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Ever since mankind observes the environment, it tries to get a 
‘grasp’ of what is going on. ‘Grasping’ something means, to grab it 
in your hands. In this respect, coming all the way from the ‘bottom’ 
(R. Feynman [1]) and dealing with the biochemistry of atoms and 
molecules, it is an up-scaling and especially a ‘making of models’. 
‘Scaling’ and model-development has been honored by the 2013 Nobel 
Prize in Chemistry awarded to M. Karplus, M. Levitt, and A. Warshel. 
The awardees have laid the fundament to today’s structure based 
computational world (www.nobelprize.org).

Quantum mechanics gives a model about how we can envisage 
the smallest bodies, here atoms and their electrons. If we wish to 
understand the chemistry and mechanics of molecules it is not only 
reasonable, but also necessary to turn to more simplified models. The 
current understanding of calculating the mechanics of molecules allow 
us to assume that inner electrons could be neglected in calculations: 
the electrons are assumed to be there, but are supposed to not too 
dramatically interfere with how we try to explain observations on a 
macroscopic scale. Thus, the idea emerges, that the inner electrons of 
an atom should be dealt with implicitly, not explicitly. This assumption 
drives the development of simplified atom models, in which the atoms 
are seen as to be spherical, with a finite size and the electrons are being 
represented by ‘partial charges’. 

With the assumed simplifications one shifts from the quantum 
mechanical world into the Newtonian world. Whilst gluing atoms into 
molecules, one needs to describe the bond between the atoms. In the 
current models, the description of a bond is that one of two spheres 
being  connected  by  a  spring .  The   mechanics  of  such  a    model 
can be described by e.g. the Hook’s law. Larger or smaller spring 
constants allow to handle the strength or rigidity of a bond. Also, the 
forces acting in an angle described by two bonds generated by three 
atoms, as well as rotation around bonds can be handled with the same 
formula. The force constant is a number which depends on the atom 
types, so it is characteristic for the atoms involved. In addition to the 
forces which keep the immediate atoms together, the partial charges of 
the atoms within a molecule, contribute to the shape of the molecule. 
These forces acting through space are the so called ‘non-bonded 
interactions’. These forces are described by a combination of Coulombs 
law, using parameters such as the partial charges of the atoms and 
Lennard-Jones potential. The latter equation implements parameters 
such as minimum distance and energy between two atom types.   

If we know the force constants of a particular bond and the quality 
of the non-bonded interactions, then we can calculate the forces acting 
within a molecule. Since the forces on an atom depend on the electric 
field, the energy between the atoms needs to be calculated. The total 
energy of a molecule is stored in the bonds and its conformation 
which depends on the charges of the atoms. Taking this together, it is 
necessary to generate a mathematical or functional formula to calculate 
the energies. This calculation needs the input of the characteristics of the 
individual atoms, which are given by the ‘parameters’. Consequently, 
joining the functional part with the parameters delivers the forces 
acting on the atom in an electrical field and is named ‘the force–field’ 
(ff).

The total energy calculated for a molecule is the sum over the 
energies derived from its individual components. With the ff, it is 
possible to screen for the lowest energy of a molecular structure by 
changing distances and angles. This type of ff is used in molecular 
mechanics calculations and has made its way into e.g. Monte Carlo 
simulations. 

Besides using Monte Carlo simulations to derive equilibrated 
structures, it is also possible to monitor a system over time to get a 
glimpse of it. These calculations are the so called molecular dynamics 
(MD) simulations. Watching over time requires a break-down of the 
movement into small steps. At each step, the energy and consequently 
the forces are calculated. From the calculation the acceleration is 
derived to move the atom to the next step. 

The structures proposed from a computational calculation are 
therefore highly dependent on the respective force field used. 

A series of ffs have been developed. They are normally developed 
to simulate special classes of molecules. Here the aim is, to focus 
on biological molecules [2-4]. From a historic perspective, the 
crystallization of the today’s ff began with the parameters set by Warshel 
[5] and Scheraga [6] and their co-workers. At this time,  the computer 
simulations were applied to molecules in organic chemistry. Force 
fields suitable for proteins were building on these early developments 
and off-springing in the early 1980s. The most popular ones of these ff 
fields are AMBER (Assisted Model Building with Energy Refinement 
[7]), CHARMM (Chemistry at HARvard using Molecular Mechanics 
[8]), OPLS (Optimized Potentials for Liquid Simulations [9]) and 
GROMOS (GROningen MOlecular Simulation [10]). Differences 
amongst these ffs are how they treat atoms, explicitly or implicitly. As 
usual, a compromise is achieved in the ff to save calculation time. In 
most of the ffs, only ‘titrable’ hydrogen atoms are treated explicitly, 
whilst hydrogen atoms bonded to carbon atoms are seen together 
with the respective carbon atom and dealt with as an ‘united atom’. 
With further uniting atoms, a ff called the MARTINI ff has been 
developed recently [11]. The name originates from the nickname of the 
city Groningen, NL, where the the ff was developed. In this ff,  four 
heavy atoms are combined forming a sphere which is given its own 
parameters. This ff allows size and length scale of the simulations to be 
expanded enormously.  
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When developing parameters, a process called parametrization 
of the ff, needs to be done. The simulations need to be calibrated 
against either experimental data (AMBER) or higher quality quantum 
mechanical calculations (AMBER, CHARMM). Crystal structure data 
or normal mode frequencies (AMBER) are usually used, for the match 
with experiments. The GROMOS and OPLS ffs are calibrated against 
thermodynamic data,  such as density or heat of vaporation (OPLS) 
and enthalpy of hydration and apolar solvation [12], to emphasize 
solvent effects. With the inclusion of parameters suitable for lipid 
and especially for water molecules, these ffs can be readily used in 
simulations of condensed phases. Some of the ffs, e.g. such as the 
ENCAD ff (Energy Calculation And Dynamics) [13,14], are designed 
to sever specific purposes such as investigating protein folding. Overall 
the parameters from all the ffs seem to merge over time, which can be 
considered to be reasonable in as much as the nature IS THE ultimate 
calibration system which all the ff-developers have to match.

The parameters are not changed during the simulation. However, it 
is evident that this is a compromise which is not only due to the limited 
availability of computer power. With increasing computer power, the 
idea of including polarizing effects becomes eminent. This thought arises 
especially when highly charged systems like DNA/RNA and electrolytes 
are considered to be simulated with comfortably large systems. The 
application of a classical Drude oscillator and the implementation of 
induced multipole moments are routes to implement polarizability 
into the simulation protocol. The former methodology is based on the 
idea, that a charged particle is connected with the nucleus by a spring. 
This concept allows the immediate environment to be considered to a 
certain extent, at each time step. Simulations using NAMD software 
(www.ks.uiuc.edu), exploring  ionic solutions, have proven to give 
good overlap with experimental data [15], as well as simulations with 
hydrated lipid bilayers [16]. In afore mentioned latter, methodology 
the induction of dipoles is considered for the energy calculation at each 
time step of the simulation [17]. This approach is implemented into 
the AMOEBA software (Atomic Multipole Optimized Energetics for 
Biomolecular Applications) [18] and its quality shown in simulations 
of a DNA repair metallo enzyme, endonuclease IV [19].

Including polarizability into the simulations comes with the cost, 
that the time for simulating a system increases compared to classical 
(no polarizability) MD. There is the hope, that to some respect the 
hardware supports a solution in as much graphics processing units can 
be used [19]. Including more and more details will ultimately reach the 
point where the ffs compete with ab initio calculations.

In addition to that, improved ff in combination with improved 
soft- and hardware will possibly find its entry into the world of docking. 
Protocols for how to generate free energies are available and will deliver 
high quality data in combination with the improved ffs.
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