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Abstract

Eicosanoids are amphipathic, bioactive signalling molecules involved in a wide range of biological processes from
homeostasis of blood pressure and blood flow to inflammation, pain, cell survival, and the progression of numerous
disease states. The purpose of this review is to present an up-to-date and comprehensive overview of the enzymes
of the eicosanoid pathway, their substrates, products, structure, isoforms, and regulation.
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Abbreviations: 11R,12R-HxA3: 11R,12R-hepoxilin A3; 11R,12R-
TrXA3: 11R,12R-trioxilin A3; 11R,12S-TrXA3: 11R,12S-trioxilin A3;
11R,12S-TrXB3: 11R,12S-trioxilin B3; 11S,12S-HxA3: 11S,12S-
hepoxilin A3; 11S,12S-HxB3: 11S,12S-hepoxilin B3; HHT: 12-
hydroxyheptadecatrienoic acid; 12-KETE: 12-oxoeicosatetraneoic acid;
12R-HETE: 12R-Hydroxyeicosatetraenoic acid; 12R-HPETE: 12R-
hydroperoxyeicosatetraenoic acid; 12S-HETE: 12S-
Hydroxyeicosatetraenoic acid; 12S-HPETE: 12S
hydroperoxyeicosatetraenoic acid; 12S-HxB3: 11S,12S-hepoxilin B3;
15S-HETE: 15S-Hydroxyeicosatetraenoic acid; 15S-HPETE: 15S-
hydroperoxyeicosatetraenoic acid; 5-epi-15HPETE: 5(6)-epoxy-15-
hydroxyeicosatetraenoic acid; 5S-HETE: 5S-Hydroxyeicosatetraenoic
acid; 5S-HPETE: 5S-hydroperoxyeicosatetraenoic acid; 9a,11 -α: 11
stereoisomer of PGF2 ; AKR1B1: aldo-keto reductase 1B1; AKR1C3:
aldo-keto reductase 1C3; ALOX12: Arachidonate 12(S)-lipoxygenase;
ALOX12B: arachidonate 12(R)-lipoxygenase; LTC4S: leukotriene C4
synthase; ALOX15: arachidonate 15-lipoxygenase-1; ALOX15B:
arachidonate 15-lipoxygenase-2; ALOX5: Arachidonate 5-
lipoxygenase; ALOXE3: hydroperoxide isomerase; CBR1: carbonyl
reductase 1;CLP: coactosin-like protein; CSF: cerebrospinal fluid; PKA:
protein kinase A; DPEP: dipeptidase; DTT: dithiothreatol; EGF:
epidermal growth factor; ERK2: extracellular signal-regulated
kinase-2; EXA4: eoxin A4; EXA4: eoxin A4; EXC4: eoxin C4; EXD4:
eoxin D4; EXE4: eoxin E4; FAM213B: prostamide/prostaglandin F
synthase; FLAP: five-lipoxygenase activating protein; GDH:
glutathione; GGT1: Gamma-glutamyl transaminase; GPX: glutathione
peroxidases; GSNO: S-nitrosoglutathione; HPGDS: Hematopoietic
prostaglandin D synthase; HPODE: 10(S)-
hydroperoxyoctadecadienoic acid; INF: interferon gamma; SNP: single
nucleotide polymorphism; iNOA: inducible NO synthase; LTA4:
leukotriene A4; LTA4H: Leukotriene A-4 hydrolase; LTB4: leukotriene
B4; LTC4: leukotriene C4; LTD4: leukotriene D4; LTE4: leukotriene E4;
LXA4: lipoxin A4; LXB4: lipoxins B4; MAPEG: Membrane-Associated
Proteins in Eicosanoid and Glutathione Metabolism; MAPKAPK2:
Mitogen-Activated Protein Kinase-Activated Protein Kinase 2; MDA:
Malonyl Dialdehyde; PDGF: Platelet-Derived Growth Factor; PGD2:
Prostaglandin D2; PGE2: Prostaglandin E2; PGF2α: prostaglandin F2α;
PGG2: Prostaglandin G2; PGH2: Prostaglandin H2; PGI2:

Prostaglandin I2; PLAT: Polycystin-1-lipoxygenase, alpha toxin;
PAVSM: Porcine Aortic Vascular Smooth Muscle cells; PTGDS:
Prostaglandin D2 Synthase; PTGES: Prostaglandin E Synthase;
PTGES2: Prostaglandin E Synthase-2; PTGES3: Prostaglandin E
Synthase-3; PTGIS: Prostacyclin (PGI2) Synthase; PTGS1:
Prostaglandin G/H Synthase 1; PTGS2: Prostaglandin G/H Synthase 2;
PUFA: Polyunsaturated Fatty Acid; TBXAS1: Thromboxane A
Synthase 1; TGF: Transforming Growth Factor beta; TNF: Tumor
Necrosis Factor alpha; TXA2: Thromboxane A2; TXB2: Thromboxane
B2.

Introduction
Eicosanoids are amphipathic, bioactive signaling molecules derived

from the oxidation of arachidonic acid and other similar
polyunsaturated fatty acids (PUFAs). They are involved in a wide range
of processes from homeostasis of blood pressure and blood flow, the
resolution of inflammation, the perception of pain, cell survival, and
the progression of numerous disease states. These biomolecules act
most often as autocrine or paracrine signaling agents and most have
relatively short half-lives. There are multiple subfamilies of eicosanoids,
including the prostaglandins, thromboxanes, leukotrienes, lipoxins,
resolvins, isoprostanes, and eoxins. Although the biological functions
eicosanoids cover a wide range, one thing many have in common is
context dependency. That is, stimulation by a particular eicosanoid in
one tissue may in fact elicit a different and at times, opposite effect in
another tissue.

Although there are a number of excellent reviews on various aspects
of eicosanoid metabolism [1-5], this review was written to not only
bring the subject up to date, but to do so in a highly comprehensive
manner. In particular, each biosynthetic pathway for prostanoids,
HETEs, lipoxins, hepoxilins, eoxins, and leukotrienes is discussed in
detail. However, presentation of the entire eicosanoid pathway would
be a vast undertaking. For this reason, the breadth of coverage has
been purposely limited to derivatives of arachidonic acid. Thus, ω-3
resolvins, ω-6 linoleic acid, and ω-9 mead acid derivatives are not
discussed. Further, epoxyeicosatrienoic acids, isoprostanes, furan-
containing acids, and endocannabinoids have not been included to
keep the volume of information within reasonable bounds.
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Prostanoid Biosynthesis
Prostanoids are oxidized derivatives of arachidonic acid and consist

of the following subclasses: 1) prostaglandins that are mediators of
inflammatory and anaphylactic reactions, 2) thromboxanes that are
mediators of vasoconstriction and platelet activation and 3)

prostacyclins that are active in the resolution phase of inflammation.
The prostanoid metabolic pathway is shown in Figure 1. Each
prostanoid and associated enzymes are discussed in turn below and the
properties for each are given in Table 1. The mRNA expression levels
for each enzyme are described in detail in the supplemental data.

Enzyme Common UniProtKB Gene X-Ray Reaction #AA MW kDa

Aldo-keto Reductase 1B1 AR P15121 AKR1B1 1ADS
PGH2 → PGF2α

315 35.7
PGH2 → PGD2

Aldo-keto Reductase 1C3 PGFS P42330 AKR1C3 1S1P

PGH2 → PGF2α

323 36.9PGE2 → PGF2α

PGD2 → 9a,11b-PGF2

Arachidonate 12(R)-lipoxygenase 12R-LOX O75342 ALOX12B 3D3L AA → 5R-HPETE 701 80.4

Arachidonate 12(S)-lipoxygenase 12-LO P18054 ALOX12 3D3L

AA → 12S-HPETE

663 75.7LTA4 → LXA4

LTA4 → LXB4

Arachidonate 15-lipoxygenase-1 15-LOX P16050 ALOX15 2ABT

AA → 15S-HPETE

661 74.715S-HPETE → EXA4

LTA4 → 5-epi-15-HPETE

Arachidonate 15-lipoxygenase-2 15-LOX-B O15296 ALOX15B 4NRE AA → 15S-HPETE 676 75.9

Arachidonate 5-lipoxygenase 5-LO P09917 ALOX5 3O8Y

AA → 5S-HPETE

673 77.95S-HPETE → LTA4

15S-HPETE → 5-epi-15-
HPETE

Carbonyl Reductase 1 CBR1 P16152 CBR1 1WMA PGE2 → PGF2α 276 30.2

Dipeptidase RDP P16444 DPEP 1ITQ
LTD4 → LTE4

369 41.1
EXD4 → EXE4

Gamma-glutamyl transaminase GGT 1 P19440 GGT 4GDX
LTC4 → LTD4

569 61.4
EXC4 → EXD4

Glutathione Independent
Prostaglandin D Synthase b-trace P41222 PTGDS 3O19 PGH2 → PGD2 168 18.7

Hematopoietic prostaglandin D
synthase H-PTGDS O60760 HPGDS 3EE2 PGH2 → PGD2 199 23.3

Hydroperoxide isomerase e-LOX-3 Q9BYJ1 ALOXE3 none

12R-HPETE → 11S,12S-TrXA3

711 80.5

12R-HPETE → 11S,12S-TrXB3

12S-HPETE → 12-KETE

12R-HPETE → 11R,12R-
TrXA3

Leukotriene A-4 hydrolase LTA-4 P09960 LTA4H 1HS6 LTA4 → LTB4 610 69.2

Leukotriene C4 synthase LTC4S Q16873 LTC4S 2UUH
LTA4 → LTC4

150 16.6
EXA4 → EXC4

Citation: Biringer RG (2018) The Enzymes of the Human Eicosanoid Pathway. Res Rep Med Sci 2: 106. 

Page 2 of 28

Res Rep Med Sci, an open access journal Volume 2 • Issue 1 • 1000106



Prostacyclin Synthase CYP8 Q16647 PTGIS 3B6H PGH2 → PGI2 500 57.1

Prostaglandin E Synthase mPGES-1 O14684 PTGES 4AL1 PGH2 → PGE2 152 17.1

Prostaglandin E Synthase-2 mPGES-2 Q9H7Z7 PTGES2 2PBJ PGH2 → PGE2 377 41.9

Prostaglandin E Synthase-3 cPGES Q15185 PTGES3 1EJF PGH2 → PGE2 160 18.7

Prostaglandin G/H Synthase 1 COX-1 P23219 PTGS1 none AA → PGH2 576 66

Prostaglandin G/H Synthase 2 COX-2 P35354 PTGS2 5F19 AA → PGH2 587 67.3

Prostamide/prostaglandin F
synthase FAM213B Q8TBF2 FAM213B none PGH2 → PGF2α 198 21.2

Thromboxane A Synthase 1 TXS P24557 TBXAS1 none
PGH2 → TXA2

534 60.6
PGH2 → 12-HHT + MDA

Note: # AA and MW reflect the processed polypeptide.

Table 1: Selected Properties for Eicosanoid Enzymes.

Figure 1: Prostanoid metabolism. Gene designations are given for
the participating enzymes (rounded boxes) and accepted acronyms
given for metabolites (ovals).

Cyclooxygenases: Prostaglandin G/H synthase 1 and
prostaglandin G/H synthase 2

Overview: Cyclooxygenase activity represents the first step in
prostanoid biosynthesis whereby arachidonic acid is converted to the
endoperoxide prostaglandin H2 (PGH2) via the transient prostaglandin
G2 (PGG2) (Figure 2). PGH2 is a multifunctional metabolite. First, and
perhaps foremost, it serves as a precursor for the enzymatic synthesis
of other prostanoids: PGI2, PGE2, PGF2α, PGD2 and TXA2. It also
serves as a metabolic signal in its own right where it is involved in
signaling for vasoconstriction [6,7] and platelet aggregation [8-10].
PGH2 is a labile endoperoxide and it rapidly and non-enzymatically
rearranges to both PGD2 and PGE2 (Figure 3). Further, these two
metabolites in turn undergo ring cleavage to produce γ-keto aldehydes
(levuglandin D2 and E2) which are highly reactive and form adducts
with the ε-nitrogen on lysines that in turn can result in the crosslinking
and aggregation of proteins. In particular, this function is known to
accelerate the formation of Aβ1-42 oligomers that are involves in
Alzheimer’s disease pathology [11].

Figure 2: Reaction catalyzed by PTGS1 and PTGS2.

Figure 3: Synthesis of PGE2 and PGD2 from PGH2.
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There are two major protein isoforms of cyclooxygenase,
Prostaglandin G/H Synthase 1 (PTGS1, COX-1, PGHS-1, PHS 1) and
Prostaglandin G/H Synthase 2 (PTGS2, COX-2, PHS II, PGHS-2). In
most tissues the former is expressed constitutively to maintain normal
tissue function (e.g. maintain GI tract and renal function [12]) whereas
the latter, normally present undetectable levels in most cells, is induced
during inflammation. In contrast, in brain, testes and the macula densa
of the kidney, both isoforms are expressed constitutively [13]. Structure
and function of these isoforms are reviewed by Smith et al. [14,15] and
more recently by Rouzer and Marnett [16] and Chandrasekharan and
Simmons [17].

Human cyclooxygenase structure: PTGS1 and PTGS2 are heme
containing, homodimers produced from distinctly different genes
(human chromosome 9 and 1 respectively) [15,16]. They are
membrane associated proteins (endoplasmic reticulum and nuclear)
[18] with a unique membrane binding domain consisting of four short
amphipathic helices [14,19]. The primary structure of PTGS2 shows
64.7% sequence homology to isoform-1 of PTGS1.

There are six known protein isoforms of Human PTGS1 (hPGHS1)
[20]. For the sake of clarity all further references shall be made with
respect to isoform-1 (UniprotKB-P23219-1). hPGHS1 is produced as a
599 residue polypeptide, cleaved to 576 residues (calculated as 65,996
Da) upon removal of the signal peptide. There are 10 known natural
SNP variants (W8R, P17L, R53H, R149L, K185T, L237M, K341R,
K359R, I443V, and V481I) [21,22]. Human PTGS2 (hPTGS2,
UniprotKB-P35354) is produced as a 604 amino acid polypeptide,
cleaved to 587 amino acids (calculated as 67,281 Da) upon removal of
the signal peptide. There is only one known isoform and five reported
natural SNP variants (R228H, P428A, E448G, V511A, and G587R)
[22].

There are several X-ray structures reported for hPTGS2 (e.g. PDB
entry 5F19) and no reported X-ray structured for hPTGS1. However,
ovine PTGS1 shares a 92.5% sequence homology with hPTGS1 and
thus the ovine structure (e.g. PDB entry 3N8V) may serve as a working
model for the human protein structure.

Both hPGHS1 and hPTGS2 are N-glycosylated in a highly
conserved manner. hPTGS1 is N-glycosylated at Asn-67, Asn-103 and
Asn-143, producing glycoforms with yet-to-be determined
composition [23]. Nemeth et al. [18] have used mass spectrometry to
show that hPTGS2 is glycosylated at Asn-53, Asn-130, Asn-396, and
Asn-580 producing three different glycoforms of molecular weight
71.4, 72.7, and 73.9 kDa. Interestingly, it has been shown that
glycosylation at Asn-580 serves to signal degradation of hPTGS2 [24],
in particular, transport to the cytoplasm for proteosomal degradation
[25]. Further, Otto et al. [26] have shown that Asn-580 is glycosylated
about 50% of the time in ovine PTGS2. There are two confirmed
phosphorylations on hPTGS2 (Tyr-120 and Tyr-446) [27] and three
predicted, but unconfirmed phosphorylations for hPTGS1 (Tyr-54,
Thr-117, and Thr-220) (PhosphoSitePlus, https://
www.phosphosite.org).

Regulation of cyclooxygenase: As noted previously, PTGS2 is an
inducible form of cyclooxygenase in many tissues while PTGS1 is
constitutive. Induction of PTGS2 transcription by growth factors and
cytokines is well documented [28,29]. More recently, Cok and
Morrison [30] have shown that PTGS2 expression is also regulated at
the post-transcriptional level through the destabilizing 3’
untranslatable region (nucleotides 1-60) of the mRNA which serves to
significantly decrease the lifetime of the mRNA message.

Post translational regulation of PTGS2 has also been reported.
Parfenova et al. [31] have shown that in pig cerebral microvesicles,
PTGS2 and not PTGS1 is regulated by tyrosine phosphorylation,
where the phosphorylation event serves to increase the activity of the
enzyme. Alexanian et al. [27] have taken this a step further with
PTGS2 in transfected human mesangial cells. Here they identified two
kinases that phosphorylate two different tyrosines and used mass
spectrometry to identify the sites of phosphorylation at Tyr-120 and
Tyr-446. The former phosphorylation increases the average activity by
3-18% and the latter by 5-25%. The former site resides at the interface
between the two subunits suggesting an allosteric effect on the activity
and the latter is located in the catalytic domain and thus may have a
more direct effect on the enzymatic activity.

S-nitrosylation of cysteine also serves to enhance the activity
PTGS2. Kim et al. [32] have reported that inducible NO synthase
(iNOS), a major mediator of inflammation, enhances the activity of
PTGS2, a second prominent mediator of inflammation in a murine
macrophage cell line. Activation requires binding of iNOS to a specific
region of PTGS2 to efficiently facilitate nitrosylation of Cys-526,
resulting in a two-fold enhancement of activity due solely to an
increase in Vmax.

Prostaglandin D synthase (PGDS)
Overview: Prostaglandin D2 (PGD2) is produced by mast cells, Th2

lymphocytes, and dendritic cells [33]. Binding to the CRTH2 receptor
(prostaglandin DP2 receptor) causes activation of Th2 lymphocytes,
eosinophils and basophils, resulting in induced chemotaxis of Th2
lymphocytes and eosinophils as well as promoting cytokine production
by Th2 lymphocytes. It is also a known sleep inducer in the central
nervous system (CNS) [34,35].

Prostaglandin D Synthase (PGDS) represents two distinct types of
small cytosolic glycoproteins involved in transport of lipophilic
molecules such as bilirubin, retinal and retinoic acid and also catalyze
the synthesis of PGD2 from the substrate prostaglandin H2 (PGH2)
(Figure 3) [36]. Both types are expressed in a variety of tissues with
high amounts found in brain [37], heart [36], and testis [38,39]. The
cellular distribution is quite ubiquitous and PGDS is found in the
cytoplasm, endoplasmic reticulum, and nucleus [40]. The two distinct
types of PGDS thus far reported are: 1) glutathione independent PGDS
(PTGDS or L-PTGDS) [41,42], 2) glutathione requiring PGDS (spleen
type, Hematopoietic prostaglandin D synthase (HPGDS or H-
PTDGS)) [42,43].

Glutathione independent prostaglandin D synthase
(PTGDS)

Overview: The brain type PTGDS exhibits a wide variety of CNS
functions such as sedation and non-rapid eye movement sleep [35]. It
is also involved in modulation of the immune response [44],
inflammation response [45], and pain [46]. Also known as β-trace
protein [37,47], the gene sequence indicates that it is a member of the
lipocalin super-family [38] and further, it is the second-most abundant
protein found in cerebrospinal fluid (CSF) [48].

Human PTGDS structure: Human PTGDS (hPTGDS) represents a
collection of glyco-isoforms of a monomeric glycoprotein with
molecular weights in the 27-34 kDa range [41,47]. 2D-polyacrylamine
gel electrophoresis reveals seven distinct isoforms with isoelectric
points from 5.8 to 7.5 [47]. Alterations in the isoelectric points of
hPTGDS from CSF after treatment with neuramidase [38] and
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identification of both mono and disialated oligosaccharides from
recombinant hPTGDS suggest that at least some of the isoforms
represent differences in the degree of sialation. In addition, differential
phosphorylation may account for some of these isoforms as well
[47,49,50]. Although specific functions for individual isoforms are
presently unknown, Harrington et al. [47,51] and Pohl et al. [52] have
shown that the relative amounts of each isoform normally associated
with healthy individuals are altered in a variety of disease states.

There is one reported protein isoform of hPTGDS (UniprotKB-
P41222) that is produced as a 190 amino acid transcript and processed
to a 168 amino acid polypeptide (calculated as 18,698 Da) after
removal of the signal peptide (residue 1-22) [48]. There is one known
natural SNP variant (R56Q) and there are a number of X-ray
structures available (e.g. PDB entry 3O19). The three-dimensional
structure represents a classic lipocalin fold [53] where a single eight-
stranded, continuously hydrogen-bonded antiparallel beta-barrel
encloses the ligand-binding site [54]. Further, PTGDS is the only
lipocalin that exhibits catalytic activity in addition to its lipid
transporting capabilities. As noted above, hPTGDS is a highly
glycosylated protein and contains both N- and O-glycosylations, some
of which are sialated [38]. O-glycosylation at Ser-29 has been
confirmed by Halim et al. [55]. There are numerous reports confirming
N-glycosylation at Asn-51 [37,48,56,57] and at Asn-78
[38,48,56,58,59]. Grabenhorst et al. [60] have reported that 90% of the
N-linked oligosaccharides are bientennary with terminal α-2,3 or α-2,6
sialations with a ratio of mono- to di-sialations of 1:5. Hoffmann et al.
[56] reported similar findings with the exception that 40% were non-
sialated, 40% monosialated and 20% disialated and have proposed a
number of possible oligosaccharide structures. There are four predicted
phosphorylations for hPTGDS (Tyr-107, Thr-147, Tyr-149, and
Ser-150), none of which has been shown experimentally
(PhosphoSitePlus, https://www.phosphosite.org).

Regulation of PTGDS: Regulation of PTGDS occurs on the
transcriptional and post-translational modification levels as well as by
proximity to other proteins. Tokudone et al. [61] have reported that
expression of PTGDS in rat heart is enhanced by various
glucocorticoids. Miyagi et al. [62] examined the effect of sheer stress at
arterial levels on human vein endothelial cells and found that increased
stress upregulates PTGDS mRNA. They also show that the effect is
indirect through enhanced binding of activator protein-1 (AP-1) to the
promoter region of the PTGDS gene.

Angenstein et al. [49] examined the activation of PTGDS by various
kinases. They report that PTGDS responds only weakly to
phosphorylation by phosphokinase A (PKA), but is a good substrate
for casein kinase II (CK2). Specific sites for phosphorylation were not
determined.

As described above, PTGDS has a number of known glycoforms and
that the relative amounts of each is altered in various disease states
[47]. It is unknown at this point if such changes in glycolysis modify
the activity, alter the intracellular location or export rate, or alter the
association with other proteins that may modulate PTGDS activity.

Hematopoietic prostaglandin D synthase (HPGDS)
Overview: Hematopoietic prostaglandin D synthase (HPGDS, H-

PGDS) is expressed in a wide variety of tissues; however, the
expression levels are species specific [63]. Urade et al. [64] have
published an excellent review for this enzyme. Human HPGDS
(hHPGDS) is expressed at high levels in the brain [63,65], heart [63]

and immune system [63,66]. The gene sequence indicates that it is a
member of the sigma glutathione S-transferase class of proteins. The
relative abundance of hHPGDS in CSF is considerably lower than the
other PGD2 producing enzyme hPTGDS (1200 × lower) and is found
at a concentration in CSF of 5-10 ng/mL [65].

Human HPGDS structure: Human HPGDS (hHPGDS) is a
cytosolic [66] homodimer with a molecular weight in the 48 kDa range
[64,67], although early reports noted it as a monomeric species [43].
The activity is enhanced by the presence of divalent cations where
either Mg2+ or Ca2+ serve to activate and where the latter has a greater
effect at lowering Km and thus has a greater effect on the activity [68].
In addition, glutathione (GSH) is a required cofactor [64].

There is one reported protein isoform of hHPGDS (UniprotKB-
O60760) that is produced as a 199 amino acid transcript that is not
processed further, resulting in a polypeptide with a calculated
molecular weight of 23,344 Da [63]. There are no known natural SNP
variants. There is 1 potential acetylation site on hHPGDS, Lys-73,
which has not been confirmed experimentally (PhosphoSitePlus,
www.phosphosite.org). Numerous X-ray structures are available (e.g.
PDB entry 3EE2).

Regulation of HPGDS: Although the regulation of many processes
through the action of the HPGDS product PGD2 have been reported,
the regulation of HPGDS itself has not been studied in detail. However,
Ghandi et al. [69] have reported that the bioavailability of selenium for
incorporation into selenoproteins is required to upregulate the
expression of HPGDS in human macrophages.

Prostaglandin E synthases
Overview: Prostaglandin E2 (PGE2) elicits a wide range of biological

functions. It is most commonly associated with the mediation of
inflammation and its role as a pro-inflammatory effector in the acute
inflammatory response is well documented. PGE2 acts as a vasodilator,
facilitating the influx of mast cells, neutrophils and macrophages from
the blood stream, leading to swelling and edema. At the same time, it
stimulates neurons to increase the pain response and promotes
pyrogenic effects [70,71]. PGE2 also exhibits potent, context-dependent
anti-inflammatory activities including inhibition of T-cell activation
and IL-2 synthesis in and expression from T-cells [70,72-74].

PGE2 is synthesized by a collection of Prostaglandin E synthases, all
catalyzing the conversion of PGH2 to PGE2 (Figure 3), but each having
a different structure and several having different cellular locations.
Two of the known isoforms are glutathione requiring (PTGES,
PTGES3) and one is glutathione independent (PTGES2).

Prostaglandin E synthase (PTGES)
Overview: Prostaglandin E Synthase (PTGES, microsomal

prostaglandin E synthase, mPGES-1, MPGES1) is expressed in a
variety of tissues and catalyzes the synthesis of PGE2 from PGH2
substrate. PTGES is constitutively expressed at low levels in lung,
spleen, gastric mucosa, and kidney, but has not been detected in
healthy heart, liver or brain [75]. PTGES is an inducible, glutathione-
requiring enzyme [76,77] and is upregulated in response to
inflammation triggers [78,79].

Human PTGES structure: Human PTGES (hPTGES) is a
homotrimeric membrane-spanning protein and is a member of the
membrane associated proteins in eicosanoid and glutathione
metabolism (MAPEG) family of proteins [20,80,81]. There is one
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reported protein isoform of hHPGES (UniprotKB-O14684) that is
produced as a 152 amino acid transcript and not processed further,
resulting in a polypeptide with a calculated molecular weight of 17,102
Da. No natural SNP variants have been reported. The crystal structure
(e.g. PDB entry 4AL1 and 3DWW) reveals that each monomer is a
four-helix bundle [20] and three subunits pack in a manner to provide
a central cone-shaped cavity thought to be involved in substrate access.
There is 1 potential phosphorylation site on hPTGES, Thr-34, which
has not been confirmed experimentally (PhosphoSitePlus,
www.phosphosite.org).

Prostaglandin E synthase-2 (PTGES2)
Overview: Prostaglandin E Synthase-2 (PTGES2, microsomal

prostaglandin E synthase-2, mPGES-2) is expressed in a variety of
tissues and catalyzes the synthesis of PGE2 from PGH2 substrate.
PTGES2 is constitutively and strongly expressed in brain, heart,
skeletal muscle, kidney and liver and expressed at lower levels in other
tissues [82]. It is initially expressed as a membrane-bound Golgi
protein, but is subsequently cleaved by beta amyloid precursor protein
cleaving enzyme-1 (BACE-1) to a cytosolic truncated form that
becomes enriched in the perinuclear region [83,84]. The protein has
GSH and heme binding capacity, but neither is required for enzymatic
activity. However, the presence of a thiol containing compound
increases the activity [85]; dithiothreatol (DTT) is the most effective,
but β-mercaptoethanol, GSH, or lipoic acid will also serve to activate
the enzyme.

Human PTGES2 structure: Human PTGES2 (hPTGES2) is
produced as a membrane-bound protein, possibly a dimer [85], and is
a member of the GST superfamily. This polypeptide consists of 377
amino acids with a calculated molecular weight of 41,943 Da based on
the sequence (UniprotKB-Q9H7Z7). There is only one known isoform
and one reported natural SNP variant (R298H). The protein may also
be subsequently cleaved to remove the first 87 residues of the N-
terminus, producing a cytosolic product (33,107 Da) [83] which
appears as a homodimer [85-87]. The crystal structure for hPTGES2
has yet to be reported, however, Heme and GSH-bound, truncated
PTGES2 from Macaca fascicularis has been reported by Takusagawa et
al. [87] (PDB entry 2PBJ). Since this protein shows a 97.6% sequence
similarity to hPTGES2 it provides an excellent model for hPTGES2.
Yamada et al. [85] have also presented the crystal structure for Macaca
fascicularis PTGES2 (PDB entry 1Z9H) of the truncated form, but
with bound indomethacin (IMN) to simulate bound substrate. Further,
they have simulated the three-dimensional structure of the full
transcript using secondary structure and hydropathy predictions for
the first 87 residues and docking it with the truncated crystal structure.
The resulting structure clearly shows the helix bundles that anchor
each subunit to the membrane. There is one confirmed
phosphorylation on hPTGES2 at Ser-95 [88] and 30 additional
potential phosphorylation sites on hPTGES2, none of which has been
confirmed experimentally (PhosphoSitePlus, www.phosphosite.org).

Prostaglandin E synthase-3 (PTGES3)
Overview: Prostaglandin E Synthase-3 (PTGES3, cytoplasmic PGES,

cPGES, p23) is expressed in many tissues and is involved in a number
of cellular processes. One such process is the production of PGE2 from
PGH2 where PGH2 resulting from the action of PTGS1 is preferred
over PGH2 derived from the action of PTGS2 due to cellular location
and possible additional cofactors that may assist in the coupling of
PTGS1 to PTGES3 [89]. A second function is the action of PTGES3 as

a molecular chaperone in conjunction with Hsp90, modulating
ribonucleoprotein telomerase [90] and disrupting receptor-mediated
transcriptional activation by promoting disassembly of transcriptional
regulatory complexes [91]. This protein is also involved with Hsp90 in
the α-hydroxylation of proline on the hypoxia-inducible factor (HIF)
which serves to mark HIF for degradation by the ubiquitin-
proteosome pathway [92].

Human PTGES3 structure: Human PTGES3 (hPTGES3) is a
monomeric, glutathione-dependent cytosolic protein belonging to the
p23/wos2 family of proteins (UniProtKB-Q15185). Four protein
isoforms have been reported, each formed via alternative splicing of
the mRNA for isoform-1 [77]. Only isoform-1 (hPTGES3) has been
isolated and characterized and thus will be the only hPTGES3 isoform
discussed in detail here. There are no reported natural SNP variants.
One X-ray structure is available for hPTGES3 (PDB entry 1EJF).
hPTGES3 is a 160 amino acid polypeptide with a calculated protein
molecular weight of 18,697 Da. Posttranslational modifications
(discussed below) increase the molecular weight to the 23 kDa range.

Numerous posttranslational modifications (PTM) have been
reported for hPTGES3. There are seven known phosphorylation sites
Ser-44 [88,93], Ser-85 [88], Ser-113 [88,94-96], Ser-118 [95,97],
Ser-148 [94-96], Ser-151 [93,94] and one inferred by similarity to the
mouse counterpart (UniProtKB-Q9R0Q7, TEBP_MOUSE).
SUMOylation of Lys-35 and Lys-65 has also been reported [98]. Lastly,
Choudhary et al. [99] have identified the acetylation of Lys-33. The
specific effects of these PTMs on catalysis, subcellular location, or
protein association have yet to be determined.

Regulation of PTGES1, PTGES2, and PTGES3: PGE2 serves a wide
variety of physiological functions including, but not limited to
vasodilation, gastric acid and mucus secretion, fever induction and
inflammation. The response is dependent on cellular and tissue
location and the associated receptors. For example, binding to the EP1
receptor stimulates bronchial constriction whereas binding to the EP2
receptor stimulates bronchial dilation. This wide variety of functions
and varied cellular locations for each of the known PTGES enzymes
leads one to suspect that each PTGES may have a specific function and
may respond to different stimuli.

The differential response of PTGES1, PTGES2, and PTGES3 to pro-
inflammatory stimuli is well documented. Stimulation of neurons by
lipopolysaccharide (LPS) [79,100] and other pro-inflammatory stimuli
leads to the induction of PTGES1, whereas PTGES2 and PTGES3 are
produced constitutively [101]. Similarly, pulse acid treatment of
Barrett’s esophageal adenocarcinoma cell line FLO EA leads to
induction of PTGES1, with no effect on PTGES2 and PTGES3 levels
[102]. More specifically, pro-inflammatory cytokines have been shown
to be involved in induction of PTGES1 [78]. Both IL-1β [103,104] and
TNFα [105] induce PTGES1 and have no effect on PTGES2 and
PTGES3 levels. In addition, PTGES1 is also induced by excess
glutamate in ischaemic brain [106].

Substrate for each PTGES is produced by either or both PTGS1 or
PTGS2. Several reports have shown that PTGES1 and PTGS2, known
for their involvement in the inflammatory response are co-induced
[104,105,106], confirming that the pair is directly involved in the
production of PGE2 in inflammation response. Mollerup et al. [107]
have confirmed this relationship and have also shown that the
expression PTGES3 and PTGS1 are coupled.

Differential expression of PTGESs has also been confirmed in
cellular activities other than inflammation. Fujimori et al. [108] have
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reported that the expression of mRNA of all three PTGES proteins is
observed in adipocytes during adipogenesis. Using transfected siRNAs
for each PTGES, only siRNA for PTGES1 reduced the production of
PGE2 (61.4%), indicating that PTGES1 is primarily responsible for
production of PGE2 in adipocytes, in particular, to suppress the early
phase of adipogenesis. Nuttinck et al. [109] have shown that PTGES2
and PTGES3 are expressed constitutively in bovine oocytes whereas
PTGES1 and PTGS2 are co-induced during an in vitro maturation.
They further conclude that a transient induction of PGE2 biosynthetic
activity via the PTGS2/PTGES1 pathway during the maturation period
increases the ability to produce progesterone from the immature to the
fertilized stages. Sun et al. [110] have reported that PTGES1 mRNA
levels increase upon treatment of mouse granulosa cells with human
gonadotropin suggesting that PGE2 synthesis by this enzyme may be
important for follicular development, ovulation and luteal formation.

Prostacyclin synthase (PTGIS)
Overview: PGI2 (prostacyclin) is well known for its regulatory role

in the cardiovascular system where it is a potent vasodilator and
inhibitor of platelet aggregation [111-113]. In addition, it is it is also
established as a mediator of vascular permeability in response to acute
inflammation and is known to elicit nociceptive pain response
[111,113,114]. PGI2 is quite unstable at physiological pH with a half-
life of 2-5 minutes, forming biologically inactive 6-keto-prostaglandin
F1α (6-keto-PGF1α) [111,115,116].

Prostacyclin Synthase (PTGIS, CYP8, CYP8A1) catalyzes the
conversion of PGH2 to prostaglandin I2 (PGI2) (Figure 4). PTGIS is
constitutively expressed in endothelial cells and couples with PTGS1
[113,117] in the nuclear envelope [117]. However, it has also been
shown to be upregulated from these levels with PTGS2 upregulation
[112,118] in the endoplasmic reticulum [117,119]. PTGIS is also
expressed in the CNS, mainly in neurons and to a lesser extent in glial
cells. Here it is thought to be involved in the induction and
maintenance of hyperalgesia by sensitization and may contribute to
nociception in the CNS [2].

Figure 4: Reaction catalyzed by PTGIS.

Human PTGIS structure: PTGIS is a heme containing, monomeric,
membrane-anchored enzyme belonging to the cytochrome P450
superfamily of proteins. Hydropathy analysis reveals a putative single
helical amino terminal domain anchor that is typical for cytochrome
P450 family members [120]. Human PTGIS (hPTGIS) is a 500 amino
acid polypeptide with a calculated molecular weight of 57,104 Da
(UniprotKB-Q16647). There are 8 known natural SNP variants (P38L,
S118R, E154A, F171C, R236C, R375T, P500S) [121,122]. X-ray
structures are available (e.g. PDB entry 3B6H).

It is well established that nitration of one or more tyrosines in
PTGIS occurs in vivo (bovine and human) and serves to inhibit PTGIS
[123-126]; Tyr-430 is the only confirmed nitration site [127]. There are
also four potential phosphorylation sites on hPTGIS (Ser-52, Ser-200,

Tyr-348, and Thr-399), none of which have been confirmed
experimentally (PhosphoSitePlus, www.phosphosite.org).

Regulation of PTGIS: Expression of PTGIS is induced in concert
with PTGS2 in response to pro-inflammatory cytokines, growth
factors, bacterial endotoxins, tumor promotors, and various hormones
secreted by immune cells [112,128-132]. It is noteworthy that the
presence of even small amounts of PTGIS can prevent cytokine-
induced cell death in insulin-producing islet cells [129].

Posttranlational regulation of PTGIS is facilitated via the reaction of
Tyr-430 with peroxynitrite to form a 3-nitrotyrosine that inactivates
the enzyme [128]; the source of peroxynitrite (ONOO-) in vivo is the
non-enzymatic reaction of nitric oxide (NO.) with the superoxide ion
(O2

2-) [127]. In cardiovascular systems, various inflammatory insults
such as high glucose [123,125], tissue ischemia [124], and asthma or
bronchitis [133] result in stimulation of the production of both nitric
oxide and the superoxide ion, thus producing peroxynitrite which
results in the inhibition of PTGIS. The lack of PTGIS activity results in
the accumulation of the precursor PGH2 that can then be converted to
PGE2 instead. Increased PGE2 and a decrease in both PGI2 and nitric
oxide are known to promote the adhesion of white blood cells and
their immigration to the inflammatory locus [126].

Prostaglandin F synthases
Overview: PGF2α is one of the most abundant prostanoids in the

brain and spinal cord [134-137] and is also found in many other tissues
[113,138]. The functions are wide ranging and context dependent.
PGF2α is involved in inflammation as well as smooth muscle
contraction, renal function, and blood pressure to name a few
[113,133]. The stereoisomer 9α,11β-PGF2 is thought to have similar
functions [5,139].

Figure 5: PGF2α and9α,11β-PGF2 biosynthetic pathways.

Prostaglandin F Synthase represents a collection of enzymes that
ultimately produce PGF2α or the stereoisomer 9α,11β-PGF2 (Figure 5).
These enzymes fall into one of three different structural classes: 1)
aldo-keto reductase superfamily (AKRB1, AKRC3), 2) the
thioredoxin-like superfamily (FAM213B), and 3) the short-chain
dehydrogenases/reductases (SDR) family (CBR1) [134,135,140-142].
Substrates for PGF2α production are either PGH2 or PGE2 depending
on the enzyme, whereas 9α,11β-PGF2 is produced only from PGD2.
The properties of these and other NADH/NADPH-dependent
reductases have been reviewed [143].
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Prostamide/prostaglandin F synthase (FAM213B)
Overview: Prostamide/prostaglandin F synthase is a cytosolic

protein that converts PGH2 or PGH2 ethanolamide to PGF2α or PGF2α
ethanolamide respectively and requires NADPH as a co-enzyme
[144,145]. Although the human enzyme has yet to be characterized,
much is known about both the murine and porcine counterparts for
which the human version shows a 88.4% homology to each [144].
Western and northern blot analysis, and enzymatic activity studies
have shown that the porcine protein (A9CQL8) is found mainly in the
brain and spinal cord [137,144]. Similarly, immunohistochemistry,
double immunofluorescence, and immuno-electron microscopy
confirmed the location of the murine version (Q9DB60) in the brain
and that it is colocalized with myelin basic protein (MBP) in myelin
sheaths but not in axons [137].

Human FAM213B structure: Human FAM213B (hFAM213B,
UniprotKB-Q8TBF2) is a protein belonging to the Thioredoxin-like
superfamily. Eight protein isoforms have been reported, each formed
through alternative splicing of the mRNA for isoform-1 [77]; only
isoform-1 has been identified at the protein level [89]. There are no
reported natural SNP variants. hFAM213B consists of a single 198
amino acid polypeptide with a calculated molecular weight of 21,223
Da. X-ray structures have not been reported. The enzymatic activity of
the porcine version increases four-fold in the presence of 1.5 M
ammonium sulfate, suggesting that this enzyme may be dimeric or
oligomeric [144].

There is one confirmed phosphorylation site on Tyr-108 [88]. The
function of this modification is not yet known. There numerous
additional potential phosphorylation sites that have not been
confirmed experimentally (PhosphoSitePlus, www.phosphosite.org).

Regulation of FAM213B: Regulation of FAM213B remains to be
fully elucidated. Its location in the myelin sheaths suggests that
regulation is likely controlled by those factors involved in the
formation and maintenance of myelin sheath [137,146].

Carbonyl reductase 1 (CBR1)
Overview: Carbonyl reductase 1 (CBR1) is a NADPH-dependent

cytosolic protein with very broad substrate specificity and tissue
expression [147-149]. The reaction germaine to this review is the
reduction of PGE2 to PGF2α [141,147,150]. However, this enzyme is
also involved in androgen metabolism, perhaps providing a functional
link between the prostaglandin and the androgen pathways [141,151].
It is also involved in the reduction of quinones [150] and various
xenobiotics, including several anti-cancer drugs [152,153], as well as
reactive aldehydes such as 4-oxonon-2-enal which is believed to be
involved in oxidative stress-related neurodegenerative disorders
[147,154]. Interestingly S-nitrosoglutathione (GSNO) is also a
substrate for human CRB1, implicating this enzyme in GSNO
catabolism as well [147,155].

Human CBR1 structure: Human Carbonyl reductase 1 (hCBR1,
UniProtKB-P16152) is a monomeric protein and a member of the
short-chain dehydrogenases/reductases (SDR) family of proteins
[147,155]. Three protein isoforms have been identified via Human
cDNA [156], but only isoform-1 has been isolated as a protein
transcript. In addition, two natural SNP variants have been reported,
V88I and P131S, of which the former has been isolated and kinetic
properties examined [157]. The biologically competent form of hCBR1,
isoform-1, is a 277 amino acid polypeptide with a calculated molecular

weight of 30,375 Da and has both NADPH and GSH binding sites
[147]. There are several X-ray structures available (e.g. PDB entry
1WMA).

Several posttranslational modifications have been reported for
hCBR1. Following cleavage of the initiating Met residue, Ser-2 is
acetylated at its N-terminal [158]. Two phosphorylations have been
predicted (UniProtKB) based on comparison to similar proteins, Ser-2
(CBR1_RAY) and Ser-30 (CBR1_MOUSE), but large scale
phosphorylation studies have yet to confirm these predictions [158].
There are numerous potential phosphorylation, acetylation,
ubiquitination sites on hCBR1 predicted by PhosphoSitePlus
(www.phosphosite.org), none of which are confirmed experimentally.

Krook et al. [159] report an unusual Lys modification, N6-(1-
carboxyethyl) Lys of Lys-239, formed from the Lys and pyruvate
through a Schiff base and subsequent reduction. This modification is
specific for Lys-239, but is not quantitative, allowing for two different
forms of the enzyme to exist. The modification is apparently not
regulatory in nature nor a coenzyme adduct. The specific function, if
any, remains to be elucidated. Similar findings of autocatalytic
modifications have been presented by others [160,161].

As noted above, GSNO is a substrate for hCBR1. However,
Hartmanova et al. [162] have shown that GSNO covalently modifies
cysteines at positions 122,150, 226, and 227, and in a concentration
dependent manner. These modifications alter the catalysis, increasing
the kcat for some substrates and decreasing the kcat for others. Further,
Km is altered for most substrates to partially compensate for the change
in kcat, leading to overall small changes in catalytic efficiency.

Regulation of CBR1: There are numerous reports describing the
transcriptional regulation of CBR1 in response to the presence of
various xenobiotics (e.g. [163-165]), but few describing the effect on
PGF2α production. Ivanov et al. [166] show that CBR1 from Wistar-
Kyoto rats is transcriptionally down-regulated by LPS or LPS activated
cytokines, presumably through the inactivation of the Sp1
transcription factor suspected to be involved in the activation of CBR1
[166]. This would explain the observed downregulation of CBR1 in
fever [157,166]. Guo et al. [140] report that cortisol enhances the
transcription levels of CBR1 in human amnion fibroblast cells which
may partly explain the concurrent increases of cortisol and PGF2α in
human amnion tissue with labor.

CBR1 is inhibited by a wide variety of compounds. For example,
inhibition by the cardioprotectant Flavonoid 7-monohydroxyethyl
rutoside (monoHER) [167], 2-(3,4-dihydroxyphenyl)-5,7-
dihydroxy-4H-1-benzopyran-4-one (luteolin) [168], and (-)
epigallocatechin gallate (EGCG) from green tea [169] have been
demonstrated. Interestingly, hCBR1 is inhibited by a variety of both
saturated and unsaturated fatty acids which may be involved in
regulation of hCBR1 expressed in intestinal cells [170].

Aldo-keto reductase 1B1 (AKR1B1)
Overview: Aldo-keto reductase 1B1 (AKR1B1, AR) is a NADPH-

dependent cytosolic protein with broad substrate specificity and tissue
expression [171,172]. AKR family members metabolize aldehydes,
monosaccharides, steroids, polycyclic hydrocarbons, as well as
prostaglandins. AKR1B1 is the first enzyme in the polyol pathway
where it converts glucose to sorbitol. The reaction relevant to this
review is the conversion of PGH2 to PGF2α [171].
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Human AKR1B1Structure: Human aldo-keto reductase 1B1
(hAKR1B1, UniProtKB-P15121) is a monomeric protein and a
member of the aldo-keto reductase (AKR) family of proteins
[171-173]. Only 1 protein isoform has been identified, however, six
natural SNP variants have been reported (I15F, H42L, L73V, K90E,
G204S, and T288I). hAKR1B1 is a 316 amino acid transcript,
truncated to 315 residues (35,722 Da) upon removal of the initiator
methionine [174,175]. This enzyme has both NADPH and substrate
binding sites [172]. There are numerous X-ray structures available (e.g.
PDB entry 1ADS).

Several posttranslational modifications have been reported for
hAKR1B1. N6-acetylations at Lys-95, Lys-222, and Lys-263 have been
confirmed via LC-MS/MS analysis [99]. The degree and function of
acetylation at these positions has yet to be determined. One
phosphorylation at Ser-3 has been predicted (UniProtKB) based on
comparison to the rat protein (CBR1_RAT). Large scale
phosphorylation studies have yet to confirm this prediction [158].
Following cleavage of the initiating Met residue, Ala-2 has been
predicted to be acetylated  at its  N-terminal,  based on the observations
for porcine AKR1B1 [174], but this too has not been confirmed
experimentally [99]. Numerous phosphorylations, additional
acetylation, ubiquitination, methylation and one S-nitrosylation site
(Cys-299) are predicted by PhosphoSitePlus (www.phosphosite.org),
none of which have been shown experimentally.

Regulation of AKR1B1: Induction of hAKR1B1 mRNA in adipose
cells by the inflammatory cytokines TNF-α and IL-1β has been
demonstrated [176]. Interestingly, expression levels for hAKR1C3, an
alternative enzyme producing PGF2α from PGH2, is unaffected by the
inflammatory cytokines, indicating that cytokine-stimulated PGF2α
synthesis in adipocytes is predominantly due to the action of
hAKR1B1. In stereogenic cells of mouse adrenal tissue, AKR1B1 is
induced in the presence of Adrenocorticotropic hormone (ACTH),
suggesting that the gene is under cAMP/ACTH control. In porcine
endometrial tissue the expression of AKR1B1 is increased by both
estrogen and IL-1β.

Aldo-keto reductase 1C3 (AKR1C3)
Overview: Aldo-keto reductase 1C3 is a NADPH-dependent

cytosolic protein with with broad substrate specificity and tissue
expression [135,175,177-181]. This enzyme metabolizes aldehydes,
steroids, and prostaglandins [175,179-181]. Of particular interest here
is the multi-functional redox behavior towards select prostaglandins.
This enzyme catalyzes the reduction of PGD2 to 9α,11β-PGF2 as well
as the reverse reaction and is also capable of converting PGH2 to
PGF2α and PGE2 to PGF2α [182].

Human AKR1C3 structure: Human aldo-keto reductase 1C3
(hAKR1C3, UniProtKB-P42330) is a monomeric protein and a
member of the Aldo-keto reductase family (AKR) family of proteins
[182,183]. Two protein isoform have been identified, however, only
isoform-1 (hAKR1C3) has been obseved at the protein level [77,182].
In addition, six natural SNP variants have been reported (H5Q, R66Q,
E77G, R170C, M175I, and P180S) [184]. hAKR1C3 is a 323 amino acid
polypeptide with a calculated molecular weight of 36,853 Da with both
NADPH and substrate binding sites [172,185]. Many X-ray structures
are available (e.g. PDB entry 1S1P). There are 31 potential
phosphorylation sites on hAKR1C3, none of which have been
confirmed experimentally (PhosphoSitePlus, www.phosphosite.org).

Regulation of AKR1C3: Induction of AKR mRNA in adipose cells
by the inflammatory cytokines TNF-α and IL-1β has been examined by
Michaud et al. [176]. Interestingly, the expression level for hAKR1C3 is
found to be low and unaffected by the inflammatory cytokines,
whereas the expression of hAKR1B1 is markedly increased. They
concluded that the cytokine-stimulated PGF2α synthesis in adipocytes
is predominantly due to the action of hAKR1B1 and suggest that the
function of hAKR1C3 in these cells is the reduction of ketosteroids.
Dozier et al. [186] have reported that treating monkey granulosa cells
with human chorionic gonadotropin (hCG) increases the expression of
AKR1C3 as well as AKR1C1 and AKR1C2 that peaks in 24-36 hours.
The results suggest that all three control follicular PGF2α levels during
the periovulatory interval.

Thromboxane A synthase 1 (TBXAS1)
Overview: Thromboxane A2 (TXA2) is a potent vasoconstrictor

[187] and platelet activator [188,189], quite the opposite of PGI2. In
fact, the TXA2/PGI2 balance is thought to be central to maintaining
healthy cardiovascular status [190,191]. TXA2 is not only involved in
platelet activation, but also in recruitment of more platelets to the
primary plug [187,188].

Thromboxane A2 (TXA2) is produced from PGH2 through the
action of thromboxane A2 synthase 1 (TBXAS1, TXA synthase, TXS).
It is an unstable metabolite with a half-life on the order of 30 seconds
[113] and hydrolyzes to the biologically inactive thromboxane B2
(TXB2) (Figure 6). In addition, TBXAS1 simultaneously forms 12-
hydroxyheptadecatrienoic acid (HHT) and malondialdehyde (MDA)
in equal molar amounts compared to TXA2; HHT is a known
leukotriene B4 receptor 2 (BLT2) agonist. It is noteworthy that the
primary metabolite of HHT, 12-oxoheptadeca-5(Z)-8(E)-10(E)-
trienoic acid (Oxo-HT), is a known inhibitor of platelet aggregation
acting as a TXA2 receptor antagonist [192]. TBXAS1 is primarily
expressed in platelets, but is found in other cells and tissues such as
macrophages, lung fibroblasts, lung, spleen, brain and
polymorphonuclear leucocytes [191,193-195]. The primary source for
platelet PGH2 substrate has been shown to be the constitutively
expressed PTGS1, however, in marcophages the inducible PTGS2 is the
primary source [113,190,196].

Figure 6: Reactions catalyzed by TBXAS1.

Human TBXAS1 Structure: Human TBXAS1 (hTBXAS1,
UniProtKB-P24557) is a monomeric, heme-requiring transmembrane
protein and a member of the cytochrome P450 superfamily. hTBXAS1
is a 534 amino acid polypeptide with a calculated molecular weight of
60,649 Da. There are five known isoforms, but only one isoform has
been observed at the protein level. There are 30 reported natural SNP
variants [122,197-206]. Although the sequence for the primary isoform
given by UniProtKB is the P24557 isoform, all cited references and
other publications refer to the sequence given for HCG14925, isoform
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CRA_a (Q53F23) [197,201,207-209]. The only difference between the
two is the initiator Met on Q53F23. No X-ray structures for hTBXAS1
are currently available.

There are no posttranslational modifications for hTBXAS1 reported
to date. However, there are five potential N-glycosylation sites at
Asn-56, Asn-104, Asn-107, Asn-185, and Asn-303. There are also two
potential phosphorylation sites, Thr-58 and Ser-142 (PhosphoSitePlus,
www.phosphosite.org).

Regulation of TBXAS1: In most normal, healthy tissue TBXAS1 is
constitutively expressed and the production levels for TXA2 and TBX2
are dependent only on the availability of PGH2 substrate
[118,119,210,211]. The situation in the uterus is somewhat different. In
myometrial smooth muscle, TBXAS1 expression is higher at term
pregnancy than preterm and in specimens from labor as compared to
that from non-labor specimens [212]. The results suggest that TXA2
may play a role in initiation and progression of labor in women. In
contrast, TBXAS1 expression is low in stromal cells and independent
of the reproductive phase. As a second example, TBXAS1 expression in
atherosclerotic lesion areas increases during the progression of
atherogenesis [213,214].

There are also conflicting reports regarding the effect of
peroxynitrite formed from nitric oxide on the activity of TBXAS1.
Several reports indicate that peroxynitrite enhances the production of
TXA2 and thus TXB2 through the inhibition of PTGIS, a competitor
for the same PGH2 substrate [125,198]. On the other hand, there are
several reports that nitric oxide or nitric oxide donors such as 6-(2-
hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-nitroso-hydrazine
(MMNN) directly inhibit TBXAS1 [215-217].

HETEs, Lipoxins, Hepoxilins, Trioxilins, Eoxins, and
Leukotriene Biosynthesis

Overview
The biosynthesis of hydroxyeicosatetraenoic acid (HETE), Lipoxins,

and hepoxilins are accomplished by a group of structurally similar
enzymes of the lipoxygenase family.

The overall metabolic pathway is shown in Figure 7 and the
properties for the enzymes involved are given in Table 1. The mRNA
expression levels for each enzyme are described in detail in the
supplemental data. The HETE family of molecules and their unstable
precursors, the hydroperoxyeicosatetraenoic acids (HPETEs), are
notable as precursors for the Leukotriene family, Lipoxin family and
Eoxin family of metabolites, as well as serving as signaling molecules
in their own right [218]. For example, 12(S)-HETE and 15(S)-HPETE
are involved in monocyte binding in the vasculature [219,220]. Both 5-
HPETE and 12(S)-HPETE are involved in modulating
neurotransmission whereas their hydroacid products have no effect
[221]. Further, both 12(S)-HETE and 15(S)-HPETE are involved in cell
survival mechanisms [222].

Figure 7: Metabolic pathways for Hydroxyeicosatetraenoic acids
(HETEs), Lipoxins, Hepoxilins and Leukotrienes. Gene
designations are given for the participating enzymes (rounded
boxes) and accepted acronyms given for metabolites (ovals).

Lipoxins represent a family of metabolites that are either directly or
indirectly produced by lipoxygenases. Lipoxin A4 (LXA4) and lipoxin
B4 (LXB4) induce anti-inflammatory and pro-resolution mechanisms
including repression of leukocyte-mediated injury and pro-
inflammatory cytokine production, as well as inhibition of cell
proliferation and migration [223,224]. These lipoxins are potent
activators of monocytes through stimulation of chemotaxis and
adherence [225, 226].

Hepoxilin A3 (HxA3) and B3 (HxB3) are unstable epoxy alcohol
derivatives of arachidonic acid that are readily converted non-
enzymatically to their acidic triol counterpart known as Trioxilin A3
(TrXA3) and Trioxilin B3 (TrXB3) respectively [227]. Hepoxilins are
known to cause mobilization of intracellular calcium in human
neutrophils and cause plasma leakage [228]. They also serve as chemo-
attractants. For example, synthetic and naturally occurring gradients of
HxA3 have been shown to drive significant numbers of neutrophils
across epithelial barriers, whereas eosinophils fail to respond to these
gradients [229]. TrXA3 and TrXC3 and HxA3 are endogenous vascular
relaxing factors that act as thromboxane antagonists and thus help
regulate vascular homeostasis [230].

Lipoxygenases
Overview: Lipoxygenases represent a non-heme, iron containing

class of enzymes that oxygenate an array of PUFA substrates [reviews:
231,232]. Although the focus here is on the oxygenation of arachidonic
acid and derivatives thereof, other PUFAs such as linoleic acid are also
substrates for some lipoxygenases [233-235]. Lipoxygenases are found
in plants, animals, fungi and cyanobacteria, but rarely found in other
prokaryotes [236].

Each reaction involves a stereospecific (pro-R or pro-S) hydrogen
abstraction followed by a stereospecific addition (R or S) of oxygen and
subsequent reduction to the hydroperoxyeicosatetraenoic acid
(HPETE). Hydrogen abstractions always occur on the methylene
between two double bonds and subsequent addition of oxygen two
carbons away. Throughout nature there are lypoxygenases that are
specific for 10 of the 12 possible positions on the arachidonic acid
substrate: 5R, 5S, 8R, 8S, 9R, 11R, 11S, 12R, 12S, and 15S [237]. Five of
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these have been identified in humans: 5S, 12R, 12S, and two different
15S [232,234,238,239]. All known reactions proceed through a series of
steps: 1) hydrogen abstraction, 2) radical rearrangement, 3) oxygen
insertion, and 4) peroxy radical reduction (Figure 8) [236]. It has also
been shown that the enzymes require a small amount of oxidized lipid
to achieve maximal enzymatic activity through oxidation of the iron
from the ferrous to ferric state [239-243]. The range of activities is
achieved through specific amino acids in the active site that promote
substrate entrance via the carboxyl end or methyl end and precise
positioning of the fatty acid carbon chain in the active site
[234,235,244].

Figure 8: Elementary reactions involved in the lipoxygenase
reaction. Rendered from Ivanov et al. [236].

The lipoxygenase structure consists of an N-terminal β-barrel
structure known as PLAT (Polycystin-1-lipoxygenase, alpha toxin)
domain, and a larger α-helical catalytic domain [234]. It is the former
that, upon calcium binding, exposes hydrophobic residues and the
region becomes a lipid anchor, allowing the cytosolic protein be
become membrane associated [234,245-248].

Arachidonate 15-lipoxygenase-1 (ALOX15)
Overview: Mammalian ALOX15 (15-LOX, 15-LOX-1) is a

monomeric cytosolic protein that becomes membrane associated in
the presence of calcium [234,249,250]. ALOX15 is the major
lipoxygenase found in reticulocytes [233,235], but is also expressed in
leukocytes [251,252], heart tissue [253], and airway epithelial cells
[254].

Both substrate and product specificity are diverse (Figure 9).
ALOX15 converts arachidonic acid into 12(S)-
hydroperoxyeicosatetraenoic acid (12S-HPETE) and 15(S)-
hydroperoxyeicosatetraenoic acid (15S-HPETE) in a ratio of 1:9
[233,235] and also converts linoleic acid to 13(S)-
hydroperoxyoctadecadienoic acid (13S-HPODE) and 10(S)-
hydroperoxyoctadecadienoic acid (10S-HPODE) [234,236,251].
Eicosatrienoic acids may also serve as substrates [233]. In addition,
ALOX15 not only oxygenates free fatty acids, but also membrane
phospholipids when in the membrane bound state [249] and also
generates 15-HETE conjugated to phosphatidylethanolamine, an
intracellular signaling molecule [254].

Figure 9: Reactions of 15-lypoxygenase.

An additional substrate for ALOX15 is the ALOX5 (see below)
product leukotiene A4 (LTA4) where the epoxide product 5(6)-
epoxy-15-hydroxyeicosatetraenoic acid (5-epi-15-HPETE) is formed as
a precursor to the synthesis of lipoxin A4 (LXA4) and lipoxin B4
(LXB4) [255-258].

Human ALOX15 structure: Human ALOX15 (hALOX15,
UniProtKB-P16050) is a monomeric, non-heme iron protein and a
member of the lipoxygenase family. There are two known isoforms
[77], but only one isoform has been observed at the protein level. In
addition, there are 7 natural SNP variants (D90H, G102V, N103K,
R205Q, V239M, A461P, and T560M) [22,259]. hALOX15 is translated
as a 662 amino acid transcript and posttranslationally modified by
removal of the initiating methionine, producing a 661 amino acid
polypeptide with a calculated molecular weight of 74,673 Da [260].
One X-ray structure is available (PDB entry 2ABT).

No specific posttranslational modifications for hALOX15 have been
reported with the exception of the removal of the initiator methionine
[260]. However, two isoforms for hALOX15 have been isolated [251].
The only apparent difference between the two is chromatographic
behavior, suggesting that a posttranslational modification is
responsible for the difference. PhosphoSitePlus (https://
www.phosphosite.org) predicts potential phosphorylations at Tyr-4,
Ser-117, and Ser-591, but none of these modifications have been found
experimentally.

Regulation of ALOX15: Lundqvist et al. [253] have shown that
ALOX15 but not ALOX12 or ALOX15B is increased in ischemic heart
tissue compared to non-ischemic heart tissue. The resulting increased
production of 15-HETE may thus contribute to the pathogenesis of
ischemic heart disease. Both the inflammatory and immune response
cytokines IL-4 and IL-13 have been shown to upregulate ALOX15 in
lung [254,261] and blood monocytes [248,262,263].

Arachidonate 15-lipoxygenase-2 (ALOX15B)
Overview: Mammalian ALOX15B (15-LOX-B, 15-LOX-2) is a

cytosolic protein that becomes membrane associated in the presence of
calcium as is common for this family of lipoxygenase proteins
[234,249,250]. ALOX15B shows a tissue-specific expression and is
found in found mainly in prostate, lung, skin, cornea and is also found
in macrophages [264-269].
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Substrate and product specificity are less diverse than found for
ALOX15. ALOX15B converts arachidonic acid into 15(S)-
hydroperoxyeicosatetraenoic acid (15S-HPETE) with no 12S activity
(Figure 9) and also converts linoleic acid to 13(S)-
hydroperoxyoctadecadienoic acid (13S-HPODE) [232,268,270,271].
ALOX15B oxygenates membrane phospholipids in addition to free
fatty acids when in the membrane bound state, following an influx of
calcium, and does so at 10 times the rate observed for the cytosolic
state [272]. The ALOX15B product 15S-HETE inhibits cell cycle
progression in prostate cancer cells [265,266] and marcophages, and
serves a pro-inflammatory and pro-atherogenic role in atherosclerotic
lesions. Three additional splice isoforms are also produced in humans
[265]. Although ALOX15B activity is observed in multiple locations
including the cytoplasm, cytoskeleton, cell-cell border, and the nucleus,
the three splice isoforms are excluded from the nucleus [266].

Human ALOX15B structure: Human ALOX15B (hALOX15B,
UniProtKB-O15296) is a monomeric, non-heme iron protein and a
member of the lipoxygenase family. There are four known splice
variant isoforms (A-D), all of which have been observed at the protein
level [265,266,273]. In addition, there are 3 natural SNP variants
(R486H, Q656R, I676V) [22,265,268,274]. hALOX15B isoform A
(hALOX15B-A) is a 676 amino acid polypeptide with a calculated
molecular weight of 75,857 Da [265]. Isoform B (hALOX15B-B, splice
variant a) is missing residues 481-429 and 483-527, isoform C
(hALOX15B-C, splice variant b) is missing residues 561-617 and
618-676, and isoform D (hALOX15B-D, splice variant a) is missing
residues 401-429. One X-ray structure for isoform A is available (PDB
entry 4NRE). There is one potential phosphorylation site (Thr-29) and
two potential acetylation sites (Lys-198, Lys-204) on hALOX15B-A,
none of which have been confirmed experimentally (PhosphoSitePlus,
www.phosphosite.org).

Regulation of ALOX15B: The expression of ALOX15B changes
dramatically in various cancers, inflammatory disease and under
hypoxic conditions. Ginsberg et al. [275] have shown that the
expression of ALOX15B is reduced in aggressive prostate cancer cells
as compared to nonaggressive prostate cancer cells. Similarly, Gonzalez
et al. [276] report that ALOX15B expression is inversely related to the
tumor grade and tumor cell proliferation of lung carcinomas. More
specifically, ALOX15B expression in tracheal/bronchial epithelial cells
is induced by TNFα and decreased by the TH1 cytokine INFγ,
suggesting an active role in mediating airway diseases such as asthma
[277]. ALOX15B expression in macrophages under hypoxic conditions
is enhanced [278] and the enhancement appears to be mediated by
Hypoxia-inducible factor 1-alpha (HIF-1α) [274]. Lastly, exposure of
keratinocytes to UV-radiation, known to reduce inflammation in
psoriasis patients, results in the enhanced expression of ALOX15B
whereas the expression of ALOX12 is reduced [264].

Phosphorylation, glycosylation or other posttranslational
modifications involved in regulation or intracellular segregation have
not been observed for ALOX15B. However, allosteric regulation of
substrate specificity has been reported. ALOX15B converts arachidonic
acid and linoleic acid to their respective products, 15S-HPETE and
13S-HPODE. Both Joshi et al. [279] and Wecksler et al. [270] have
investigated the effect these hydroperoxy-products have on the
substrate specificity and found that the linoleic acid product, 13S-
HPODE, binds to the enzyme and allosterically promotes arachidonic
acid oxygenation three-fold over linoleic acid oxygenation whereas the
arachidonic acid product 15S-HPETE had no effect on the specificity.

Arachidonate 5-lipoxygenase (ALOX5)
Overview: Arachidonate 5-lipoxygenase (ALOX5, 5-LO, 5-

lipoxygenase) is a member of the lipoxygenase family of proteins. An
excellent review of this enzyme has been presented by Rådmark [241].
ALOX 5 is expressed primarily in cells that are involved in regulating
inflammation, allergy, and other immune responses (e.g. granulocytes,
monocytes, macrophages, mast cells, dendritic cells, and B-
lymphocytes) [280]. It is also strongly expressed in Langerhan cells of
the skin [241]. Although ALOX5 persists in the cytosol, upon an
increase in intracellular Ca2+, binding of the cation to the PLAT
domain of the protein causes it to become associated with the nuclear
membrane where it is catalytically active [246,282]. ALOX5 catalyzes
the conversion of arachidonic acid to hydroperoxyeicosatetraenoic acid
(5-HPETE) which is then rapidly converted to other products (Figure
10A). Release of 5-HPETE to ubiquitous cellular glutathione
peroxidases (GPX) results in its reduction to 5-
hydroxyeicosatetraenoic acid (5-HETE) [280]. Alternatively, ALOX5
may convert the transient 5-HPETE to its 5,6 epoxide, leukotriene A4
(LTA4) [280,283]. Additionally, ALOX5 can convert the ALOX15
product 15-HPETE (Figure 10B) to the epoxide product 5(6)-
epoxy-15(S)-hydroxyeicosatetraenoic acid (5-epi-15(S)-HPETE), a
precursor to the synthesis of lipoxin A4 (LXA4) and lipoxin B4 (LXB4)
[255-258,284].

Figure 10: Enzymatic reactions involving ALOX5. A. For
arachidonic acid substrate. B. For 15-HPETE substrate.

The mechanism of action of ALOX5 is multistep [283]. Following
the release from the nuclear membrane by phospholipase A2,
arachidonic acid binds to the membrane spanning five-lipoxygenase
activating protein (FLAP, ALOX5AP) [283,285-288]. Upon an increase
in intracellular calcium, ALOX5 is directed to the nuclear membrane
where FLAP presents the arachidonic acid to the now membrane-
bound ALOX5. At this point the aforementioned reactions commence.

Human ALOX5 structure: Human ALOX5 (hALOX5, UniProtKB-
P09917) is a monomeric, non-heme iron protein and a member of the
lipoxygenase family. There are six known splice variant isoforms of
hALOX5 [280,289-291] and one reported SNP variant (E254K) [23].
Isoform 1 (hALOX5) is the fully biologically competent form. Isoform
2 (Δ13, missing 559-615), isoform 3 (Δ10-13, missing 424-455),
isoform 4 (Δ10-13, missing 425-533 and 534-674) and isoform 5 (α10,
missing 485-674) have been observed at the protein level [292].
However, none of these additional isoforms are catalytically active, but
serve to indirectly regulate the activity of hALOX5. An additional
splice variant (5-LOΔ3) has been observed at the mRNA level, but was
found to be degraded before translation via the non-sense-mediated
mRNA decay system [288]. hALOX5 is a 674 amino acid polypeptide,
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reduced to 673 amino acids after removal of the initiator methionine
with a final calculated molecular weight of 77,852 Da. Several X-ray
structures are available (e.g. PDB entry 3O8Y). There are three known
phosphorylation sites, Ser-271, Ser-523, and Ser-663 in the processed
polypeptide [293-295,296]. There are also 20 additional potential
phosphorylation sites, and one potential acetylation site (Lys-527 in
the processed polypeptide) on hALOX5, none of which have been
confirmed experimentally (PhosphoSitePlus, www.phosphosite.org).

Regulation of ALOX5: Transforming growth factor β (TGF-β) has
been shown to moderately induce ALOX5 activity. However, in
combination with 1,25-dihydroxyvitamin D3, an increase in ALOX5
mRNA and protein is observed in human leukemia 60 cells (HL-60)
[297]. The concomitant increase in catalysis, however, far exceeds the
increase in ALOX5 protein, in fact, Mono Mac cells treated with both
enhancers exhibit a 100-fold increase in expression and a 500-fold
increase in activity [298,299]. Coactosin-like protein (CLP) also binds
to ALOX5 and in the presence of Ca2+ it enhances the activity and
stability of ALOX5, even in the absence of membrane or
phosphatidylcholine [300,301]. Although both CLP and ALOX5 are
cytosolic in the cellular resting state, upon stimulation they co-migrate
to the nuclear membrane [301]. Co-expression with either the Δ-13 or
Δ-p10 isoforms of ALOX5, serves to reduce the production of LXA4
and 4-HPETE products up to 44% [292]. It is thought that this
reduction in activity is caused by binding of these non-catalytic
isoforms to FLAP, thus reducing the availability of this protein to
activate hALOX5.

There are three ALOX5 phosphorylation sites that affect catalytic
activity [294-296,302,303]. Phosphorylation of Ser-663 by active
extracellular signal-regulated kinase-2 (ERK2) results in an increase in
ALOX5 catalytic activity and can substitute for Ca2+ activation
[296,303]. The presence of arachidonic acid, oleic acid, or linoleic acid
increases phosphorylation of ALOX5 by ERK2 while stearic acid,
palmitic acid and 5-HETE have no effect. Phosphorylation of Ser-271
by mitogen-activated protein kinase-activated protein kinase 2
(MAPKAPK2) also increases the activity of ALOX5 and this
phosphorylation markedly enhances the activity in the same manner
as observed for ERK2 [297]. This phosphorylation has also been shown
to block nuclear export of ALOX5 [298]. On the other hand,
phosphorylation of Ser-523 by protein kinase A (PKA) reduces the
activity of ALOX5 and at the same time shifts the distribution of the
enzyme from the nucleus to the cytoplasm [295,304].

There are reports that suggest arachidonic acid can also cause
substrate inhibition [294]. However, Masters et al. [305] have shown
that the apparent substrate inactivation is in fact a function of
emulsion formation of arachidonic acid leading to a lower solubility
and concomitant availability of the substrate.

Arachidonate 12(S)-lipoxygenase (ALOX12)
Overview: Mammalian Arachidonate 12(S)-lipoxygenase

(ALOX12,12-LO) is a cytosolic protein that becomes membrane
associated, in particular, perinuclear or nuclear membrane sites, in the
presence of epidermal growth factor (EGF) [306]. The fact that EGF is
known to increase intracellular calcium [307] and that the enzyme
structure shows the PLAT calcium binding domain common for this
family of lipoxygenase proteins [234, 249, 250], suggests that it is
calcium binding that directs this enzyme to the membrane. ALOX12
shows a tissue-specific expression and is found mainly in platelets
[308-311], but also in vascular smooth muscle [312], pancreatic cells
[313], prostate [314], CNS [231], and skin cells [306]. ALOX12

catalyzes the conversion of arachidonic acid to (12S)-12-hydroperoxy-
(5Z,8Z,10E,14Z)-5,8,10,14-eiocosatetraenoic acid (12-HPETE) which
is subsequently reduced to (12S)-12-hydoxy-(5Z,8Z,10E,
14Z)-5,8,10,14-eiocosatetraenoic acid (12-HETE), presumably through
the action of the ubiquitous GPX (Figure 11) [310, 314, 316]. To a
lesser extent, ALOX12 catalyzes the conversion of LTA4 to both
lipoxins (5S,6R,15S)-trihydroxy-(7E,9E,11Z,13E)-eicosatetraenoate
(LXA4) and (5S,14R,15S)-trihydroxy-(6E,8Z,10E,12E)-
eicosatetraenoate (LXB4) [243]. ALOX12 is also known to convert (7E,
9E,11Z,14Z)-(5S,6S)-5,6-epoxyicosa-7,9,11,14-tetraenoate and (7E,9E,
11Z,14Z)-(5S,6S)-5,6-epoxyicosa-7,9,11,14-tetraenoate to LXA4 and
LXB4 respectively [317].

Figure 11: Two of the reactions catalyzed by ALOX12.

Human ALOX12 structure: Human ALOX12 (hALOX12,
UniProtKB-P18054) is a monomeric, non-heme iron protein and a
member of the lipoxygenase family. There are five known natural SNP
variants (E256K, Q261R, A298T, N322S, and R430H) [22,310], but no
known splice variant isoforms. hALOX12 is a 663 amino acid
polypeptide with a calculated molecular weight of 75,694 Da. There is
one X-ray structure available (PDB entry 3D3L).

There are no known posttranslational modifications of ALOX12.
However, there are seven potential phosphorylation sites predicted by
PhosphositePlus (www.phosphosite.org), one of which, Ser246,
corresponds to a known phosphorylation site in the rat counterpart
(UniProtKB-F1LQ70 (LOX12_RAT)).

Regulation of ALOX12: IL-1β, IL-4, and IL-8 have been shown to
induce ALOX12 mRNA and protein expression in porcine aortic
vascular smooth muscle cells (PAVSM) [312]. In addition, PAVSMs
treated with high glucose or angiotensin II markedly upregulated both
ALOX12 mRNA and protein [318]. Platelet-derived growth factor BB
(PDGF) exhibits the same effect on PAVSMs [319]. In human
epidermoid carcinoma A431 cells it was found that EGF increases the
12-lipoxygenase mRNA level by about 2-fold with a lag period of 10
hours in parallel with an increase in ALOX12 activity [320]. It has also
been observed that nuclear factor kappa-light-chain-enhancer of
activated B cells (NFKB/Rel) acts as a transcription factor and
suppresses the over-expression of 12-lipoxygenase in humans.

Regulation on the protein level has been observed as well. ALOX12
activity is quite sensitive to the cellular redox conditions. Treatment of
enzyme preparations with GSH at levels found in epithelial cell cytosol
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(0.1-10 mM) inhibited ALOX12 activity [232]. On the other hand, the
reaction product 12-HPETE stimulates its own production by
increasing lipoxygenase activity whereas the reduction product 12-
HETE does not affect activity [321].

Arachidonate 12(R)-lipoxygenase (ALOX12B)
Overview: Arachidonate 12(R)-lipoxygenase (ALOX12B, 12R-LOX,

12R-lipoxygenase) is a cytosolic protein expressed primarily in the skin
but in lesser amounts in the esophagus, stomach, lung, tongue, brain
and prostate of mammals (www.ncbi.nlm.nih.gov/gene/242) [322,323].
It is the only known human lipoxygenase able to form an R-isomer
[324]. In contrast to the pro-inflammatory role of other lipoxygenases,
the primary function of this enzyme is in the regulation, proliferation
and differentiation of epithelial cells [325,326]. ALOX12B catalyzes the
conversion of arachidonic acid to 12R-HPETE which is rapidly
converted to 12R-HETE in the cell (Figure 12) [325,327]. Although it is
unknown at this point if the conversion to 12R-HETE is a function of
ALOX12B or another enzyme (e.g. glutathione peroxidases, GPX), the
fact that 12R-HPETE is a substrate for ALOXE3 and these two
enzymes are known to work in conjunction with one another strongly
suggests the former [325,328]. ALOX12B catalyzes an additional
reaction where O-linoleoyl-ω-hydroxyceramide is oxygenated to 9R-
hydroperoxy- linoleoyl-ω-hydroxyceramide, a critical process required
for the hydrolysis of the linoleoyl moiety that is in turn required for the
formation of the corneocyte lipid envelope in mammalian skin [328].

Figure 12: Reactions catalyzed by ALOX12B.

Human ALOX12B structure: Human ALOX12B (hALOX12B,
UniProtKB-O75342) is a monomeric, non-heme iron-requiring
protein and a member of the lipoxygenase family. There are nineteen
known natural SNP variants [329-331], but no known splice variant
isoforms. hALOX12B is a 701 amino acid polypeptide with a calculated
molecular weight of 80,356 Da. Comparison of the primary sequence
to other lipoxygenases shows considerable similarity with the
exception of a 31 proline rich amino acid section (e.g. 53.2% with
hALOXE3 and 50.4% with hALOX15B without the proline rich region,
residues 149-180) that may be involved in regulatory protein-protein
interactions [324,327]. A MODBASE protein model was constructed
(www.proteinmodelportal.org) that clearly shows this section as a loop
in addition to the characteristic PLAT and catalytic domains (data not
shown). Sequence comparison indicates that His-398, His-403,
His-578, Asn-582, and the carboxyl of the C-terminal Ile coordinate
with the catalytic iron. There is one reported X-ray structure (PDB

entry 3D3L). There are 11 potential phosphorylation sites on
hALOX12B, none of which have been confirmed experimentally
(PhosphoSitePlus, www.phosphosite.org).

Regulation of ALOX12B: To date there are no reports on the
regulation of ALOX12B expression at the mRNA or regulation at the
protein level. There is, however, one report indicating that a specific
long non-coding RNA (lncRNA) is required for high mRNA
abundance of ALOX12B [332].

Hydroperoxide isomerase (ALOXE3)
Overview: Although ALOXE3 (epidermal LOX-3, e-LOX-3,

eLOX-3) is a member of the lipoxygenase family with sequence
similarity to both ALOX12B and ALOX15B, its unique catalytic
activity places it in its own unique category. ALOXE3 is highly
expressed in epidermal tissue [323,333-335] and also found in lower
levels in lung, brain, CSF, pituitary, pancreatic islets [228,336] (see also
Expression atlas at www.ebi.ac.uk/gxa/genes). One of its biological
roles is to isomerize other lipogenase products, in particular HPODEs
and HPETEs, to the corresponding epoxy alcohol (hepoxilins) or
ketone (Figure 14) [335,337]. ALOXE3 has a wide range of substrate
specificities, isomerizing 5-, 8-, 9-, 11-, 12-, and 15-HPETEs as well as
9- and 13-HPODEs. It does exhibit at least a 2:1 preference for the R-
hydroperoxy over the S-hydroperoxy substrates (Figure 13) with 12R-
HPETE as the best substrate. 12R-HPETE is converted to a 3:2 mixture
of 8R-hydroxy-11R,12R-epoxyeicosatrienoic acid (hepoxilins A3,
HxA3) and 12-ketoeicosatetranoic acid (Figure 14B). A-type hepoxilins
are extremely labile and are converted non-enzymatically to the
corresponding A-type trioxilin under either weakly acidic or basic
conditions. B-type hepoxilins are more stable, but are converted
enzymatically to the corresponding B-type trioxilin by one of the
ubiquitous soluble epoxide hydrolases [227].

Figure 13: Substrate specificity of human ALOXE3 (eLOX3). Initial
rates of reaction for Human recombinant ALOXE3 on different
HPETE and HPODE substrates. R configuration hydroperoxides
are shown in black bars, S configuration hydroperoxides in grey
bars. Rendered from Yu et al. [340].

Another noteworthy reaction involves the isomerization of the
product from the ALOX12B catalyzed oxygenation of O-linoleoyl-ω-
hydroxyceramide to 9R-hydroperoxy- linoleoyl-ω-hydroxyceramide.
ALOX3 converts this product to 9R,10R-trans-epoxy-11E,13R-hydroxy
and 9-keto-10E,12Z esters of ceramide.
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Figure 14: Lipoxygenase catalysis to hepoxilins and trioxilins by
ALOXE3. A) Reactions from 12(S)-HPETE substrate. The reactions
produce two products, 8Rhydroxy-11S,12S-epoxy-5Z,9E,14Z-
eicosatetraenoic acid ((11S,12S)-HxA3) and 10Rhydroxy-11S,12S-
epoxy-5Z,9E,14Z-eicosatetraenoic acid ((11S,12S)-HxB3). Each of
107 these are converted to the corresponding trioxilins, 8R,11R,
12S-trihydroxy-5Z,9E,14Zeicosatetraenoic acid (11R,12S)-TrXA3)
and , 10R,11R,12S-trihydroxy-5Z,9E,14Zeicosatetraenoic acid (11R,
12S)-TrXB3) respectively by specific soluble epoxide hydrolases
(sEH). B) Reactions from 12(R)-HPETE substrate. The reactions
produce two products, R-hydroxy-11R,12R-epoxy-5Z,9E,14Z-
eicosatetraenoic acid (11R,12R)-HxA3) and 12-oxo-5Z,8Z,10E,14Z-
eicosatetraenoic acid (12-KETE). 11R,12R)-HxA3 can be converted
to 8R,11R,12R-trihydroxy-5Z,9E,14Z-eicosatetraenoic acid (11R,
12S)-TrxB3) by sEH. Rendered from Cronin et al. [227], Yu et al.
[335], and text within.

Figure 15: Dioxygenase activity of ALOXE3. Distribution of
products produced by ALOXE3 from arachidonic substrate.
Rendered from Zheng and Brash [338].

The 9R,10R-transepoxy-11E-13-keto derivative is the most
prominent ceramide ester in mouse skin. These reactions are critical
processes for the formation of the corneocyte lipid envelope in
mammalian skin [328].

Until 2010, reports on the activity of this enzyme indicated that it
has no dioxygenase activity. However, in that year Zheng and Brash
published two articles [337,338] showing that under specific reaction
conditions, ALOXE3 is capable of dioxygenase activity, albeit it much
slower than isomerase activity. Under high concentration of
hydroperoxide activator and oxygen, the normally long lag phase for
dioxygenation can be reduced and arachidonic acid can be converted
to a mixture of HPETEs (Figure 15).

Human ALOXE3 Structure: Human ALOXE3 (hALOXE3,
UniProtKB-Q9BYJ1) is a monomeric, non-heme iron protein and a
member of the lipoxygenase family. It has a sequence similarity to
hALOX12B and hALOX15B of 54.1% and 48.4% respectfully and
shares similar sequence-derived structural features (catalytic iron,
PLAT and alpha-helical domains). There are seven known natural SNP
variants (L237M, G281V, QYVA344-347P, R396S, L427P, V500F,
P630L) [329,330,339,340], and one known isoform lacking the
initiation Met, but there is no confirmation for this isoform at the
protein level [77]. hALOXE3 is a 711 amino acid polypeptide with a
calculated molecular weight of 80,543 Da. No X-ray crystal structures
have been reported for this protein. However, a MODBASE protein
model was constructed (data not shown)
(www.proteinmodelportal.org) that clearly shows the characteristic
PLAT and alpha-helical catalytic domains. Sequence comparison to
other lipoxygenases indicates that His-408, His-413, His-588, Asn-592,
and the carboxyl of the C-terminal Ile-711 coordinate with the
catalytic iron. There are 7 potential phosphorylation sites on ALOXE3,
none of which have been confirmed experimentally (PhosphoSitePlus,
www.phosphosite.org).

Regulation of ALOXE3: To date there are no reports on the
regulation of ALOXE3 expression at the mRNA or protein level. There
is one report indicating that a specific long non-coding RNA (lncRNA)
is required for high mRNA abundance of ALOXE3 [333].

Leukotriene biosynthesis
Overview: The Leukotriene family of molecules consists of

oxygenated products of arachidonic acid of which several are
derivatized by glutathione.

The molecules are created through the action of ALOX5 on
arachidonic acid, resulting in the transient formation of 5S-HPETE
which is then converted by ALOX5 to leukotriene A4 (LTA4). The
highly unstable LTA4 can be converted by hydrolysis to leukotriene B4
(LTB4) or to leukotriene C4 (LTC4) by addition of glutathione (Figures
16 and 17). Stepwise hydrolysis of the peptide portion of attached
glutathione on LTC4 leads to the formation of leukotriene D4 (LTD4)
and leukotriene E4 (LTE4) as shown in Figure 18. LTB4 is one of the
most potent chemotactic molecules known and induces recruitment
and activation of monocytes, neutrophils, and eosinophils [341-343].
LTC4, LTD4 and LTE4 are known as the cysteinyl-leukotrienes and are
potent bronchoconstrictors, known to increase vascular permeability
in postcapillary venules, and known to stimulate mucus secretion
[342].
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Figure 16: Reaction catalyzed by LTA4H to convert LTA4 to LTB4.

Figure 17: Reaction catalyzed by leukotriene C4 synthase (LTC4S).

Leukotriene A-4 hydrolase (LTA4H)
Overview: Leukotriene A-4 hydrolase (LTA4H, LTA-4 hydrolase)

is a cytosolic protein expressed in monocytes, lymphocytes,
neutrophils, reticulocytes, platelets, fibroblasts and found in
abundance in lung, kidney, spleen, intestines, and reproductive organs
[341,344,345]. It is a dual function enzyme catalyzing the conversion of
5S-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid
(Leukotriene A4, LTA4) to 5S,12R-dihydroxy-6,14-cis-8,10-trans-
eicosatetraenoic acid (Leukotriene B4, LTB4), a neutrophil,
chemoattractant (Figure 16), and has anion-dependent
aminopeptidase activity [344,346,347]. The natural peptide substrates
for this enzyme are currently unknown [346].

Human LTA4H structure: Human LTA4H (hLTA4H, UniProtKB-
P09960) is a monomeric, zinc-requiring protein and a member of the
peptidase M1 family of proteins. hLTA4H is expressed as a 611 amino
acid polypeptide and posttranslationally modified to remove the
initiator methionine giving it a calculated molecular weight of 69,154
Da [348]. There is one reported natural SNP variant (Y131H), and
three reported splice variant isoforms [77,349], none of which have
been observed at the protein level. There are numerous reported
crystal structures for hLTA4H (e.g. PDB entry 1HS6). Within a narrow
otherwise hydrophobic pocket there are three hydrophilic residues
Gln-133, Tyr-266, and Asp-374 that are thought to bind LTA4 [344].
His-295, His-299, and Glu-318 coordinate with the zinc ion to facilitate
catalysis.

There are four known lysine acetylation sites on LTA4H, Lys-73,
Lys-337, Lys-414 and Lys-573, for which the biological function of each
has yet to be determined [99]. One phosphorylation has been reported
(see below) at Ser-416. Numerous additional phosphorylation sites are
predicted by PhosphoSitePlus (www.phosphosite.org), none of which
have been confirmed experimentally.

Regulation of LTA4H: Regulation of LTA4H at the protein level has
been reported. Phosphorylation of Ser-416 from a yet-to-be
determined kinase inactivates the epoxide hydrolase activity, but not
the amino peptidase activity [350]. Treatment of LTA4H with protein
phosphatase-1 will restore activity, but only in the presence of an
amino peptidase substrate or product.

Both cations and anions reversibly affect the activity of LTA4H.
Anions, chloride and thiocyanate in particular reversibly stimulate the
peptidase, but not the epoxide hydrolase activity [351]. Maximal
chloride stimulation occurs at 100 mM, which is close to the
extracellular concentration, suggesting that the peptidase function for
LTA4H is primarily extracellular, whereas the epoxide hydrolase
function is primarily intracellular. Zinc and other divalent cations
reversibly inhibit LTA4H in a dose dependent manner [352]. Although
zinc is required for activity, at concentrations higher than a 1:1 enzyme
to zinc ion ratio, zinc inhibits the activity, with peptidase activity
affected at lower concentrations than the epoxide hydrolase activity.

Orning et al. [353,354] have reported a mechanism-based
inactivation of LTA4H by substrate LTA4 in vivo and in vitro. The
inactivation involves a 1:1 covalent binding of the substrate to the
catalytic site which inhibits both the peptidase and hydrolase activities.
They further propose that the hydrolase reaction is capable of two
pathways, one leading to inhibition and the other to product LTB4, the
former eventually leading to 100% inactivation.

Leukotriene C4 synthase (LTC4S)
Overview: Leukotriene C4 synthase (LTC4S, LTC4 synthase) is a

transmembrane protein expressed in a limited number of cell types
and is found in mast cells, eosinophils, basophils and monocytes
[355,356]. The enzyme catalyzes the conjugation of GSH to the
unstable LTA4 produced by ALOX5 [356], producing leukotriene C4
(LTC4) (Figure 17), a powerful mediator in pathophysiological
conditions such as immediate hypersensitivity and inflammation
[357,358]. It is found in the outer nuclear membrane and peripheral
endoplasmic reticulum, but not in the inner nuclear membrane [359].

Human LTC4S structure: Human LTC4S (hLTC4S, UniProtKB-
Q16873) was originally reported as a homodimer, based on gel
filtration data [356,360], but later crystallographic data shows it to be a
homotrimer [355,361] and a member of the MAPEG family of
proteins. hLTC4S is expressed as a 150 amino acid protein with a
calculated molecular weight of 16,567 Da [362]. The crystal structure
(e.g. PDB entry 2UUH) shows that each monomer of the biologically
functional trimer consists of five alpha helices, four of which are
transmembrane and one that extends out of the membrane [355,361].
There is one reported natural SNP variant, R142Q, which is only
observed at the cDNA level [22].

Currently, the only confirmed posttranslational modifications are
the phosphorylations (see below) at Ser-36 and Thr-40 [363].
Additional phosphorylations at either or both Ser-28 and Ser-111 have
also been reported [364].
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Regulation of LTC4S: Regulation of LTC4S at the protein level has
been demonstrated. Phosphorylation of Ser-36 by p70S6k, a serine/
threonine-specific kinase, suppresses the activity of LTC4S [363].
Ser-36 is located on a loop region near the substrate binding site and
molecular dynamic simulations reveal that this loop moves to allow
hydrogen bonding between the phosphorylated Ser-36 and the
catalytic Arg-104 on a neighboring subunit, thus impairing the activity
of the adjacent subunit. Phosphorylation of Thr-40 by the same kinase
occurs less often and has no effect of the activity of the enzyme.
Additional phosphorylations by phosphokinase C (PKC) in THP-1
cells have been reported to reduce the activity of LTC4S [364]. There
are two PKC consensus sites on LTC4S involving Ser-28 and Ser-111. It
is not known which or if both sites are phosphorylated. In addition, it
was found that transfection of recombinant LTC4S into both COS-7
and K-562 cells did not produce phosphorylated LTC4S, indicating
that cell-specific effectors are required for phosphorylation.

Regulation at the transcriptional level has also been reported. TGF-
β-1, -2, and -3 significantly increase the production of LTC4S mRNA
in THP-1 cells and have no effect on the half-life of the mRNA [365].
Exposure of THP-1 cells to LPS, a known mediator of inflammatory
response at biologically relevant levels, results in the down-regulation
of LTC4S mRNA [366]. The biological consequence of this action is
unclear at this time.

Synthesis of Leukotriene D4 (LTD4) and Leukotriene E4
(LTE4)

Overview: The enzymes involved in the production of leukotriene
D4 (LTD4) and leukotriene E4 (LTE4) (Figure 18) are involved in
numerous biological processes other than leukotriene biosynthesis.
Only the production of LTD4 and LTE4 are discussed here.

Figure 18: Synthesis reactions for LTD4 and LTE4.

Gamma-glutamyl transaminase (GGT)
Overview: Gamma-glutamyl transaminase (GGT1) catalyzes the

transfer of the γ-glutamyl group from glutathione and related
compounds, such as LTC4 to an array of amino acids and peptides or
glutathione itself, playing a key role in glutathione metabolism [367].
Its activity has been observed in kidney, pancreas, epidermis, seminal
vesicles, liver, spleen cells, bile, seminal fluid, blood serum, and urine.
It is found in the largest amounts in mammalian kidneys.

Human GGT structure: Human Gamma-glutamyl transaminase
(hGGT1, UniProt-P19440) is a glycosylated heterodimer and member
of the N-terminal nucleophile superfamily of proteins [368]. The
original transcript is 569 residues, but is autocleaved between Gly-380
and Thr-381 to produce a heavy chain (1-380) and a light chain
(381-569), thus forming the heterodimer [369]. The protein is localized
to the plasma membrane by a single pass helix located on the N-
terminus of the large subunit. The crystal structure (e.g. PDB entry
4GDX) shows a stacked α−β−β−α core similar to other family

members. The N-terminal Thr-361 of the light chain provides the
nucleophilic active site residue [368]. There are three known isoforms
of this protein [370,371]. Isoform 2 (341-366:
VVRNMTSEFFAAQLRAQISDDTTHPI →
ASSGVSAGGPQHDLRVLRCPAPGPDL and 367-569: Missing) is an
alternate splice isoform thus far only identified at the mRNA level.
Isoform 3 (1-344: Missing) is produced by alternative promotor usage
and has been observed at both the mRNA and protein level [370]. The
function of this protein isoform is unknown at this time.

There are seven potential glycosylation sites on hGGT1, all of which
have been confirmed experimentally [372,373]; Asn-95, Asn-120,
Asn-230, Asn-266, Asn-297, Asn-344, an Asn-511 are confirmed. Not
all of the glycosylation sites are modified at the same time and different
N-glycans may be attached to the same residue in different molecules
[373]. There is one predicted phosphorylation site at Thr-550 which is
not confirmed experimentally (PhosphoSitePlus,
www.phosphosite.org).

Regulation of hGGT1: Transcription of the gene for hGGT1 is not
highly inducible. Agents such as ethanol and steroids only cause a two
to five-fold change in expression and many other xenobiotics have no
effect [374,375]. However, the regulation of this gene is complex. There
are at least seven promoters, although levels of GGT expression in
individual organs seem to be relatively constant [376]. In addition, the
expression of the different types is tissue dependent. For example, there
are six types of GGT expressed in the kidney, but only one type
expressed in the intestine. This is perhaps a reflection of the vast
number of different processes this enzyme participates in.

Dipeptidase (DPEP)
Overview: Dipeptidase (DPEP, RDP, MDP) hydrolyzes a wide range

of dipeptides, including the renal metabolism of glutathione and its
conjugates, beta-lactam rings, as well as the conversion of LTD4 to
LTE4 [377-380]. DPEP activity has been observed in lung, kidney,
pancreas and testis, spleen, liver, serum and heart, and intestine [381].

Human DPEP structure: Human dipeptidase (hDPEP1, UniProtKB-
P16444) is a glycosylated, zinc-requiring homodimer with subunits of
59 kDa each and is a member of the Peptidase M19 family [382]. The
protein is plasma membrane associated through a glycosyl-
phosphatidylinositol anchor [383]. The originally transcribed
polypeptide consists of 411 amino acid residues. Only 1 protein isoform
has been identified, however, three natural SNP variants have been
reported (R246H, E351K, and E351Q) [204]. Residues 1-16 are
removed as a signal peptide and residues 386-411 are removed to
activate the enzyme [384,385]. The resulting protein consists of 369
amino acids with a calculated molecular weight of 41,062 Da and is
covalently attached to an identical monomer through a disulfide bond
(Cys-377, Cys 361 in the processed polypeptide) [380,384]. The crystal
structure (e.g. PDB entry 1ITQ) shows that each monomer of the
biologically functional dimer contains a catalytic binuclear zinc center
coordinated by His-36, Asp-38, His-214, His-235, and a bridging water
and Glu-141 [380, 386]. The overall structure of each monomer is a
distorted (α/β)8-barrel fold [386].

There are four potential glycosylation sites on hDPEP1, three of
which have been confirmed experimentally; Asn-57, Asn-279, Asn-332
are confirmed and Asn-358 is a potential site [58,380]. There is also a
glycosyl-phosphatidylinositol attached to the processed C-terminal
serine that serves to anchor each subunit to the membrane [385].
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There are 10 potential phosphorylation sites, none of which have been
confirmed experimentally (PhosphoSitePlus, www.phosphosite.org).

Regulation of hDPEP1: It has been reported that DPEP1 is
upregulated in colorectal cancers and expression levels are associated
with positive lymph node metastasis. The particular mechanisms
involved have yet to be discovered [387].

Eoxins Biosynthesis: EXA4, EXC4, EXD4 and EXE4

Overview: In effect, eoxins are the C14,15 oxidized isomers of
leukotrienes and are produced from arachidonic acid via ALOX15 to
eoxin A4 (EXA4) and then converted through a linear path to eoxin C4
(EXC4) , eoxin D4 (EXD4) and eoxin E4 (EXE4) by the same enzymes
used for the production of leukotrienes (Figure 7). For this reason this
pathway will not be discussed in detail.

Eoxins are pro-inflammatory metabolites of arachidonic acid and
are produced in cells that express significant amounts of ALOX15,
human airway epithelial cells, eosinophils, subsets of mast cells, mast
cells and dendritic cells [388]. Their biological roles have yet to be
thoroughly explored; however, it is known that they serve to increase
vascular permeability [388].

The enzymes involved in the production of EXA4, EXC4, EXD4, and
EXE4, are involved in the synthesis of other eicosanoid previously
discussed. Figure 19 outlines the proposed pathway for eoxin
biosynthesis [11,388-390]. The pathway begins with the conversion of
arachidonic acid to 15-HPETE by ALOX15 or ALOX15B. This
metabolite can be further metabolized by ALOX15 to the 14,15-epoxy
equivalent of LTA4 (14,15-LTA4) known as EXA4 to avoid confusion
with leukotrienes. At the point LTC4S adds a glutathione residue to
EXA4 to produce EXC4 and the peptide moiety modified by the
subsequent actions of GGT1 and DPEP to produce EXD4 and EXE4
respectively.

Figure 19: Proposed metabolic pathway for the formation of eoxins.
Rendered from Feltenmark et al. [38].

Future Directions
Although much is known about the enzymes of the eicosanoid

pathway, there are several areas requiring further study. While
preparing this manuscript it became clear that the regulation of these
enzymes at the protein level is lacking in detail. Confirming the
presence or absence of phosphate at potential phosphorylation sites
and the condition under which the modification is made, and the effect
of the modification has on the catalytic activity requires further
investigation. Confirmation of the kinases involved in all

phosphorylations and an examination of the connection between
pathways that employ the same kinases is required for a broader
understanding of the context for the phosphorylation. A more
complete analysis of glycosylation is also in order, including location
on the polypeptide, structures, and context dependency of
modifications to the glyco-portion (e.g. β-trace), and associated
intracellular expression and changes in thereof. Lastly, X-ray
crystallographic structures for all eicosanoid enzymes would be most
useful.
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