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Abstract

In this paper, we propose a new method called exp(-¢()) fractional expansion method to seek traveling wave
solutions of the nonlinear fractional Sharma-Tasso-Olver equation. The result reveals that the method together with
the new fractional ordinary differential equation is a very influential and effective tool for solving nonlinear fractional
partial differential equations in mathematical physics and engineering. The obtained solutions have been articulated
by the hyperbolic functions, trigonometric functions and rational functions with arbitrary constants.
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Introduction

It is well known that nonlinear fractional partial differential
equations (NFPDEs) are widely used as models to describe many
important complex physical phenomena in various fields of science,
such as plasma physics, nonlinear optics, solid state physics, fluid
mechanics, fluid flow, chemical kinematics, chemistry, biology,
finance, economy, and so on. Thus, establishing exact traveling wave
solutions of NFPDE:s is very important to better understand nonlinear
phenomena’s as well as other real-life applications.

In the past, a wide range of methods have been developed to
generate analytical solutions of nonlinear partial differential equations.

Among these methods are the [%] expansion method [1,2], the (%é}
expansion method [3], the generalized of exp (—¢/(§) expansion method
[4,5],the coth a (§) expansion method [6], the F-expansion method [7],

and various other methods [8-11].

In recent years, several attempts have succeeded in the synthesis
of the previous methods to searching for exact solutions to nonlinear
fractional differential equations. Zhang and Zhang [12-14] proposed
on the basis of homogeneous balance principle and Jumarie’s modified
Riemann-Liouville derivative a new direct method called fractional
sub-equation method to search for explicit solutions of nonlinear
time fractional biological population model and (4+1) dimensional
space-time fractional Fokas equation. Wangi and Xu [15] improved
this method to obtain the exact solutions of the space-time fractional
generalized Hirota-Satsuma coupled Korteweg-de Vries equations.

In this paper, we propose the improved exp (—¢(§)) fractional
expansion method for obtaining novel and more general exact
traveling wave solutions for the nonlinear fractional Sharma Tasso-
Olver equation [12,13]:

Dfu+35u’Du+38(D%u)’ +35uD*u+ 3D u=0-
where 0<a<l,u=u(x,t),t>0,0 is constant.

The remainder of the paper is organized as follows. Section 2
gives some definitions and properties of the modified Riemann-
Liouville derivative [16], and explains the improved exp (—¢(§))
fractional expansion method. Section 3 applies this method for solving
the nonlinear fractional Sharma-Tasso-Olver equation. Section 4
concludes the paper.

Jumarie’s Modified Riemann-Liouville Derivative and
the Improved exp(—¢(§))Fractional Expansion Method
In this section, we briefly review the main definitions and properties

of the fractional calculus proposed by Jumarie [17] which will be used
in the following section.

The modified Riemann-Liouville derivative as defined by Jumarie
[18] is:

1
r(l-a)

[_f'["](t)(ai") n<a<n+ln> 1}

Dif(®) =

jtj(tfé)ff(()))dcf,o <a<l(2.1)

Some useful formulas and properties of Jumarie’s modified
Riemann-Liouville derivative were summarized in [18], among them
the three following formulas:

S | (LT R o)
T(+r-a)

D fLf(1)g(t)]=2(t)Dr FOD!g(® 23)

D f(g()=[[2®]D! £ (g(®) = DI f(2®)(g; (¢))” (2.4)

Now, we ojtline the main steps of the exp(—¢(§)) fractional
expansion method to solve fractional differential equations. Suppose
that a fractional partial differential equation, say in the independent
variables x and t, is given by

F(wu,u,.Diu)=0,0<a <l (2.5)

Where u=u(x,t) is an unknown function, F is a polynomial in
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u=u(x,t) and their various partial derivatives including fractional
derivatives, Du and Du are the modified Riemann Liouville
derivatives of u with respect to t and x, respectively. The main steps of
this method are as follows:

Step 1: Use the traveling wave transformation:
ux,t)=u(&), E=x+kt (2.6)

Where k is a non-zero constant to be determined latter, which
reduces (2.5) to an (NFODE) for u=u(£) in the form:

P(u,uy,K, ., Dfu,k, Dfu,..) =0,0<a <1 2.7)

&2 ug?

Step 2: Balance the highest derivative term with the nonlinear
terms in (2.7) to find the value of the positive integer (m). If the value
(m) is non-integer one can transform the equation studied.

Step 3: Suppose that the solution of (2.7) can be expressed as
follows:

—1

u(&) =Y a,(exp(-4(£))) +, +iai(exp(—¢(§)))i (2.8)

i=—m

Where, a, (i=0,1,...,m) are constants to be determined, such that ai0
and ¢(£) satisfies the following fractional differential equation:

DEP(8) = exp(=4(S)) + pexp(p(s)) + 4 (2.9)

eqn. (2.9) gives the following solutions:

Family 1: When p=0,(A\* —41)>0,

- (2 —4u) tanh[ (2 - 4x) [s‘” +cl(1+ a))]_z
2 I(+a)
$#(&) =1In (2.10)
2u
Family 2: When p=0, (\>-4)<0,
; Jdu=2*) (& s r 1+ a)
_ (4;17/1) tanh[ 5 k T+ a) J -1
$(S)=1In 3 (2.11)
7
Family 3: When pu=0,A=0,(\*~4)>0,
B(&)=In X 2.12)
3\0) = p .
exp( i(e‘ﬂrﬂw)]) 0
I(+a)
Family 4: When p #0,A # 0,(A* —4)=0,
24 (9&& ;(cll"(l +) 0’)} +4
+a
,(E) =1 (2.13)
pule) = 1In 2 E+ I (1+ @)
r(+a)
Family 5: When p=0,A=0,(A*—4)=0,
E+cl(l+a)
=l 2.14
#(S) n( Fi+a) j (2.14)

Step 4: Substituting (2.8) into (2.7) and using (2.9), and then

setting all the cofficients of (exp (—¢(£)))' of the resulting systems to
zero, yields a system of algebraic equations for k,A,u and a (i=—-m,...,m).

Step 5: Suppose that the value of the constants k, A,u and a
(i=—m,...,m) can be found by solving the algebraic equations which are
obtained in Step 4. Since the general solutions of (2.9) have been well
known, substituting k,)\,p,al and the solutions of (2.9) into (2.8), we
obtain the exact solutions for eqn. (2.5).

Note that if a=1, then eqn. (2.9) becomes ¢(§)=exp(—¢(£))+u exp
(¢(§))+\, which is the foundation of the known exp(-¢(§)) expansion
method for solving partial differential equations (PDEs). Thus, the
above described exp(-¢(§)) fractional expansion method is the
extension of the exp (—¢(§)) method to fractional case.

The Exact Solution for Nonlinear Fractional Sharma
Tasso-Olver Equation

In this section, we will apply the improved exp(—¢(§)) fractional
expansion method to find the exact solutions of the nonlinear fractional
Sharma-Tasso-Olver equation:

Dfu+35u*Dfu +38(Du)’ +35uD*u + D u =0 (3.1)

where 0<a<l. In ref. [19], the authors solved eqn. (3.1) by a proposed
fractional sub-equation method based on the fractional Riccati

equation DI¢(&) =1 +q¢(&) +pe(&)’.

Now we will apply the described method in Section 2 to eqns. (3.1).
To do so, Suppose that

u(x,t)=u(f), &=x+kt, (3.2)

where k is a constant. Substituting (3.2) into eqn. (3.1), gives the
following nonlinear fractional ordinary differential equations:

kDZu+36u’Dfu+38(Dfu)’ +36u’D;"u+6Du=0.  (3.3)

Suppose that eqn. (3.3) has the following solution:
—1 . m .
u(§)= 2 @, (exp(-4(£)) +ay + 2, (exp(-4(£)) B4
i=—m i=1
where o, (i=—m,...,m) are constants to be determined later. Balancing
the order of D**, uand w’D*  u, we find m=1. So,

u(@)=a,+al exp(-¢(&))+a_, (exp(-¢(¥))) (3.5)

Substituting eqns. (3.5) and (2.9) into eqn. (3.3), the left-hand side is
converted into polynomials in (exp(—¢(£)))4, (j=0,1,2,....). By collecting
each coefficient of these resulted polynomials to zero, we obtain a set
ofsimultaneous algebraic equations, which are not presented for sake
of clarity, for a,a,,a ,A,p and k. Solving these algebraic equations with
the help of algebraic software Maple, we obtain:

— 2 —
Case 1: a=0,a,=1L,a_=—pA=A,u=pk=k = eXP(WJ (3.6)

Substituting eqn. (3.6) into eqn. (3.5), we have:

u(&)=exp (-¢(8))-p exp (¢(&)) (3.7)
Where £ =x+ exp[wz_%jt
a

Consequently, the exact solution of the of the nonlinear fractional
Sharma-Tasso-Olver equation (3.1) with the help of eqn. (2.10) to eqn.
(2.14), are obtained in the following form:

Case (1-1): When p=0,(A>-41)>0,
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tanh «[ —4/1 (& +cl"(l+a)J _2 (4#_)bz)tan(\](“'ufﬂ"z)(*fw*'01“(1'*'0!)j_}L
” 2 | Td+a) - , 2 | [l+e)
exp(—(In us(&) =a, +exp| —In
2
g 2 (3.14),
“l(f):
O . In(-5(a =3a2A+ A% -
- (/11—4/4) tanh[ (}L 5 4”)[§ lt(cll;(i:;oc)]]_/I (3.8) §:x+cxp[ n(=0Ga aa ﬂ)jt
—pexp| In| -
2# Case (2-3): When p=0,\#0,(\~4y1)>0
B In(=8(A% —4u)
& —x+cxp[7a ]l A
n
Case (1-2): When p£0,(\V>—4p)<0, us (&) =a, +exp exp( /1[6” +el(l+ a)j) _
ra+
4 ﬂ, tan m({: +cI(1+a) 1 ( a) (315)
~4s- T(+a)
exp(—In| —
( 2u £ xtexp In(-8Gag —3ag A+ A* — 1) ;
o
u, (&)=
o) mh[v (4u-2) f & lt(i(;a)]] Al B9 Case (2-4): When p£0\#0,(\~41)=0,
—uexp| In
2u &),
rd+ea)
e[ MEAE 0 (&) =a, +exp &
P I'l+a) (3.16)
Case (1-3): When p=0,A#0,(A —4u)>0
_ 2 _ 2 2 _
¢ :Hexp[ln( 5Gal =3ali+ A ﬂ))t
a
A
In
7‘1 Ta -J): =U,A=U, 2 =V,
{18 =exp exp(ﬂ[§ ;(CH(;;&)))_I (3.10) Case (2-5): When p=0,A=0,(A>-41)=0
o “+cl(l+ )
&= x+exp[71n( 2 )jt uy(§) =a, + eXP[[—[n[gr(Ha)D]
p (3.17)
2 24 2 —_— 2
Case (2):a,=a,a,=1,a =0, A=A, p=pik= k:ln[%] (3.11) E=x+exp [1}1(35%)}
a

Substituting (3.11) into (3.5), we have:

u(§)=a,+exp(-¢(&)), (3.12)

2
Where &= x+ exp[ln(—5(3aﬂ —3a2A+2 ,u)]

a

Consequently, the exact solution of the of the nonlinear fractional
Sharma-Tasso-Olver equation (3.1) with the help of eqn. (2.10) to eqn.
(2.14), are obtained in the following form:

Case (2-1): When p=0,(A>—4p)>0

[ 4y mnh(d 74/1 (§“+¢r(1+a)j /1]

I'l+a)
u, (&) =a, +exp| —In

2 (3.13)

. 2 _ 2 2 _
§=X+exp[ln( SBal -3aii+2 y)jl

a

Case (2-2): When p=0,(A? 4u)<0

2
Case (3): a2\, a,=2,a_=0A=Aji=is & = exp [[”(‘5(/1‘4“)] (3.18)
a

Substituting (3.18) into (3.5), we have:

U (§)=A+2exp(-¢(§)),
In(-8(A° —4,u)j

a

Consequently, the exact solution of the of the nonlinear fractional
Sharma-Tasso-Olver equation (3.1) with the help of eqn. (2.10) to eqn.
(2.14), are obtained in the following form:

(3.19)

Where & =x+ exp(

Case (3-1): When p=0, (A>-4p)>0,

J(2 —4# (§“+cl"(l+a)] /1]

~ utan( T(+a)

uy (&) =A+2exp| —In [

# (3.20)

E=x+exp

In(=6(A* = 4u) ;
a

Case (3-2): When p=0, (\>-4)<0,
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[ N(4u-27) tan(“/(4#712) {gﬂ +cr(1+a)le
2 2

C(+a)

u,y(§) =A+2exp| —In
2u
(3.21)

&=x+exp [7[“75(12 - 4ﬂ)jt
a

Case (3-3): When p=0, A#0,(A\*—4u)>0,

A

u, (&) =A+2exp| | —In
exp( 1[5“ +l(1+ a)] ~ 1] (3.22)
r(l+a)

E= x+exp[ln(_&z)jt
a

Case (@):0,=,0, =00t =AM pmpukmexp (exp U430 =340 ) 3,93
Substituting (3.23) into (3.5), we have:
u (§)=a, —u(exp(-¢(§)))"

In(6(u—A* =3a; —31a,)

(3.24)

Where exp

a

Consequently, the exact solution of the of the nonlinear fractional
Sharma-Tasso-Olver equation (1. 1) with the help of eqn. (2.10) to eqn.
(2.14), are obtained in the following form:

Case (4-1): When p/= 0, (A2 —4y) > 0,

[_ (12_4%,)121“{(4“4/')][5"%%]_1}
2 r(+a)

2p

() =, — 4| exp| ~In (3.25)

In(S(u—-A* =3a, - 3/10(0)t
a

& =x+exp

Case (4-2): When p=0, (A>~4p1)<0,

- (4/1*/12)&111[ (4#12)][5“+d‘(1+a)J1J
2 I(+a)

2u (3.26)

(&) =at, | exp| ~In

» In(3(u-A"-3a; - 3/1%)[
a

& =x+ex

Case (4-3): When p # 0, A # 0,(A? —4p)=0,
-1
24 E+ 1+ a) w4
T'd+a)

2 E+cd(l+a)
rd+e)

In(—35(iiz +al +Aay)

u,(§)=a,—u| exp| —In

(3.27)

t

&=x+exp
a

Case (5): a;=-\, a,=0,a =-2uA=A =y, k = exp[w] (3.28)
a
Substituting (3.28) into (3.5), we have:

U (§)=a,~2p (exp (-¢(§) . (3.29)

In(=6(A* —4u) ;
a
Consequently, the exact solution of the of the nonlinear fractional
Sharma-Tasso-Olver equation (3.1) with the help of eqn. (2.10) to eqn.
(2.14), are obtained in the following form

Where & =x+ exp[

Case (5-1): When p= 0, (\* —4p) > 0,

{0,

2u (3.30)

(&) =a, ~ 24| exp| ~In

S22
§:x+exp7h’(b(ﬂ” 4#):‘

Case (5-2): When p=0, (\>-4)<0,

[ (4/1712) tan[M}(W]l}
21 (3.31)

(&) =a, - 24| exp| In

£t exp O —40),
a

Conclusion

In this article, we proposed a new method called improved exp
(—¢(§)) fractional expansion method using the generalized wave
transformation (2.6) and the auxiliary fractional differential equation
(2.9), to obtain the exact solutions of nonlinear fractional Sharma-
Tasso-Olver equation. The main advantage of this method is its
capability of greatly reducing the size of computational work compared
to existing techniques. The method could be used for a large class of
very interesting nonlinear equations. These solutions have rich local
structures, it may be important to explain some physical phenomena.
This work shows that, the improved exp (—¢(£)) fractional expansion
method is direct, effective and can be used for many other FNLPDEs in
mathematical physics.
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