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Abstract

Diabetes mellitus has been accepted as an epidemic worldwide during the last two decades. Despite the
diagnostic tools and therapeutic approaches, the pathophysiology of this metabolic disorder and cellular defensive
mechanisms remain mysterious. The maintenance of cellular homeostasis requires well-organized network between
glucose, amino acid and lipid metabolism. Sirtuins are a group of nicotinamide adenine dinucleotide dependent
proteins that are involved in cellular homeostasis by their deacetylating activity. Among them, sirtuin 1,-3 and -4
have been the most extensively explored. In the present review, we aimed to discuss the role of associated sirtuins
in glucose and lipid metabolism and in the pathogenesis and treatment of diabetes mellitus.

Keywords: Sirtuins; Glucose and lipid metabolism; Diabetes
mellitus

Introduction
During the last two decades, the prevalence of diabetes mellitus

(DM) and its complications have been increasing worldwide despite
the diagnostic tools and the therapeutic applications merged into
medical practice. Diabetes was both found to be closely associated with
cardiovascular morbidity and mortality [1]. Hyperglycemia and
related metabolic alterations including advanced glycation end
products, polyol, hexosamine and protein kinase C pathways
collectively contribute the classical pathogenesis of diabetes. However,
there are conflicting results regarding the role of vigorous serum
glucose control on major cardiovascular events [2,3]. The main
reasons for these undesirable consequences of diabetes might be
secondary to unlighted pathophysiological mechanisms. To date, novel
risk factors including increased inflammatory cytokines secondary to
low grade persistent inflammation, adipose tissue hormones
(adipokines) including obestatin, leptin, resistin and renin-
angiotensin-aldosteron system are determined as the most detrimental
factors attributed to this heightened cardiovascular morbidity and
mortality in diabetic and obese patients [4]. It is unlogical to treat
these various entities separately. Therefore, the main source of the
detrimental pathogenetic mechanisms should be determined and new
therapeutic molecules should be identified to accomplish the
treatment of diabetes.

In this regard, two questions should be arised. First, what is the
main defensive mechanism against these undesirable pathophysiologic
events responsible for increased cardiovascular morbidity and
mortality? Second, are there any novel treatment modalities that
include the mechanisms to overcome these worse outcomes?

Sirtuins are a group of proteins that have an enormous capacity to
deacetylate various enzymes and proteins within the cell. Activation or
deactivation of the enzymes occurs as a consequence of this
deacetylation. Since both carbohydrate and lipid metabolism are
affected in diabetes, perhaps sirtuins are the responsible key proteins
that fights against the detrimental effects of these disorders and may be
the main answer of these two important questions. In the literature,
the biological mechanisms of sirtuins were extensively discussed [5]
and except SIRT 1,-3 and-4, effects of other sirtuins are the beyond the
scope of this review. Hence, we will focus on the mechanisms of
sirtuins in carbohydrate and lipid metabolism regarding diabetes
mellitus in the present review.

Overview of Sirtuins
Mammalian sirtuins are a group of proteins that consist of seven

nicotinamide adenine dinucleotide (NAD+) dependent enzymes
(SIRT1 through SIRT 7) with homology to Sir 2 (silent information
regulator 2) family of Saccharomyces cerevisae [6]. The main function
of these enzymes is to deacetylate the various proteins that regulate a
wide variety of cellular processes regarding protein, carbohydrate and
lipid metabolism, mitochondrial homeostasis and programmed cell
death mechanisms including autophagy and apoptosis [7]. Among
them, SIRT 4 and-6 have an additional ADP-ribosyltransferase activity
that is also important in telomere maintenance, genomic stability and
longevity [8,9]. Sirtuins remove the acetyl groups from lysine residues
of histones, transcription factors specific enzymes such as manganese
superoxide dismutase and peroxisome proliferator activated receptor–
γ (PPR-γ) -coactivator-1α (PGC-1α) and other miscellaneous proteins
that have important roles in the cellular homeostasis [10]. As a
consequence of the deacetylation, nicotinamide and 2’O-acetyl-ADP
ribose are generated [11].
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Recent studies demonstrated that sirtuins can be found and
activated in kidney, liver, spleen, lung, heart, pancreas, muscle, brain,
testis, ovary, thymus, white and brown adipose tissue [12]. In the cell,
the localization of SIRT proteins differ and matter, hence, the different
localizations develop various physiologic and may be pathologic
metabolic effects under certain stress conditions. The first two SIRT
proteins, SIRT 1 resides both in the nucleus and cytoplasm and SIRT 2
is primarily found in the cytoplasm, however, it can be transferred into
the nucleus in a cell cycle-dependent manner. SIRT 3,-4 and-5 exist in
the mitochondria. The last two members of SIRT protein family, SIRT
6 and-7 are found in the nucleus and the nucleolus of the cell,
respectively [13].

How can Sirtuins be Activated in the Cell?
Previous experimental studies showed the beneficial effects of

decreasing food intake by 30% without malnutrition, also named
Calorie Restriction (CR) on aging that could be mediated by sirtuin
over expression and this effect leads to increasing lifespan [14].
Basically, increased intracellular NAD+ concentrations and CR are the
main factors that activate sirtuins. In energy rich conditions, NAD+ is
reduced to Nicotinamide Adenine Dinucleotide (NADH) and the
proportion of NAD+ to NADH is reduced during glycolysis, cyclic acid
cycling, lipid β-oxidation and protein catabolism [15]. Two main
sources of NAD+ are salvage pathway of nicotinamid catalyzed by
enzyme named nicotinamidphosphorybosyltransferase (NAMPT) and
de novo synthesis from tryptophan metabolism [16].

Figure 1: The transcription factors that are affected by SIRT1, 3 and
4

Among others, SIRT 1 is the most studied member of sirtuins
probably because of the generalized effects on the cell cycle,
mitochondria metabolism, energy homeostasis, inflammation,
oxidative stress and apoptosis [17]. SIRT 1 can directly deacetylate
nuclear histone proteins that results in repression of gene transcription
[18]. On the other hand, metabolic effects of SIRT 1 depend on the
deacetylation of non-histone proteins including PGC-1α, insulin
receptor substrate (IRS)-2, peroxisome proliferator activated receptor
(PPAR)-α, PPAR-γ, mitochondrial uncoupling protein 2 (UCP-2),
liver X receptor (LXR), farnesoid X receptor (FXR) and sterol-
regulatory-element binding protein (SREBP) [19-23]. In this regard,

SIRT 1 regulates insulin secretion, adipogenesis and myogenesis. The
transcription factors that are affected by SIRT1, 3 and 4 are shown in
Figure 1. Deacetylation of transcription factors including PGC1α,
UCP2, PTP1B, LKB1 and FOXO1 by SIRT1,-3,-4 upregulate the genes
of enzymes that are closely related to glucose metabolism. On the
other hand, the same sirtuins are involved in the activation of PGC-1α,
PPAR-α, AMPK, SREBP-1c, PPAR-γ, ABCA 1 FXR, LXR which are
related to lipid metabolism. These mechanisms will be detailed in the
following sections of this review.

The Role of Sirtuins in Glucose Metabolism
Glucose metabolism is regulated by hormones including insulin,

glucagon, growth hormone and adrenalin. In normal physiology,
insulin is released from pancreatic islet β cells when glucose enters the
circulation after a meal. Insulin removes glucose from plasma and
promotes cellular uptake in skeletal muscle and adipose tissue via
insulin receptors which are closely related with a protein named
insulin receptor substrate-1 (IRS-1). IRS-1 is an intracellular protein
which is tyrosine phosphorylated that confers the ability to bind
another set of intracellular signaling proteins which contains the SH2
domain. It has been thought that IRS-1 is a sort of docking protein for
the SH2-containing signaling proteins. The downstream pathways of
IRS1 are phosphatidylinositol-3-kinase/Akt pathway that regulates
glucose transporter type 4 translocation and mitogen activated protein
kinase (MAPK/ERK) pathway which mediates the cell growth and
differentiation [24]. In this regard, after uptake of glucose into the
cells, insulin promotes the conversion of glucose to glycogen and lipids
in fed state (Figure 2). The effects of insulin differ according to the cell
type. Insulin activates glycogen synthase and deactivates hepatic
phosphorylase via its dephosphorylation activity. In liver, insulin
induces glycogen synthesis through phosphorylation of glucose via a
couple of enzymes including glucokinase and glycogen synthetase.
Glycogen within the hepatocyte is a major source of stored
carbohydrate. Glycogen is also stored in the skeletal muscle and other
cells in smaller amounts. Additionally, insulin stimulates the
conversion of free fatty acids into triglycerides that means lipid
synthesis also occurs in the liver. During fasting, hepatic glucose
output is increased secondary to the activation of gluconeogenesis and
the inhibition of glycolysis. Sirtuins, especially SIRT1, influence many
steps of glucose metabolism in liver, pancreas, muscle and adipose
tissue (Figure 3). The main regulator of these reactions is deactylated
form of PGC-1α in SIRT 1 activated states [25].

Forkhead box group O (FOXO), a group of transcriptional factors,
has been found to be very effective in terms of sensing nutrient
deprivation and promoting cellular homeostasis [26]. Among them,
FOXO 1 regulates glucose metabolism [27] and feeding behaviors [28].
In normal physiology, during fasting state, the balance between insulin
and glucagon (decreased insulin versus increased glucagon) stimulates
gluconeogenesis via cAMP-Responsive Element Binding protein
(CREB) regulated transcription coactivator 2 (CRTC2) and FOXO1
[29,30].
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Figure 2: Metabolic Effects of SIRT1 in Peripheral Organs

Figure 3: Metabolic Effects of Insulin in Cells

Recently, the link between FOXO proteins, STAT 3 (Signal
transducer and activator of transcription 3) and SIRT 1 regarding
hepatic glucose metabolism is identified. Both FOXO1,-3a,-4 were
found to be associated with increased expression of gluconeogenesis
genes and decreased expression of glucokinase [31,32]. SIRT 1 also
regulates gluconeogenesis via deacetylation and thereby deactivating
STAT 3 which can inhibit the transcription of gluconeogenic genes in
normal conditions [33].

The role of sirtuins in the pancreas was demonstrated.
Experimental data of SIRT 1 over expression suggested that serum
insulin and cholesterol were diminished along with the diminution of
the adipose tissue volume and decreased obesity-induced insulin
resistance [34,35]. Interestingly, SIRT 1 deficient mice also exhibit low
levels of serum glucose and insulin [36]. Despite the repetitive results
of the studies regarding the calorie restriction (CR) induced SIRT 1
expression, Moynihan et al. [23] firstly demonstrated that β-cell-
specific SIRT 1 transgenic mice exhibit insulin secretion ex vivo in

pancreatic β islet cells in response to high glucose. This result was
confirmed by Bordone et al. [36] who also pointed out that insulin
secretion was reduced in SIRT1 knock-out mice and in pancreatic β
islet cell lines in which SIRT1 had been knocked down by RNA
interference. This effect partially depends on the SIRT 1-mediated
inhibition of uncoupling protein-2 (UCP-2) in pancreatic islet β-cells
[23]. UCP-2 is a mitochondrial inner membrane that regulates
mitochondrial ATP synthesis. SIRT1 knock out mice exhibit increased
UCP-2 in β-cells along with low levels of serum insulin [36] and
higher pancreatic secretion of insulin and ATP were demonstrated in
UCP-2 knock out mice [37]. According to these study results, SIRT 1
might be a positive regulator rather than a suppressor of insulin in the
postprandial fed state.

Insulin sensitivity is considered as an important part of the glucose
metabolism. Protein tyrosine phosphatase 1B (PTP1B) is involved in
glucose metabolism and diet-induced obesity [38]. SIRT 1 represses
PTP1B by deacetylation which is a tyrosine phosphatase for the insulin
receptor. In accordance, resveratrol, an activator of SIRT1 may also
inhibit PTP1B. Hence, SIRT 1 might improve insulin sensitivity in
insulin-resistant conditions via reducing PTPB1B activity [39].

SIRT 3, a mitochondria localized sirtuin, have also beneficial effects
on glucose metabolism by increasing insulin sensitivity and decreasing
serum glucose. Hirschey et al. [40] recently demonstrated that high-fat
diet feeding induces hepatic mitochondrial protein hyperacetylation in
mice and down regulation of the major mitochondrial protein
deacetylase SIRT3. According to the results of this study, increased
obesity, insulin resistance, hyperlipidemia, and steatohepatitis are
prominent in mice lacking SIRT3 compared to wild-type mice [40].
The same group also identified a single nucleotide polymorphism
which encodes a point mutation in the SIRT 3 protein. As a result,
mitochondrial protein acetylation is impaired and polymorphism of
SIRT3 has been shown to associate with the metabolic syndrome [40].

Another important sirtuin that takes part in glucose metabolism is
SIRT4. In contrast to SIRT1, both the localization and the function of
SIRT4 are different. SIRT4 is located in mitochondria and transferases
ADP-ribose to the substrates. One of the target enzyme of SIRT4 is
glutamate dehydrogenase (GDH) which converts glutamate to α-
ketoglutarate in the mitochondria [41]. SIRT4 inhibits amino-acid
induced insulin secretion via repressing GDH [42]. During fasting,
SIRT4 is found to be inhibited in liver to induce glucogenesis from
amino acids and fats and in the mean time inhibition of SIRT4 allows
insulin secretion from β-cells. However, SIRT4 is activated and the
reactions mentioned above are reversed in fed states [41].

The Role of Sirtuins in Lipid Metabolism
In fat tissue, approximately 90% of stored glucose is found in the

form of lipids primarily as triglycerides. In adipocytes, insulin activates
lipoprotein lipase, hence, insulin actively take place in the fat tissue.
Recent advances highlightened the roles of sirtuins, especially SIRT 1
and SIRT 3, in the pathogenesis of adipogenesis. The most studied
transcription factors that have an important roles in the adipogenesis
and lipid synthesis are PGC-1α, PPAR-α, AMPK (adenosine
monophosphate–activated protein kinase), LKB1 (liver kinase B1),
SREBP-1c, PPAR-γ, ABCA 1 (ATP-binding cassette transporter 1),
FXR, LXR-α and LXR-β [10]. Deacetylation of PGC-1α by SIRT 1,
which is highly expressed from the liver in the starved state and vice
versa, results in increased hepatic glucose output via increasing hepatic
gluconeogenesis and inhibiting glycolysis [43]. In addition, SIRT 1
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activates PPAR-α secondary to PG-1α deacetylation, which is very
important in fatty acid β oxidation in the liver, striated and smooth
muscles [20]. SIRT 1 also stimulates LKB1 and AMPK that enhances
fatty acid β oxidation in the liver [44]. In contrast, SIRT 1 inhibits
SREBP 1 and this inhibition results in increased lipolysis in the liver
[19].

PPAR- γ, one of the regulator of adipogenesis, is also inactivated by
SIRT 1. In this regard, inhibition of PPAR-γ causes diminished
adipogenesis therefore obesity, and increases free fatty acid release in
white adipose tissue [45] (Figure 2).

Another regulatory function of SIRT 1 is cholesterol biosynthesis.
LXR-α and LXR-β are two important nuclear proteins that maintain
and control synthesis of cholesterol. These proteins stimulate the
activation of ABCA-1 that results in high density lipoprotein (HDL)
synthesis. Hence, Li et al. [46] concluded that deacetylation of LXR
proteins might be associated with the pathogenesis of atherosclerosis
especially in chronic metabolic disorders including diabetes.

Farnesoid X receptor , also known as bile acid receptor, is another
member of nuclear receptor family, was found to be closely related
with glucose and lipid metabolism. Deacetylation of FXR by SIRT 1
represses the activation this protein, therefore the deleterious
metabolic effects were inhibited [47].

In fasting state, one of the main energy source is free fatty acids.
SIRT1 induces PGC1-α and PPAR-α that result in increased
mitochondrial free fatty acid oxidation [20]. In addition, SIRT1 knock
out mice exhibit hepatosteatosis secondary to accumulation of fats in
the liver [48]. SIRT3 is also involved in the pathogenesis of hepatic
lipid metabolism by deacetylating and activating long chain acyl CoA
dehydrogenase [49]. In contrast, SIRT4 has opposite effects on free
fatty acid metabolism and induction of SIRT4 might increase
hepatosteatosis [50].

The Role of Sirtuins in Type 2 Diabetes Mellitus
In the early stages of Type 2 DM, insulin resistance is the prominent

feature and as a result hyperinsulinemia occurs. Impaired glucose
uptake and utilization follow this stage and hyperglycemia and
hyperinsulinemia contribute the pancreatic β islet cell destruction with
the progression of diabetes [51].

As mentioned above, by deacetylating FOXO1 and PGC1α, SIRT 1
induces gluconeogenesis and inhibits glycolysis in liver during fasting.
What about the changes of both gluconeogenesis and glycolysis in
diabetes mellitus? Rodgers and Puigserver [52] showed that hepatic
PGC1α is up regulated and gluconeogenesis is also increased which
can further aggravate hyperglycemia in diabetic mice. In type 1
diabetes mellitus model of mice, Yechoor et al demonstrated that
SIRT3 mRNA is down-regulated [53]. In another study done by
Hallows et al explored that SIRT3 induces the ketogenesis by
activating acetyl-coA synthetase in the mammalian cells [54]. Hence,
one might expect that SIRT3 might play an important role for the
increased ketogenesis observed during diabetes.

Hepatosteatosis is commonly seen in diabetic patients. As mention
above, SIRT1,-3 and -4 play an important role in the pathogenesis of
this entity [50]. When taken together, inhibition of SIRT1 and 3
and/or activation of SIRT4 might be attributed to this heightened risk
of hepatosteatosis in the progression of diabetes.

Novel Therapeutic Agents of SIRT1 Activators in
Treatment of Diabetes Mellitus

The first actor that suggested to activate SIRT 1 was a plant
polyphenol, resveratrol (trans-3,5,4’-trihydroxystilbene). This
molecule is mostly found in peanuts and grapes. Resveratrol might
attenuate chronic inflammation which is an important part of the
pathogenesis of diabetes and obesity. In the first studies, the beneficial
metabolic effects of resveratrol was attributed to SIRT1 activation [55].
However, in the following years, it was demonstrated that the positive
effects of resveratrol on glucose metabolism and insulin sensitivity is
closely associated with AMPK subunit α activation of this agent rather
than the stimulatory effect on SIRT 1. In this regard, Um et al. [56]
demonstrated that resveratrol could not improve glucose tolerance
and insulin sensitivity in AMPK α knockout mice. Treatment with
resveratrol, reduced macrophage infiltration, insulin resistance,
hepatosteatosis and serum levels of tumor necrosis factor-α in high-fat
diet fed mice [57]. In a human study, recently, Timmers et al. [58]
showed the beneficial effects of resveratrol in obese patients in terms
of lowering systolic blood pressure, serum lipid and glucose levels and
inflammation parameters.

There are conflicting results regarding the effects of novel synthetic
SIRT1 activators on glucose and lipid metabolism. Yamazaki et al. [59]
showed that treatment of mice with nonalcoholic fatty liver disease
with a synthetic SIRT1 activator, SRT1720, might decrease the serum
lipid levels, oxidative stress and inflammation. In addition, Feig et al.
[60] showed that activation of SIRT1 by SRT1720 protected the
organism from diet-induced insulin resistance and obesity via
increasing oxidation of fat in liver, adipose tissue and skeletal muscle.
However, some studies suggested that SIRT1 overexpression might
have adverse effects on lipid metabolism and may be associated with
increased lipogenesis [61,62]. In this regard, Caton et al. [63]
demonstrated that fructose induced gluconeogenesis, with increases in
peroxisome proliferator-activated receptor coactivator 1-alpha and
phosphoenolpyruvatecarboxykinase (PEPCK) gene expression,
PEPCK activity, and hepatocyte glucose production. In addition, levels
of 3-hydroxy-3-methylglutaryl coenzyme A reductase and intracellular
cholesterol were increased. Increases in gluconeogenesis, HMG Co-A
reductase and cholesterol were abolished by SIRT1 inhibitors, while
SIRT1 activator, SRT1720, increased gluconeogenesis and lipogenesis
via increased HMG Co-A reductase gene expression [63]. Finally,
studies defining the exact role of SIRT1 on lipid metabolism are
needed.

Nicotinamid mononucleotide (NMN), a NAD+ intermediate, is
another attempted molecule that has been demonstrated to have
beneficial effects as improved glucose and lipid levels in aging-induced
diabetes. In the experimental model of high-fat induced diabetic mice,
intraperitoneal injection of NMN in 500 mg/kg/day doses in 5-7 days,
has been found to be associated with better serum glucose and insulin
levels [64]. This study suggested that an increase in NAD via NMN
might improve metabolic parameters in diabetic patients.

Niacin, (vitamin B3) is also an important intermediate for the
biosynthesis of NAD+ that can used for the activation of SIRT1 [65].
Niacin is essential to all living organisms and biosynthetically
converted to NAD within the cell. NAD plays a vital role in
maintaining the genome stability via sirtuins [66]. Hence, it would be
logical to consider niacin as a therapeutic agent to activate SIRT1.
Metformin, a commonly used anti-diabetic drug, decrease insulin
resistance and hyperglycemia via inhibiting gluconeogenesis, hepatic
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glucose output and activation of free fatty acid oxidation in skeletal
muscle [67]. Some of these beneficial effects of metformin were
attributed to SIRT1 activation via AMPK pathway [68].

Calorie restriction provides a desirable metabolic profile and
improvement of the mitochondrial functions in humans via activating
several genes including SIRT1 [69]. In this regard, CR with increased
physical activity should be encouraged especially in obese diabetic
patients.

SIRT1 activators might induce insulin secretion and sensitivity,
reduce adipogenesis, but also induce gluconeogenesis in the liver,
which may worsen hyperglycemia in diabetic. Hence, among the
mentioned treatment options, except metformin and CR, none of
them is used in large series of clinical trials. To date, therefore, it is
wise to use only metformin along with CR in obese type 2 diabetic
patients to get beneficial metabolic effects.

Conclusion and Future Perspectives
As a conclusion, certain cellular stresses, CR, oxidative stress, and

various endogenous proteins and so forth might decrease nicotinamid
and increase NAD/NADH ratio that trigger sirtuins. In fasting state,
sirtuins inhibit insulin release in the pancreas and prevent β-cell
degeneration, promote gluconeogenesis and insulin signaling, inhibit
glycolysis and adipose differentiation, and prevent ketogenesis
especially in diabetes (Figure 4). Hence, activation of sirtuins result in
various beneficial metabolic effects which makes these proteins a
target new drugs especially for the future treatment of metabolic
disorders including diabetes and obesity. However, there are many
missing pieces in the puzzle and further experimental and clinical
studies are needed to highlight the roles of sirtuins in diabetes mellitus.

Figure 4: Explanatory diagram of Response to Cellular Stress
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