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Abstract
The variation-difference method is a convenient numerical method for shells of complex forms. It is enough when only cinematic boundary 
conditions are satisfied because the method is based on the principle of Lagrange. Another advantage of the variation-difference method is the 
better opportunity to create computer programs based on it. For shell analysis in orthogonal coordinate system as well as for shell analysis in 
principal curvatures the system of equations describing stress-strain state can be simplified. In this paper the difference between analysis in 
orthogonal coordinate system and analysis in principal curvatures of the surface is considered. The main distinction of the analysis of shells in 
orthogonal curvilinear coordinate system is the necessity of determination of components which include curvature of torsion of coordinate lines. 
The addition of these components in the equations of the theory of shells for the coordinate system in principal curvatures gives possibility to 
analyze shells in common orthogonal coordinate system. In this article shell analysis in orthogonal coordinate system is applied to shells based 
on normal cyclic surfaces. 
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Introduction

One of the tasks of the modern town building is a design and working 
out the methods of analyses of space constructions of new complex forms 
[1]. There are the examples of using new complex forms of constructions in 
buildings in the 20-th 21-st centuries [2-5]. But the architects and mechanic-
engineers demand to develop and to investigate the new forms of the surfaces, 
which there are described by the analytical equation and their inculcation in 
different branches of science and technics. At the Encyclopaedia of analytical 
surfaces [6] there are described 35 classes of the surfaces. One of class of 
surfaces is the class of normal cycle surfaces, which allow constructing much 
new forms of thin shells [7-10]. Cycle shells formed by the system of circles are 
comfortable for their realization. At second half of the 20-th century there has 
been worked out the finite element method (FEM) for stress- strain analyses of 
constructions, which there are mainly used for design of thin shell. But in most 
program complexes of FEM there are not taken into account the geometrical 
characteristics of the middle surface of the shell, which may bring to not correct 
results of design of the shells of complex form. The alternative method of 
analyses of thin-walled shells of complex geometry is a variation-difference 
method. The program complex VRMSHELL which used the base of variation-
difference method there is worked out at the chair of strength of materials 
of Engineering department RUDN (today, the Department Civil Engineering, 
Engineering Academy, RUDN) used the geometrical characteristics of the 
middle surface of the shell [11,12].

At the article there given the base of the geometry of the normal cycle 
surfaces and the variation-difference method, shone the examples of the 

normal cycle surfaces and the example of calculation of stress-strain state of 
the shell.   

Geometry of normal cycle surfaces

Normal cycle surfaces there are formed by moving of a circle of change 
or constant radius at the normal plane of the directrix curve of centers of the 
generating circles. Vector equation of normal cycle surface: 

( ) ( ) ( ) ( )ω+= ,, uuRuυu erρ ,  	                                                         (1)

where  ( )υu,ρ     is a radius-vector of the surface;  ( )ur   - radius-vector of 

the directrix line of centers of the generating circles;   ( )uR   is a function of 
radius of the generating circles;  ( ) ω+ω=ω sincos, βνe u     is the equation of 
the circle of unit radius at the normal plane of the line of the centers of the 
generating circles; ν, β are vectors of normal and bi-normal of the line of the 
circles; ( )uv θ+=ω ;  v - polar angle at the normal plane of the of the line of the 
centers of the circles;  θ(u) there is determining the initial polar angel from the 
normal of the directrix line. 

Results and Discussion

On the base formulas of the differential geometry [13] there are received 
the formulas of the geometrical characteristics of the normal cycle surfaces:

( ) 22 ω−′+′= coskRsRA s ;   B=R;   ( )sRF ′χ+θ′= 2 ;
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skks ′= ; ss ′χ=χ ; k, χ  - curvature and torsion of the directrix line; r ′=′s ;
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u
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∂
∂ .  

If  F = 0    →   ( ) ∫ θ+′−=θ χ 0dusu  ,                                                              (3) 

There is received the orthogonal coordinates of the normal cycle surfaces. 
For plane directrix line 0=χ ;  ( ) constu =θ=θ 0 . 
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It’s seen from the formulas (2, 3) that the coordinate system of the normal 
cycle surfaces is orthogonal (F=0) but not conjugated (M≠0), so the generating 
circles are not the curves of principle curvatures of the normal cycle surfaces in 
common. The coefficient M may be equal zero if: 1) k=0 then the directrix curve 
is the right line and the surface is a surface of revolution; 2) 0=′R , R=const, 
then the normal cycle surfaces is the tube surface.

The examples of normal cycle surfaces with different directrix and 
functions of generating circles there are shown on Figure 1.

The geometry of normal cycle surfaces there has been investigated at the 
articles [7-10].

Variation-difference method

The variation-difference method there is based on the Lagrange’s principle 
that is the principle of minimum of the total energy of deformations [13], so as 
in finite element method:  

E=U-T;    δE=δU-δT=0,                                                                           (4)

E is a total energy of deformation; U is a potential energy of deformation; 
T is the work of external forces; δ is a symbol of variation of functional [14].  
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εi, χi are tangential and bending deformations of middle surface of the 
shell; Ni, Mi  are tangential and bending forces; qi are the projections of loads at 
the surface coordinate system of the shell, ui are the displacements of middle 
surface; Ω –  parameter of the area of the middle surface.

Using the physical and geometrical equation of the theory of the shells 
(6) the functional of total energy (4) there will be written in function of 
displacements.       

For stress-strain analyses of the shell by the variation-difference method 
the surface of the shell there is used the coordinate net with equal or difference 
paces. Changing the derivations of displacements in the functional of total 
energy by numerical difference ratio and minimizing the functional there is 
received the system of the algebraic equations. The decision of the equation 
gives web displacements of the shell at the nods of the net. Using again the 
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Figure 1. Normal cycle surfaces.
Directrix: a, b Parabola; c Hyperbola; d Evolving of the circle; e Ellipse; f Sinus; g, h - Helix;
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numerical difference ratios there are received the strains and further the 
tangential and bending forces and stresses. 

The program complex VRMSHELL includes the library of curves on 
base of which there are formed the sections of the surfaces of the classes 
including in complex and calculated the geometric characteristics and their 
necessary derivations. The program complex includes the classes of the 
surfaces: cylinders with different generating curves, surfaces of revolution, 
Joachimsthal’s canal surfaces, Monge’s surfaces. There may be analyzed 
the stress-strains of plates (bending and plane problem) and shallow shells 
in rectangular and polar coordinates. The Monge’s class surfaces allow to 
analyze the plates on curved trapezium orthogonal plans [15]. There may be 
used different condition of support and elastic foundation and elastic supports 
as well. There may be analyzed the shells with holes and shells with any 
contours. The loads may be linear distributed on some part of the shell or 
along a coordinate lines or concentrated forces or moments. The loads may be 
orthogonal or tangent to the surface of the shell.  

The beginning program there has been realized in coordinate of principle 
curvatures of the middle surfaces of the shells. The geometrical characteristics 
and geometrical equations of deformations of shells of common orthogonal 
(non-conjugated) coordinates have some differences of the characteristics and 
equations in the principle coordinates system of the surfaces. So there were 
made the necessary changing in the program complex, which make possible 
to analyze the normal cycle shells. The correction of the work of the block of 
the normal cycle shells there was checked up on the shells of rotation with 
some analytical decision and analyses of shells of rotation and tube shells 
using the blocks of the shells of rotation and Monge’s shells included in the 
program complex.   

The example of analyses of normal cycle shell

The stress-strain condition of the normal cycle shell with ellipse directrix 
and cosine function of radius of generating circles (Figure 2) there was 
analyzed by the program complex. The parameters of the shell: directrix -  
x=acosu, y=bsinu, a=3 m, b=2 m, u=0÷2π; radius of generating circles -  

R= R0-c⋅cos2u, R0=0.75 m;        c=-0, 2 m; thickness of the shell h=0.1 m; 
module of elasticity E=3.5⋅108 kPa.

The analyses there was made on the internal presser q=1 kPa. 

As the shell has 3 axis of symmetry the analyses of strain stress state on 
internal presser there was made on 1/8 part of the shell (Figure 3).  The epure 
of the tangential normal forces there are shown at Figure 4.  

The epure of the bending moments are shown at Figure 5.  

For comparison in Figure 6 in the brackets are the given results of 
analyses of the ellipsoidal tube shell with radius R0=0.75 m.  The parameters 
of the directing ellipse are the same as at the ellipsoid cosine shell a=3 m, b=2 
m. The coordinates systems of the middle surfaces of the shells is different but 
they have at four sections u=±π/4. u=±π3/4 the generating circle with equal 
radius. The results of analyses of the stress-strain states of the regarded shells 
show the difference at the distributions of the tangential normal forces but sizes 
the largest normal forces are closer still at the differ sections.

The circular bending moments at the most sections larger at the ellipsoidal 
cosine shell.  

From the results of analyses of the ellipsoidal normal cycle surface with 
cosine function of generating radius and with internal pressure load there are 
seen that the circle normal forces Nv about at two times more the longitudinal 
normal forces Nu. The large normal force is at the internal side of shell u=±π/2, 
v=0  

mkNNv /013.1max = , kPaNv 13.10max =σ , (u=0, v=π/2).  

The large longitudinal normal force mkNNu /49.0max = ,    kPaNu 9.4max =σ , 
(u=±π/2, v=0,75π). 

The circular bending moments Mv there are bigger then longitudinal 
bending moments Mu as well: , mNmM u /93.0max = , kPaMu 556.0max =σ , , 

(u=π/4, v=0). ,

mNmM v /46.2max = , kPaMv 476.1max =σ   , (u==π/2, v=0).

The larges bending stresses are about 15 percent of the largest tangential 
normal stresses. But those stresses are at different section. The tangential 
normal stresses at the section of largest moment stresses (u==π/2, v=0) is 
σNv=5,52 kPa. The differences are about 30 percent.
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Figure 2. Ellipsoidal normal cycle shell.
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Figure 3. The analyzed section.
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Figure 4. Tangential normal forces.
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Figure 5. Bending moments.

 

Figure 6.  The ellipsoidal tube shell.

Conclusion

The block of the normal cycle shells allow to analyze any normal cycle 
shell with the plane directrix and the function of radius included at the library 
of curves of the program complex. If it is necessary to use some curve which 
is not at the library the new curve may be simply included at the library. There 

isn’t any another changes that must be done. For using of space direcrix it will 
be necessary to do some changes at the program complex.
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