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In today’s world, plastic litter has been positioned in the expanded
list of worldwide threats, counting climate change and ozone depletion
[1]. Plastic debris is regularly separated into two categories: macro
plastics and micro plastics. Macro plastic is a well-known worldwide
issue potentially causing negative impacts on both the life forms and
environment, counting trap, ingestion, retention of harmful chemicals,
and transportation of obtrusive species. Macro plastics are known
threat to human society and the economy [2,3], while micro plastics
are regularly received less consideration. In recent years, it has taken
note that impacts caused by microplastics are comparatively more
critical than those caused by macro plastics, so there have been
increasing environmental concern about tiny plastics.

Microplastics are defined to be the plastic particles between 1 nm to
<5 mm in diameter. They are originated from fragmented macro
plastics by mechanical abrasion and UV exposure [4], man-made
fibers for textiles releasing from domestic washing [5], microplastics
used in consumer and cosmetic products, e.g. facial cleaners,
toothpaste and etc [6]. These debris resulting from the disposal and
breakdown of consumer products, and industrial waste are found in
oceans, estuaries, bodies of freshwater and even in the tap water is now
well established [7-13]. Due to its light weight, plastic litter transported
by winds and currents, and recirculates between seawater and beach
sediments. Polymer density is an important determinant for
microplastics circulation [14]. Microplastics would cause entanglement
and ingestion by a range of marine organisms such as zooplankton,
fish, seabirds, sea turtles, crustaceans and mammals has been
documented [15]. Smaller microplastics were found to cause higher
toxicity to algae [16]. The adsorption of toxic polycyclic aromatic
hydrocarbon [17], heavy metals [18] and pathogens [19] on
microplastics promoted the negative impacts to marine organisms,
probably via the increase in oxidative stress [20] and reduction of
nutrient uptake [21]. Microplastics introduce harmful impacts at the
tissue and cellular level, and meddled with energy reallocation,
reproductive success, and sibling execution [22,23], which pose a
threat to biodiversity and environments [2]. Although identified as an
emerging environmental threat to the freshwater ecosystems and its
ecological consequence. Wastewater treatment plant effluents represent
an important point source for micro plastic particles for freshwater
environments [24,25].

Presently, there are no standardized protocols for surveying,
measuring and monitoring micro plastics in natural ecosystems
[26,27]. A standardized method for microplastics measurement is
required for data comparability, which should be in low cost and with
capability for high volume throughput with acceptable accuracy.
Current common approaches to quantify microplastics from sediment
would involve multiple steps, including drying to reduce volume,
followed by separation, and confirmed by analytic equipment.

Separation could be carried out by density separation, filtration, and
visual sorting [28]. Visual sorting is time consuming and introduces a
lot of false identification. As microplastics are light, floatation
techniques using super saturated NaCl [29], sodium nitrate/sodium
thiosulfate (SNT) solution [30], Zinc chloride solution [25] were
commonly used. Filtration using discfilter with rapid sand filtration
and air floatation was introduced in the final stage of municipal
wastewater treatment [31]. Additional pre-separation digestion with
enzyme [32], acids or chemicals [33] to remove attached organic
material without damaging the microplastics would improve the
extraction and analysis. The isolated microplastics would then be
analyzed by advanced analytical equipment, such as micro-Fourier-
transform infrared (micro-FT-IR) spectroscopy, focal plane array
(FPA)-based transmission micro-FT-IR imaging [25], raman
spectroscopy [34], pyrolysis gas chromatography/mass spectrometry
[35], thermal desorption gas chromatography mass spectrometry [36],
field-portable-X-ray fluorescence (FP-XRF) spectrometry [18],
Nuclear Magnetic Resonance (NMR) [37] and TGA-DSC [38]. They
have been employed to detect microplastics in marine habitats by
identifying the molecular construction of different plastic types from
other materials, which would reduce 22 to 90% of false identification
[39]. To use alkaline and wet peroxide oxidation chemical digestion
techniques to remove microplastics and followed by looking at the loss
of signal in analysis provided an alternative approach to quantify
Microplastics [40]. Apart from using advanced analytical equipment,
simple method using florescence dye e.g. Nile red was reported to have
comparable result of FTIR with 98% recovery rate [41].

More than 300 million tons of plastic are made each year worldwide.
This includes polyethylene terephthalate (PET), Polyethylene (PE),
Polyvinyl Chloride (PVC), Polystyrene (PS). Equally it is hardly
biodegradable, although their degradation can be speed up by UV
exposure [42]. However, the process of photo aging is slow,
approximately release 3% of content after 2000 hour of photo aging
[43]. PE and PS are relatively easier to be degraded in natural
environment [44]. However, they can be found even decades later as
plastic litter and micro plastic, especially PET is mainly found in all
forms of plastic bottles and promotional material. Approximately 51
million tons of PET was produced worldwide in 2014 [45].

According to Microbial degradation of plastics has been provided by
[46-48]. There is very little earlier study on the biological degradation
of plastic litter or its utilization to support microbial growth. This
brings out a whole range of both terrestrial and marine microbial
species capable of the degradation activity. Several species of bacteria
and fungi have been set apart, showing degradation properties of
different cases of plastic polymers. Rare examples include members of
the filamentous fungi Fusarium oxysporum and Fusarium solani,
which have been shown to grow on a mineral medium containing PET
yarns [49]. Recent reports have found marine fungus Zalerion
maritimum is capable to utilize PE [37], while bacterial isolates of
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Bacillus cereus and Bacillus gottheilii degrade UV-treated
microplastics [50]. Consequently, plastics being resistant to
degradation need certain pre-treatment like photo-oxidation or
hydrolysis or enzymatic degradation by microorganisms, before the
polymers can be metabolized by the beings. Thus, microbes are known
to initiate the process of degradation of marine plastic through the
organization of a biofilm and secretion of extracellular enzymes to aid
in breaking down of plastic polymers (Table 1).

In conclusion, a huge body of knowledge exists for degradation
capabilities by microbes; there is even a lack of technological and real
time applications of these biological processes in the surroundings.

Plastic bioremediation studies suffer from a major limitation, the
recalcitrant nature of plastic polymers, which need extra discussion.
This treatment could be either chemical or physical methods that could
develop down the polymer chains and help speed up the biological
processes. Such treatments can generally be enzyme responsible for
this degradation may lead to cost-effective and environmentally
conscious method for degrading micro plastic. A framework of
standard for “Ecocyclable in natural carbon cycle” related to toxicity,
bioaccumulation and degradation/assimilation is highly suggested
[51-53].

Type of Plastic Species Reference

Polyethylene terephthalate Ideonella sakaiensis Yoshida et al., [54]

Polycaprolactone Pseudozyma jejuensis Seo et al., [55]

Polyethylene Pseudomonas sp Sudhakar et al., [56]

Polyethylene Enterobacter asburiae &

Bacillus sp. Zalerion maritimum

Jun Yang et al., [57]

Paço et al., [36]

Bisphenol A (BPA) Pseudomonas sp Artham & Doble et al., [58]

Low Density Polyethylene Aspergillus versicolor Pramila & Ramesh [59]

Low Density Polyethylene Chamaeleomyces viridis Anudurga Gajendiran et al., [60]

polyester Geomyces pannorum Cosgrove et al., [61]

Polyester polyurethane Pestalotiopsis microspore Russell et al., [62]

Polyethylene Bacillus cereus Sudhakar et al., [63]

Polyethylene Brevibacillus borstelensis Hadad et al., [64]

Polystyrene Rhodococcus ruber Mor and Sivan [65]

Table 1: Biological degradation of plastics.
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