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The Fundamental Solution of the One–Dimensional 
Elliptic Operator and its Application to Solving the 
Advection–Diffusion Equation

Abstract
The advection–diffusion equation is first formulated as a boundary integral equation, suggesting the need for an appropriate fundamental solution to the elliptic operator. 
Once the fundamental solution is found, then a solution to the original equation can be obtained through convolution of the fundamental solution and the desired right 
hand side. In this work, the fundamental solution has been derived and tested on examples that have a known exact solution. The model problem here used is the 
advection–diffusion equation, and two examples have been given, where in each case the parameters are different. The general approach is that the time derivative 
has been approximated using a finite difference scheme, which in this case is a first order in ∆t, though other schemes may be used. This may be considered as the 
time-discretization approach of the boundary element method. Again, where there is need for finding the domain integral, a numerical integration scheme has been 
applied. The discussion involves the change in the errors with an increase in ∆x. Again, for small solution values, considering relative errors at selected points along 
the domain, and how they vary with different choices of ∆x and ∆t. The results indicate that at a given value of x, errors increase with increasing ∆x, and again as R∆ 
increases, the magnitudes of the errors keep increasing. The stability was studied in terms of how errors from one time step do not lead to high growth of the errors in 
subsequent steps.
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Introduction

Fundamental solutions can be applied in finding the numerical solution of 
partial differential equations by the boundary element method. The term 
boundary element method (BEM) denotes any method for the approximate 
numerical solution of boundary integral equations, a classical tool for the 
analysis of boundary value problems for partial differential equations [1]. More 
broadly, BEM has been used as a generic term for a variety of numerical 
methods that use a boundary or boundary-like discretization [2]. These can 
include the general numerical implementation of boundary integral equations, 
known as the boundary integral equation method, whether elements are used 
in the discretization or not; or the method of fundamental solutions in which 
the fundamental solutions are distributed outside the domain in discrete or 
continuous fashion with or without integral equation formulation; among others. 
The different algorithms of BEM for parabolic equation are presented in [3], 
such as the time-discretization and the Laplace transform. The one-dimensional 
hyperbolic equation supplemented by adequate boundary and initial conditions 
is considered in [4]. This equation is solved using the combined variant of the 
BEM and in an analytical way. The dual phase lag equation describing the 
temperature field in a 3D domain is solved by means of the boundary element 
method using discretization in time, while at the same time the Dirichlet and 
Neumann boundary conditions are taken into account [5]. Numerical realization 
of the BEM for the constant boundary elements and constant internal cells 
is presented. With the increasing importance of numerical techniques for 
solving boundary value problems, integral equation methods are becoming 

more and more popular as a starting point for numerically solving boundary 
value problems for the reasons listed in [6], one of which is, the arising large 
systems of linear equations are typically better conditioned as the direct finite 
element discretizations of the underlying boundary value problem. A numerical 
method based on the boundary integral equation and an application of the 
dual reciprocity BEM has been used to solve the second-order one space-
dimensional hyperbolic telegraph equation. Also the time stepping scheme 
is employed to deal with the time derivative [7]. The application of the dual 
reciprocity method to the time-stepping BEM for the solution of the transient heat 
conduction problems in homogeneous as well as inhomogeneous materials 
has been presented in [8,9]. The integral equation formulation employs the 
fundamental solution of the Laplace equation for homogeneous materials, and 
hence domain integrals arise in the boundary integral equation. Furthermore, 
time derivative is approximated by the time-stepping method, and the domain 
integral also appears from this approximation. This article suggests how BEM 
using time–discretisation may be applied to solving the advection–diffusion 
equation, where the fundamental solution to the elliptic operator has played 
a major role. Advection-diffusion models are intended to make predictions 
through solution of the so-called advection-diffusion equation, which makes use 
of probability, time, velocity and the diffusion coefficient with spatial variability, 
and reflects two transport mechanisms: advective (or convective) transport with 
the mean flow, and diffusive transport due to concentrations gradients. The 
models are typically ran over a medium term period, say, days to months and 
they are generally limited to small spatial scales.

Problem Formulation

Consider the following one-dimensional advection-diffusion equation:

,                       (1)

such that x ∈ [a,b] and t ∈ [0,T], with initial condition

u(x,0) = u0(x),

and boundary conditions u(a,t) = g0(t), u(b,t) = g1(t),
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The formula (4) is used to calculate the value of u(ξ,t) at subsequent iterations. 
This appears in matrix-vector form as

Gq¯ − Hu¯ − u + P = 0,                 (6)

where

G = [u∗(a,ξ) − u∗(b,ξ)], H = [q∗(a,ξ) − cu∗(a,ξ)− q∗(b,ξ) + cu∗(b,ξ)], and

P

It should be noted that any two of the boundary values uj+1(a), uj+1(b), qj+1(a), or 
qj+1(b), is known. The value of P can be evaluated using numerical integration, 
using (5) and noting that the term uj(x) is the approximation from the previous 
iteration.

Construction of the fundamental solution

Gnewuch and Saunter [4] noted that in mathematical textbooks and also 
in engineering software packages usually only integral equations for the 
prototype operators such as the Laplace operator, the biharmonic operator, the 
Lame operator, the Stokes operator are discussed and realised numerically. 
They then develop the relevant integral equations for the general second order 
elliptic boundary value problems with constant coefficients

Lu := −div(A grad u) + 2hb,∇ui + cu,

since in the farfield, i.e., as |x| becomes large equations with non constant 
coefficients or nonlinear equations could be linearized. The definition of 
fundamental solutions for L involves Macdonald functions Kνwhich, for 
example, are stated in [9]. These functions are modified Bessel functions of 
the second kind and satisfy the differential equation

x2u00 + xu0 − (x2 + ν2)u= 0,

for which they are the solution that remains bounded as x tends to infinity on 
the real line.

They can be given by the following integral representations

Theorem 1 Let ν = c + hb,biA= 0. Then κ0 :<
d → <defined by

 for d = 2 for d6= 2

whereωdis the volume of the unit sphere in <d, is a fundamental solution of L. 
For ν 6= 0, there exists λ ∈C\(−∞,0) with λ2 = ν. A fundamental solution κλis 
given by

.

The proof of this theorem can still be found in [6]. The symbols hb,xiAand ||x||A 
represent the weighted inner product and weighted norm in <d, respectively, 
and are defined by

hb,xiA= bTAx and .

Now, for d = 1, one obtains

.

Taking this to the problem at hand means that a fundamental solution u∗(x,ξ) is 

wherec(x) and D(x) are arbitrary functions, though the formulation here is 
based on c,Dconstant. Also, D(x) 6= 0, and it is assumed that g0(t) and g1(t) 
are smooth functions over the given interval.

Developing boundary integral equations

To solve (8), the BEM using discretization in time is applied. The time interval 
[0,T] is divided into n pieces, each of length ∆t = T/n. The corresponding points 
are denoted tj, for j = 0,1,...,n. The ends of the interval are t0 = 0 and tn= T; 
the interior points are tj= j∆t for j = 1,2,...,n − 1. For the time interval [tj,tj+1] the 
following approximation of time derivative can be used

so that

.    (2)

At the t-th time step, (8) can be approximately rewritten as

,

whereuj(x) ≡ u(x,tj). The weighted residual criterion is applied to (2) to obtain

,         (3)

whereξ ∈ (a,b) is the observation point, u∗(x,ξ) is the fundamental solution. 
Integrating by parts the first two components of (3) one obtains

and

so that

This may be simplified as

or
+ u∗(a,ξ)qj+1(a) − q∗(a,ξ)uj+1(a) + cu∗(a,ξ)uj+1(a) − Duj+1(ξ) + Pj(ξ) = 0             (4)

where

−u∗(b,ξ)qj+1(b) + q∗(b,ξ)uj+1(b) − cu∗(b,ξ)uj+1(b)                   (5)

And

                  (5)
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sought which should fulfil the equation

,

where δ(x,ξ) is the Dirac delta function with the property

.

The fundamental solution u∗(x,ξ) can now be written as

,

wherer = c/D, k2 = 1/(D∆t) + r2, and

The solutions to the modified Bessel functions of the first and second kind, may 
be defined in another way by respectively, when ν is not an integer, and Iνand 
Kνare the two linearly independent solutions to the modified Bessel’s equation.

Some selected identities are

) and 

from which one can write

Now, the expression for the fundamental solution may be simplified, by 
substituting for K−1/2(z) as

     (7)

It can be verified that

,

and

Applying boundary conditions

A numerical scheme is then applied to solve the system (6), by approximating 
u(x,t) at each time step. At this point, the common practice is that one uses 
(6), sets the value of the observation points to ξ = [a,b], to determine any two 
of u1,uN,q1,qN, that may be unknown. Then, (6) is used again to solve for any 
of the unknown values u2,...,uN−1.In this work, the procedure has been made 

easy, especially considering that this has to be done several times basing on 
the number of time steps. Here, u = (u1,u2,...,uN), u¯ = (u1,uN), and q¯ = (q1,qN). If 
all the unknowns, say, q1,qN and u2,...,uN−1 are brought to the left-hand-side and 
the knownsu1,uN taken to the right-hand-side, then the system (6) appears as

P

In other words, this takes the form Ax = b. The complete code that is used to 
generate all results presented in this work was developed in matlab.

Test problems

The advection–diffusion in 1D has been considered, with different parameters, 
and initial and boundary conditions. Two test problems are here solved using 
BEM with time–discretisation and results shown in tables and plotted in 
graphs. The first problem is a travelling wave while the second takes the form 
of a wave that diffuses faster than it travels, and both have a known analytical 
solution. In all cases, the results of the approximations are compared with the 
exact solution.

Problem 1

Consider the equation

,                 (8)

with [a,b] = [−0.75,1.25],D = 0.01,c = 1.0, and the following initial condition

 .

The boundary condtions can be obtained from the known analytical solution to 
this equation, which is

.

Figures 1, 2 and 3 show the graphs of the exact and numerical solutions using 
BEM with time–discretisation for different ∆x and ∆t. For small step sizes 
where the nodes are quite many, the plotted values have been limited so as 
to have clear diagrams. For selected points, (-0.375, 0.2), (-0.25, 0.3), (-0.125, 
0.4), (0.0, 0.5), the errors have been computed and tabulated. Table 1 shows 
errors at these points for ∆t = 0.0125 and Table 2 shows errors for ∆t = 0.005. 
The step length has been varied as ∆x = 0.005, 0.0025, 0.00125, and 0.0005 
in both tables. The figures show that for a given choice of ∆x,∆t, the errors look 
small, while for others the errors look bigger, suggesting the need to make 
suitable choices of these two values. On the other hand, the tables indicate that 
as the step length reduces from 0.0025 to 0.0005, the errors keep reducing. 
This is illustrated in Figure 4 where the errors are plotted against 1/∆x.

Problem 2

Consider (8) with a different set of parameters and domain, that is, c = 0.25,D= 
0.01,[a,b] = [0,1],t = [0,1]. The known exact solution to this problem is

.

The initial and boundary conditions have been obtained directly from the 
analytical solution. The analytical solution at different times is shown in Figure 
5. Computations are made for different choices of ∆x,∆tand results tabulated. 
Here the different choices of ∆x are 0.005, 0.0025, 0.00125, and 0.0005, and 
corresponding to each, ∆t has been chosen to be 0.05 and 0.025. The graphs 
in Figures 6, 7, 8 show the comparison between the analytical and numerical 
solutions at selected times t = 0.3, 0.5, 0.8, and 1.0. Again, the number of 
points plotted has been limited to 20, in order to have clear diagrams.Errors 
have been computed at selected nodes for different choices of ∆x,∆t. Table 
3 shows the errors at selected points (x,t), for ∆t = 0.05 and Table 4 shows 
the errors at selected points (x,t), for ∆t = 0.025. For different points (x,t), the 
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Figure 1. BEM solution to Problem 1 with ∆x = 0.0025, ∆t = 0.0125.

Figure 2. BEM solution to Problem 1 with ∆x = 0.00125, ∆t = 0.0125.

Figure 3. BEM solution to Problem 1 with ∆x = 0.0005, ∆t = 0.005.
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∆x
(x,t) 0.005 0.0025 0.00125 0.0005

(-0.375, 0.2) 0.075310588 0.015791865 0.032893340 0.037559268
(-0.25, 0.3) 0.071148136 0.035472962 0.057824564 0.063806427

(-0.125, 0.4) 0.184590869 0.002523138 0.034038790 0.042187089
(0, 0.5) 0.206591963 0.003576774 0.039062113 0.048060057

Table 1. Errors in BEM solution to Problem 1 for ∆x = 0.00125, ∆t = 0.0125.

∆x
(x,t) 0.0025 0.00125 0.0005 0.00025

(-0.375, 0.2) 0.171551877 0.024462163 0.009432274 0.014045564
(-0.25, 0.3) 0.262077163 0.025397613 0.022389624 0.028687495

(-0.125, 0.4) 0.462994357 0.056669105 0.009079623 0.017297719
(0, 0.5) 0.614353939 0.065682568 0.011551713 0.020893886

Table 2. Errors in BEM solution to Problem 1 for ∆x = 0.0005,∆t = 0.005.

∆x
(x,t) 0.005 0.0025 0.00125 0.0005

(0.25, 0.25) 0.019310635 0.001762635 0.002593920 0.003811573
(0.50, 0.25) 0.006243614 0.008666152 0.012374016 0.013410813
(0.25, 0.5) 0.041561936 0.001145649 0.008737007 0.011488490
(0.50, 0.5) 0.014517337 0.021029986 0.029748328 0.032177517

(0.25, 0.75) 0.050546509 0.012212828 0.027337446 0.031532791
(0.50, 0.75) 0.036945324 0.020917836 0.034911137 0.038796103

Table 3. Errors in BEM solution to Problem 2 at ∆t = 0.05.

∆x
(x,t) 0.005 0.0025 0.00125 0.0005

(0.25, 0.25) 0.104256469 0.023171716 0.003747977 0.001631469
(0.50, 0.25) 0.091891180 0.017378129 0.000544418 0.005513269
(0.25, 0.5) 0.221045365 0.038481292 0.002884489 0.014180128
(0.50, 0.5) 0.207514469 0.035348301 0.003897015 0.014629829

(0.25, 0.75) 0.324410460 0.035420633 0.026539310 0.043224955
(0.50, 0.75) 0.346911481 0.060621192 0.001147617 0.017807569

Table 4. Errors in BEM solution to Problem 2 at ∆t = 0.025.

Figure 4. Variation of errors with step length in u(x,t) for Problem 1.
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Figure 5. Analytical solution to Problem 2 at different times.

Figure 6. BEM solution to Problem 2 with ∆x = 0.005, ∆t = 0.05.

Figure 7. BEM solution to Problem 2 with ∆x = 0.0025, ∆t = 0.05.
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variation of the errors at ∆t = 0.025 is shown in Figure 9, indicating that errors 
reduce with reducing step size.

Discussion of Results

The stability of the suggested method applied to the advection–diffusion 
equation is here investigated by making various choices of step sizes, in space 
and time. Two parameters, Peclet number (Pe) and Courant number (Cr), 
among others, are often used to define

stability and consistency. These are defined as

 and .

The stability of the numerical scheme increases as the Peclet and Courant 
numbers decrease. The values of ∆x that have been used in this work range 
from 0.25 down to

0.000625, suggesting that for Test Problem 1, say, Peranges from 25 down 

to 0.0625 since Table 3: Errors in BEM solution to Problem 2 at ∆t = 0.05.c 
= 1.0 and D = 0.01. For these small values of Pe, this will immediately imply 
that for a fixed time step of ∆t = 0.025 or less, the method is stable. On the 
other hand, take for example Test Problem 1 with ∆x = 0.005,∆t = 0.125 which 
suggests a very high Courant number, Cr = 25 compared with ∆x = 0.0125,∆t 
= 0.005, giving Cr = 0.4 and use BEM to find the approximation. These 
results are illustrated in Figure 10, showing the difference in approximations 
for both a high and low Cr, in terms of shapes of the graphs.Convergence 
means that the solution to the finite difference approximation approaches the 
true solution of the PDE when the mesh is refined. As a test for convergence 
it is required to determine whether the solutions with increasingly refined 
domains approach a fixed value. Additionally, since the analytical solution is 
known, one tests whether this sequence of solutions converges to this value, 
and this is known as consistency. BEM was applied to the Test Problem 1 
using the time steps, ∆t = 0.25, 0.125, 0.05, 0.005 for different step lengths, 
∆x = 0.0025, 0.00125, 0.0005. From the results, a value of ∆t = 0.005 was 
determined to be sufficiently small to give convergence. Figures 11 & 12 shows 
the results obtained at t = 0.5 for reducing step lengths, up to ∆x = 0.0025. The 
convergence of BEM is attained when the choice ∆x = 0.0005,∆t = 0.005 is 

Figure 8. BEM solution to Problem 2 with ∆x = 0.0005, ∆t = 0.025.

Figure 9. Variation of errors at x = 0.25 for Problem 2 with ∆t = 0.05.
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Figure 10. BEM solution to Problem 1 at different times when (a) Cr = 25 and (b) Cr = 0.4.

Figure 11. BEM solution to Problem 1 at t = 0.5 with different ∆x.

Figure 12. Comparision of BEM solution to Problem 1 at t = 0.5 with different ∆x.
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made, and subsequent reductions in both step sizes shall lead to little change 
in the approximation results. Table 5 gives results for reducing step lengths, 
showing that the first columns contain quite different values from the rest, 
but continuously improving as the step length reduces, and in the end the 
values are within the same range, indicating that a point of convergence has 
been attained.Now, Test Problem 2 is solved using BEM with time steps, ∆t 
= 0.25, 0.125, 0.05 for different step lengths, ∆x = 0.0025, 0.00125, 0.0005. 
From the results, a value of ∆t = 0.05 was determined to be sufficiently small 
to give convergence. Starting with a maximum of ∆x = 0.0025, convergence 
was determined by successively reducing the step length up to ∆x = 0.0005. 
Figure 13 shows the results obtained at t = 0.5 for reducing step lengths. These 
graphs appear to have a similar shape, though they do not fit into each other, 

Figure 13. BEM solution to Problem 2 at t = 0.5 with different ∆x.

Figure 14. Comparision of BEM solution to Problem 2 at t = 0.5 with different ∆x.

∆x
(x,0.5) 0.025 0.0125 0.00625 0.0025 0.00125 0.000625 Exact
0.2500 0.0903 0.0936 0.0770 0.0452 0.0294 0.0203 0.0128
0.3125 0.0828 0.1078 0.1298 0.1418 0.1394 0.1366 0.1163
0.3750 0.0660 0.0937 0.1268 0.1731 0.2035 0.2382 0.2425
0.4375 0.0511 0.0691 0.0883 0.1087 0.1174 0.1255 0.1163
0.5000 0.0372 0.0457 0.0489 0.0420 0.0325 0.0232 0.0128
0.5625 0.0269 0.0281 0.0230 0.0113 0.0050 0.0017 0.0003
0.6250 0.0188 0.0163 0.0095 0.0023 0.0005 0.0001 0.0000

Table 5. Errors in BEM solution to Problem 1 at t = 0.5.

as shown in Figure 14. The values indicate that BEM is convergent when the 
choice ∆x = 0.0005,∆t = 0.05 is made, because subsequent reductions in both 
step sizes lead to little change in the approximation results. The graphs are 
initially distinguished, though they tend to one point as the step length reduces, 
indicating that a point of convergence has been attained.

Conclusion

The errors in approximations have been studied, noting that for this method, 
errors in the approximations reduce with decreasing grid size. The stability, 
convergence, and consistency of BEM applied to the advection–diffusion 
equation have been discussed. The stability of the method was tested using 
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the concept the Peclet and Courant numbers. Basing on the Table 5: Errors 
in BEM solution to Problem 1 at t = 0.5.results from the simulations, it was 
found that the method considered was stable. Again, for this method, several 
solutions with different values of distance and time steps have been obtained to 
ensure that the solution does not depend on the model discretisation. This has 
been done by repeatedly generating simulations with reduced distance and 
time steps and analysing the output at selected times over the domain. It was 
found that the method is convergent since further refinement of distance and 
time steps produced insignificant change in the model output. The results were 
presented in a number of tables and illustrated using graphs, all generated 
using MATLAB.  
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