amount of ethanol extracted, was significantly higher than that of the 
control group (p<.01).

Result of diffusion model using drug (Indomethacin) pass 
through artificial membrane

Figure 7 shows the transdermal diffusion of Indomethncin without 
and with cFIR irradiation in Franz cell experimental model. Under 
cFIR irradiation, the indomethacin solution was found significantly 
facilitated passed through the artificial skin membrane monitored by 
the Franz cell experimental model (p<.01). 
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Figure 6: GC-SPME analysis for volatility changes in the sorghum liquor 
irradiated without and with directly cFIR irradiation (a) and indirectly cFIR 
irradiation through water samples. It which shows volatility increased of 
both directly cFIR irradiation (a) and indirectly cFIR irradiation in cFIR 
group (b). **p < .01 is significantly different compared to the control group.

Physical relationship of hydrogen 
bonds with water Physical characteristics of the hydrogen bonds weakening Possible applications

Volatility Weakening the hydrogen bonds and increasing the volatility Consumption in industrial applications related to gas and liquid 
Diffusion Weakening of the hydrogen bonds to enhance solubility Chemical, food and pharmaceutical industry
Solubility of solid particles Weakening the hydrogen bonds can increase solid solubility Applications in food & cooking in dye/textile industries, etc.
Temperature of crystallization Weakening the hydrogen bonds can alter freezing temperatures Application of freezing industry to save electricity

pH change of weak acid Hydrogen bond on the acid-base increases the strength, and 
cFIR enhances mild elevations in the acidity Chemical, food, biochemical and pharmaceutical industry

Table 2: Physical characteristics of the hydrogen bonds weakening.
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Surface tension

The water contact angles of cFIR-irradiated water and control 
water are shown in Figure 8. The average results of cFIR-irradiated 
water had a lower contact angle than that of the control water. The 

change of surface tension may be the main reason for the different 
contact angle (p<.05).

Hydrogen peroxide dissociation

 Figure 9 shows that the mean absorbance of the control and cFIR 
groups found a significant decrease in the cFIR group (n=31). The 
extent of H2O2 disappearance in the cFIR group is larger than that in 
the control group with a 10.26% decrease. This result confirms that 
H2O2 can be scavenged directly by cFIR treatment. 

Solubility

Results of cFIR irradiation on the green tea solution, measured 
by capillary electrophoresis (CE): In this study, CE was used to verify 
the categories and the quantity of each catechin. A mixture of 13 main 
standards (GC, caffeine, EGCG, EGC and EC) in tea was successfully 
analyzed by micellar electrokinetic capillary electrophoresis (MEKC). 
By comparing with the standard mixtures in the electropherogram, 
the constituents of green tea were identified. Figure 10 shows the 
separation profile of green tea prepared from two different water 
sources. The results show that these five peaks of green tea prepared by 
cFIR-treated water are higher than the control. Figure 10 also shows the 
comparisons of peak area analysis in these five major components (GC, 
caffeine, EGCG, EGC, and EC). Each component of green tea treated 
by cFIR is greater than the control. The average increase is 9.05% for 
the five representing constituents.

Temperature of crystallization (Tc) determination

The result of a DSC experiment is about heat flux versus temperature 
or versus time. There are two different conventions: exothermic 
reactions in the sample are shown with a positive or negative peak. 
T﻿he curves can be used to calculate enthalpies of transition of water. 

  cFIR treated DDW DDW P
Tc (°C) -16.81 ± 0.29 -21.77 ± 1.18  .0010**
Tm (°C)  0.24 ± 0.04  0.08 ± 0.04  .0081**
DHfusion(J/g) 352.3 ± 1.8 288.0 ± 31.2  .0088**

The foot note is **P<0.005

Table 3: Thermal analysis results obtained from DSC thermograms of the water 
samples. Tc: crystallization temperature during cooling; Tm: melting temperature 
during heating.

  Cummulative time of DDW indirectly irradiated by cFIR ring Cummulative time of DDW with plain silicon ring
  Time (sec) Viscosity (cts) Time (sec) Viscosity (cts)

1 293.38 0.9 299.97 0.92
2 293.32 0.9 299.98 0.92
3 293.43 0.9 299.79 0.92
4 293.43 0.9 301.72 0.93

Average 292.39 ± 0.05 0.90 ± 0.00 300.37 ± 0.91 0.92 ± 0.00

Temperature: 25°C; Capillary K value: 0.003086
Table 4: The viscosity reduction for water treated by cFIR irradiation was statically significant from that control group implying the weakening of intermolecular hydrogen 
bonding.
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Figure 7: Shows significant increases of transdermal diffusion of 
Indomethancin under cFIR irradiation in the Franz cell experimental model. 
(Y axis: cumulative intensity (AU) measured on indomethacin pass through 
artificial membrane; X axis: running per hour).

control cFIR

)eerged( elgna tcatnoc reta
W

0

5

10

15

20

25

30

* 

Figure 8: Comparison of water contact angle of the cFIR irradiated water and 
control water samples, which shows a significantly decreased compared with 
the control group (*p<.05).

control cFIR

055DO

0.00

0.05

0.10

0.15

0.20

* 

Figure 9: Comparison of H2O2 content in direct H2O2 scavenging with cFIR. 
*p<0.05 is significantly different compared to the control group.
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In our study, we used DSC to precisely measure the different phases of 
transition energy released or absorbed of the different water samples 
to prove our previous deduction that cFIR is capable of changing the 
physical properties of water.

During this study, generally, the temperature program for DSC 
analysis is designed such that the sample holder temperature increases 
linearly as a function of time. The reference sample should have a well-
defined heat capacity over the range of temperatures to be scanned. 
Our result of DSC analysis on the water sample without cFIR treatment 
showed an obvious change of heat flow (ΔHc; Table 3) during the 
transit from the liquid phase (water) to the solid phase (ice).

Changes in pH on weak acid solution following cFIR 
irradiation

Samples of 10% acetic acid solution without and with cFIR 
irradiation were measured for pH values. The results showed 1.8612 ± 
0.55 (without cFIR) and 1.8458 ± 0.54 (with cFIR) respectively (n=24). 
The observed decrease in pH for the irradiated group is significantly 
higher than that for the control group (Figure 10a; p<.05). 

Discussion
According to our observation, cFIR exhibits its biological and 

medical effects not necessary for liquid water [31]. However, since 
living tissues of plants or animals are composed of water, we deduce 
those benefits of cFIR should be directly or indirectly through water’s 
effect.

IR spectroscopy is by far the most precise method to provide 
information on hydrogen bonding which has a significant influence on 
the peak shape and intensity, generally causing peak broadening and 
peak shifting to lower frequencies (red-shift). Unlike the water molecule 
having a very small moment of inertia on rotation in vapor phase which 
gives rise to rich combined vibrational-rotational spectra, the FI-IR 
rotational spectra for liquid water molecules tend to be restricted by 
hydrogen bonds. IR spectroscopy was generally considered to be able 
to provide only qualitative and semi-quantitative analyses of common 
samples. However, the development of reliable FTIR instrumentation 
and strong computerized data-processing capabilities have greatly 
improved; thus, modern infrared spectroscopy has been accepted as a 
reliable tool for quantitative analysis [32].

Since the FT-IR measurement for non-cFIR DDW and cFIR 
irradiated DDW were carried out in a liquid cell with the same 150 
μm -Teflon spacer, the intensities of absorption bands were linearly 
proportional to the molecular absorptivity which might be attributed 
to the influence of the cFIR irradiation. Our result indicates cFIR 
exhibiting hydrogen bond weakening effect. We also performed a 
series of experiments to demonstrate other physical and chemical 
characteristics of the hydrogen bond weakening effect and possible 
applications, listed as below: 

Viscosity

Viscosity Changes in hydrogen bonding have particularly 
important effects on viscosity and diffusion, which are shown by the 
large changes occurring in normal water. Viscosity is particularly 
affected by the strengthening of water’s hydrogen bonds, increasing 
10-fold. For example, with a value of 37°C, the increase in hydrogen 
bond strength is only 8%. While the Stokes–Einstein equation predicts 
that the diffusion coefficient of a solute will be inversely proportional 
to the viscosity of the solvent [33]. According to the results, viscosity 
decreased by the cFIR irradiation on DD water. In previous studies, the 
absorption of sound was proven to have a specific range of frequency 
and intensity in distilled water under various conditions of sample 
illumination, and treatment with a magnetic field and ultrasound. 
The difference in sound signal absorption in water under unequal 
conditions is explained by variations in viscosity because of changes 
in the structural state of water, in particular, the destruction or 
formation of clusters. A similar phenomenon is noted in cFIR under 
room temperature, without the necessity of electricity-supported 
instruments, such as ultrasounds and strong magnetic fields. In this 
viscosity study, a weakening effect of the cFIR on hydrogen bonds to 
achieve decreases in viscosity was shown [1].

Water cluster frequencies/Size

 Other researchers have claimed that FIR rays can break hydrogen 
bonds (H-O bonds) by exciting, “stretching or bending,” vibrations in 
the water clusters; they can also reduce the size of the water clusters 
[7,8,16,18,19].

Hydrogen bonds are the weakest type of chemical bond and are 
easily broken by thermal energy. Previous researches considered 
hydrogen bonds broken if the bond length increases or the bond angle 
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Figure 10: Electropherogram of green tea by different water sources. The black curve is from control water and the purple is cFIR-treated. Peak: a=GC; b=Caf; 
c=EGCG; d=EGC; e=EC. (Y axis: cumulative intensity (AU) measured on chemicals pass; X axis: running per minute).
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decreases [7,8,16,18,19]. The hydrogen bonding holds water molecules 
approximately 15% closer than if water were composed of simple liquid 
molecules interacting with each other through van der Waals forces. 
However, hydrogen bonds restrict the number of neighboring water 
molecules to approximately four, instead of the larger numbers found 
in simple liquids [1,34-36].

Volatility

The hydrogen bond is one factor that determines volatility. Any 
liquid that possesses hydrogen bonds may evaporate more quickly 
if the hydrogen bonds are broken. The effects of the weakening or 
destruction of hydrogen bonds is a major event in the enhancement 
of liquid volatility and energy transfer in liquid water. Volatility is an 
important physical property, and changes in volatility of an alcohol-
water mixture may reflect a transformation of physical properties that 
are independent of chemical changes [37]. In this study, we used the 
dynamic headspace solid-phase micro extraction (HS-SPME) and 
GC to determine quantitatively the changes in the volatility of cFIR-
irradiated sorghum wine and water. We conclude that the effects of 
cFIR irradiation on water molecules enhanced the volatility of the 
liquor solution by weakening the hydrogen bonds.

Diffusion

Diffusion of liquid varies inversely with viscosity; we found that 
molecular movements slow as viscosity increases. Several factors 
determine the rate of diffusion of a molecule across the membrane 
depending on the size, polarity, and charge of each particular molecule. 
For an uncharged polar molecule to leave the aqueous phase and enter 
the lipid phase, it must first break its hydrogen bonds with water before 
it can dissolve in the lipid phase. The number of hydrogen bonds a 
molecule forming to water is determined by the number of polar groups 
in the molecule, and the strength of the hydrogen bonds formed. Each 
additional hydrogen bond formed between a polar group and water 
results in a 40-fold decrease in the partition coefficient, and a resulting 
decrease in the molecular permeability through the cell membrane 
[38].

Surface tension (contact angle)

The surface tension and viscosity of water are related to the strength 
of the hydrogen bonds between water molecules. The unusually large 
heat capacity of water is also related to the strength of the hydrogen 
bonds (H-O bonds) between water molecules that determine the 
characteristics of high volatility and viscosity. The decrease of volatility 
in the alcohol-water mixture of our cFIR treated samples is a reflection 
of decreased surface tension. Water droplets are strongly attracted to 
solid surfaces if the droplet spreads out completely on the solid surface 
and the contact angle is decreased. The weaker hydrophilic form has a 
higher contact angle of up to 90°C. 

Conversely, if a liquid is highly hydrophobic (less hydrophilic), the 
contact angle is larger. Because the water contact angle is proportionate 
to the water surface tension, a smaller water contact angle may be 
reflected by decreased surface tension [39]. Surface tension is caused 
by hydrogen bonds in the water sample holding tightly to one another 
and creating a type of structural rigidity [39,40]. Our results showed a 
significant reduction in the water contact angle of cFIR -treated water 
that was lower than the pretreated water (control group). Therefore, we 
deduce that cFIR material may induce water and related water mixtures 
to become lower in hydrophobicity and in lower surface tension, and 
perhaps weaken the hydrogen bonds. Particularly, this is the first study 
to show that the cFIR treated water can change the water contact angle. 

Hydrogen peroxide dissociation

Previous studies have demonstrated that the thermal FIR treatment 
has the capability of cleaving covalent bonds to liberate more antioxidant 
compounds, for example, carotene and polyphenols from rice hulls and 
medicinal plants. Therefore, the increased heat transfer efficiency of 
FIR-emitting ceramic material explains the direct and indirect effects 
on H2O2-scavenging capacity. In addition, the FIR can break hydrogen 
bonds (H–O bonds) by exciting the stretching vibrations in the water 
clusters, and decreases the size of the water clusters [37].

Hydrogen bonds can reduce the volatility of any liquid possessing 
hydrogen bonds, and are related to the reduction rate of H2O2, which 
exist in cluster forms in normal conditions, and not as a single molecule. 
Therefore, the weakening of hydrogen bonds by FIR may also explain 
why the FIR accelerated the H2O2 transformation, and released H2O 
and O2 from H2O2 molecular clusters.

Solubility of solid particles

We showed that the FIR treatment at room temperature had 
significant effects on the water used to prepare the green tea. The total 
phenol contents, each major constitute concentration, and antioxidant 
activities of green tea were all enhanced by the FIR treatment. The three 
experiments in this study corresponded with each other, and indicate 
that more available or soluble catechins contribute to promoting the 
antioxidant activity of the green tea. No obvious difference was found 
in catechin degradation between the standard solutions dissolved by 
the FIR-treated water and control water. This indicates that the FIR 
effect on increasing catechin contents by enhancing the extraction 
efficiency on the green tea leaves instead of preventing the degradation 
of catechins is major. This shows that the cFIR causes the destruction of 
water clusters, and then facilitates water in extracting more functional 
constitutes of green tea leaves, and hence, enhances the antioxidant 
activities of the green tea. The rate-determining steps in tea leaf infusion 
were determined by the diffusion of the solutes through the leaf matrix 
to the surface. Destroyed water clusters increase the total number of 
water clusters, provide larger specific surfaces, and raise more contact 
opportunities for water molecules and green tea leaves, to extract more 
solutes in the green tea infusion.

Water crystallization

The results of our DSC experiment suggest that the increase in the 
freezing temperature observed for the cFIR-irradiated water may be 
caused by energy transfer in the water cluster through the influence of 
hydrogen bonds, creating an environment less conducive to the solid 
state [38,39]. The weakening effect of cFIR on the hydrogen bond likely 
accelerates water molecules and allows them to form hexagonal ice 
crystals [1].

pH change on weak acid

Acetic acid (CH3-COOH) possesses the hydrogen (H) atom in the 
carboxyl group (−COOH), which gives off an H+ ion that produces 
its acidic character. Acetic acid is a weak acid, and hydrogen bonding 
effectively affects its acidity (Figures 11a and 11b). We deduced that the 
weakening of the intra-molecular hydrogen bond of the carboxyl group 
in acetic acid affected by the cFIR irradiation resulted in an increase in 
acidity [40].

Future application and researches

Water is the major constituent of living systems, such as the 
intracellular, extra cellular, and the circulation system. The influence 
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of the cFIR on liquid water is probably a key explanation to the 
mysterious function of this specific spectrum of wavelengths toward 
living organisms. In the future, the cooperation of medical-biological 
and physical-chemical researchers is necessary for an in-depth study 
on this interesting topic.

We speculated that this phenomenon may be a consequence 
of a hydrogen bond-weakening effect and the unique 3D dynamic 
structural fluctuations and rearrangements of the hydrogen bonding 
network of water, which undergoes ultrafast structural reorientation 
and reorganization.

Because cFIR materials work on the "weakening of hydrogen 
bonds", the impact of this phenomenon contributes to different 
industrial applications relevant to its characteristics (Table 2). 

Conclusion
We demonstrated the influence of room temperature cFIR irradiation 

weakening hydrogen bonds by using quantitative measurements of 
viscosity, water cluster size/frequency, volatility, diffusion, surface 
tension (contact angle), hydrogen peroxide dissociation, solubility of 
solid particles, temperatures of water crystallization, changes in the pH 
of acetic acid, and the Fourier transform infrared spectroscopy (FT-IR) 
to produce physical and chemical changes in aqueous samples. Our 
methods tried various ways to demonstrate the weakening changes of 
hydrogen bonds by the cFIR irradiation. These physical effects may be 
one of the initial physical-biological mechanisms we observed in our 
previous medical-biological studies [13-22]. In the future, we wish to 
study further on potential applications of this effect.
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