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Abstract

The secretome is considered a combination of factors produced by cells due to abundant spectrum of autocrine/
paracrine triggers. All these actively synthetizing and secreting factors include proteins, adhesion and intercellular
signal molecules, peptides, lipids, free DNAs, microRNAs, and microparticles (MPs). The components of secretome
mutually may interact and thereby modify the MPs’ structure and functionality. As a result, communicative ability of
endothelial cell-derived MPs may sufficiently impaire. Subsequently, cross talk between some components of
secretome might modulate delivering cargos of MPs and their regenerative and proliferative capabilities via
intercellular signaling networks. The aim of the review is to discuss the effect of various components of secretome
on MP-dependent effects on endothelium.
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Introduction
For last decade, elevated circulating level of microparticles (MPs)

produced by various types of blood cells have been defined in the
patients with established cardiovascular (CV) disease, as well as in
individuals at higher risk of CV events and diseases [1-4]. There is
suggestive evidence that a number of circulating endothelial cell-
derived MPs might be a clinically useful biomarker that pretty accurate
predicts CV complications in general populations and patients with
known CV disease [5-7]. Although an origin of endothelial cell-
derived MPs from activated or apoptotic cells is crucial for realizing
tissue repair, degenerative processes modulation, immune mediation,
and directly/indirectly vascular injury [8], there are several
controversies regarding an involvement of MPs in pathogenesis of CV
disease [9-11]. The first controversy affects the pathophysiological
properties of MPs. Indeed, the MPs secreted by activated endothelial
cells may contribute to tissue reparation, restore endothelial function,
mediate progenitor cell mobbing and differentiation, whereas
apoptotic MPs are able directly injury endothelial cells and via a
transfer of several proteins, active molecules, chromatin compounds
including microRNAs and DNAs, regulate inflammation, coagulation,
and immune response [12]. The next controversy relates a different
presentation of endothelial cell-derived MPs in plasma of healthy
individuals and changing of their numbers in various CV diseases and
CV risks. Interestingly, circulating number of MPs originated from
apoptotic endothelial cells increases in patients with CV risk factors,
after newly CV events and in individuals with established CV disease.
However, the ability of activated endothelial cells to active secret MPs
progressively decreases depending on CV risk presentation, i.e.,
diabetes mellitus, abdominal obesity, insulin resistance, renal disease,
and is due co-existing endothelial disintegrity [13-15]. Unfortunately,
although there is strong association between circulating number of
activated endothelial cell-derived MPs and CV risk, elevated level of

apoptotic endothelial cell-derived MPs appears to be much more
accurate predictive biomarker relating to CV death and CV diseases
progression [16]. Another controversy is that the endothelial cell-
derived MPs are constitutive biomarker of endothelial dysfunction
playing a pivotal role in inflammation, vascular injury, angiogenesis,
and thrombosis. However, the circulating number of endothelial cell-
derived MPs predicts CV manifestation and progression regardless a
severity of endothelial dysfunction. In fact, the imbalance between
number of circulating endothelial cell-derived MPs distinguished their
origin (activated or apoptotic endothelial cells) can be applied as more
promising routine tests to improve CV risk prediction [17,18].
Whether “impaired phenotype” of endothelial cell-derived MPs as a
causality factor contributed the vascular “competence” in CV disease is
a predominantly pre-existing phenomenon associated with genetic/
epigenetic performances or is resulting in various metabolic and age-
dependent factors is not clear. Probably, variable effect of endothelial
cell-derived MPs might relate to particularities of the triggers, which
induced cell mechanisms of synthesis and secretion of secretome. The
aim of the review is to discuss the effect of various components of
secretome on MP-dependent effects on endothelium.

Secretome: definition and components
The variable spectrum of paracrine factors secreted by cells due to

specific and non-specific triggers with exerted biological effects on
target cells is determined by secretome. By now, the secretome is
considered a collection of factors consisting of transmembrane
proteins and other components actively secreted by cells into the
extracellular space. All these synthetizing and secreting factors include
proteins, adhesion and intercellular signal molecules, peptides, lipids,
free DNAs, microRNAs, and extracellular vesicles (i.e., exosomes and
MPs). A significant portion (roughly 20%) of the human secretome
consists of secretory proteins incorporated into microvesicles.
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Definition of microparticles
MPs are large and very variable on their shapes and dimensions

(predominantly 100-1000 nm) heterogeneous sub-population of
extracellular vesicles (EVs), which are shedding from plasma
membranes of parent cells in response to cell’ activation, injury, and/or
apoptosis [19]. EVs contain cell-specific collections of proteins,
glycoproteins, lipids, nucleic acids and other molecules, which are non-
specific for EVs. Depending on their origin EVs are graduated to
follow subsets, i.e., the exosomes (30-100 nm in diameter), the
microvesicles (50-1000 nm in diameter), ectosomes (100-350 nm in
diameter), small-size MPs (<50 nm in diameter) known as membrane
particles and apoptotic bodies (1-5 µm in diameter). The exosomes are
formed by inward budding of the endosomal membrane and are
released on the exocytosis of multivesicular bodies known as late
endosomes, whereas the microvesicles are attributed via budding from
plasma membranes [20,21].

MPs are released by cellular vesiculation and fission of the
membrane of cells. Under normal physiological condition a
phospholipid bilayer of plasma membrane of cells represented
phosphatidylserine and phosphatidylethanoalamine in inner leaflets,
whereas phosphatidylcholine and sphingomyelin represent in the
external leaflets. The asymmetrical distribution of phospholipids in the
plasma membrane is supported by activity of three major intracellular
ATP-dependent enzyme systems, i.e., flippase, floppase, and
scramblase. Because aminophospholipids are negatively charged, but
phospholipids exhibit neutral charge, the main role of intracellular
enzyme systems is supporting electrochemical gradient. Both flippase
and floppase belong to family of ATP-dependent phospholipid
translocases [22].

The flippase translocates phosphatidylserine and
phosphatidylethanoalamine from the external leaflets to the inner one.
The floppase transports phospholipids in the opposite direction.
Finally, scramblase being to Ca2+ dependent enzyme system exhibits
unspecifically ability of moving of phospholipids between both leaflets
of plasma membrane [23].

Importantly, disappearing of the asymmetrical phospholipid
distribution in the bilayer of the cell membrane is considered a clue for
vesiculation and forming of MPs. Indeed, both processes of apoptosis
or cell activation are required asymmetry in phospholipid distribution
that leads to cytoskeleton modifications, membrane budding and MPs
release. The mechanisms of vesiculation affect genome and may
mediate by some triggers including inflammation, while in some cases
there is a spontaneous release of MPs from stable cells or due to injury
from necrotic cells or from mechanically damaged cells. Particularly,
the MPs are released in both constitutive and controlled manners,
regulated by intercellular Ca2+ and Rab-GTP-ases and activation of μ-
calpain. μ-Calpain is a Ca2+-dependent cytosolic enzyme belong to
protease, which cleaves talin and α-actin, leading to decreased binding
of integrins to the cytoskeleton and a reduction in cell adhesion and
integrity [24].

Recently MPs are considered a cargo for various molecules. Indeed,
MPs carry proteins, RNA, micro-RNA, and DNA fragments from their
cells of origin to other parts of the body via blood and other body
fluids. Within last decade it has become to know that MPs would act as
information transfer for target cells. However, the difference between
innate mechanisms affected the release of MPs from stable cells,
activated cells or apoptotic cells is yet not fully investigated and
requires more studies.

Endothelial cell-derived microparticles
Endothelial cells release phenotypically and quantitatively distinct

MP populations due to two main mechanisms, i.e., cell activation and
apoptosis. As a result, MPs are sufficiently distinguished one another in
their ability to present some antigens [19] and intravesicle
components, i.e. matrix metalloproteinases (MMP)-2, MMP-9, MT1-
MMP, chromatin, active molecules (heat shock proteins), some
hormones (angiotensin II), growth factors (transforming factor-beta)
[24-27]. It is suggested that the epigenetic modification of the parent
cells might directly regulatory impact on functionality of secreted MPs
and their ability to influence various biological effects [28]. Indeed, the
endothelial cell-derived MPs isolated from the serum of patients with
diabetes mellitus, chronic kidney disease, heart failure and
atherosclerosis are defective in ability to induce vascular relaxation,
maturation of progenitor cells and endothelium repair [29-32]. As
factors contributing in the response of the target cells after stimulation
MPs could be pointed inflammatory cytokines (tumor necrosis factor-
alpha, interleukin: IL-4, IL-17), glucose, advanced glycation end-
products, uremic toxins, free DNA, products of lipid peroxidation [33].
Nonetheless, hypoxia-modified endothelial cell-derived MPs are able
to carry reactive oxygen species and thereby may impair target cells by
promoting apoptosis and oxidative stress [34]. One cannot be excluded
the role of metabolomics-regulated microenvironments of target cells
as a causative factor modifying the response after MPs’ cooperation
[35,36]. It has been postulated that activation of p53 subunit, Akt/
GSK-3beta and JAK2/STAT3 signaling pathways are involved in the
regulation of MPs’ synthesis and that these molecular targets are under
close control of various metabolites and intermediates, as well as
epigenetics’ mechanisms [37-40]. Thus, secretome of endothelial cells
including metabolites, proteins, intermediates, DNAs/reactive oxygen
radicals, active molecules, may probably modify and even alter a
communicative ability of MPs secreted by endothelial cells [41-44].

Relation between secretome and endothelial cell
functionality

Endothelial cell-derived MPs are not only delivery of intra-vesicular
cargo and information, but they may directly modulate vascular
function via autocrine and paracrine effects through surface
interaction of the target cells, and cellular fusion [45]. Subsequently, in
vitro investigation has shown that the MPs and other fractions of
secretome might mutually influence one another [9]. The final result of
the interrelation may be shaping brand new biological components
with irradiative abilities toward target cells [46,47]. Finally, it has been
suggested that enhancing of the target cell mobility and differentiation
through MP production could be impaired, inverted or even
sufficiently changed [48]. Indeed, secretome of apoptotic peripheral
blood cells may induce cytoprotection effect instead expected
worsening tissue remodeling in animal model of acute myocardial
infarction [49-51]. Additionally, this effect is probably due to the
activation of pro-survival signalling cascades in the cardiomyocytes
and the increase of homing of regenerative cells through stimulation of
metabolically modified MPs. Additionally, in clinical settings
angiogenic early outgrowth endothelial progenitor cells have been
reported to contribute to endothelial regeneration and to limit
neointima formation after vascular injury through cooperation with
metabolically modified MPs [52].

Thus, there is a large body of evidence regarding being of modifying
effect of secretome components on MPs’ ability for tissue regeneration
or injury. Moreover, regenerative potency of apoptotic cell secretome
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was even higher than those in activated cells. However, new
phenomenon opens serious perspective to clinical implementation of
MPs as not just diagnostic tool with predictive possibilities, but as
transfer system with therapeutic potencies [43,54].

Whether endothelial cell-derived MPs are capable to induce variable
effects on target cells depending on proteomic of MPs or functional
nature of secretome is not fully understood [55]. In fact, cross talk
between some components of secretome including MPs might
modulate delivering cargos of MPs through involving the intercellular
signalling networks and thereby modify their regenerative and
proliferative capabilities. Future investigations are requires to define
the role of secretome in MPs’ ability to produce different biological
effects regarding endothelial repair, while recent studies have suggested
the predominantly role of MPs’ origin in this matter.

Conclusion
The endothelial cells secretome has most commonly investigated in

pre-clinical settings as a source of regulating factors that influence
target cells. However, the interaction between different components of
secretome leads to modification of the MPs’ structure and
functionality. It has been hypothesized that endothelial regeneration is
under tight control of autocrine and paracrine mechanisms affecting
not just parent endothelial cells, but also secretome of them. The
matter of metabolic modification of one is uncertain and requires more
investigations in future.
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