
Open AccessReview Article

ISSN:2155-6113 JAR, an open access journal J AIDS Clinic Res Pharmacology of Antiretroviral Agents: HIV

The Effects of Fetal and Childhood Exposure to Antiretroviral Agents

Abstract
Purpose: The compliant use of combination antiretroviral therapy has virtually eliminated perinatal HIV 

transmission.  Although antiretroviral drug toxicities in adults have been well documented, the effects of fetal and 
early childhood exposure to antiretroviral drugs on children of HIV-positive mothers are not well known. 

Methods: We searched the Pub Med database, reviewed publications, and selected abstracts on the use of 
antiretroviral agents to prevent HIV transmission and their effects on growth and cardiac endpoints in fetal and 
postnatal life.

Results: The link between nucleoside analogs and mitochondrial dysfunction is controversial, and the association 
between in utero antiretroviral exposure and mitochondrial dysfunction in children is unclear. In utero exposure to 
antiretroviral therapy has effects on the heart, regardless of HIV status, including improved cardiac function but also 
reduced cardiac mass of unclear future clinical significance. Preterm delivery and impaired somatic growth have 
been reported in infants exposed to antiretrovirals, but results are inconsistent. In utero exposure has also been 
associated with below-normal hematologic parameters. In HIV-infected children, cumulative postnatal exposure to 
antiretroviral agents is associated with metabolic disturbances and an increased risk for cardiovascular disease.

Conclusion: Antiretroviral therapy is effective in preventing perinatal HIV transmission but may be associated 
with adverse long-term side effects in exposed infants.  Further clinical trials and longitudinal monitoring are needed 
to understand the long-term effects of in utero exposure to antiretroviral agents.
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therapy; Mitochondrial dysfunction; Cardiomyopathy; Preterm deliv-
ery 

Abbreviations: HIV: Human Immunodeficiency Virus; ART: An-
tiretroviral Therapy; HAART: Highly Active Antiretroviral Therapy; 
NRTI: Nucleoside Reverse Transcriptase Inhibitors; CHAART: Cardio-
vascular Status of HAART In HIV-Exposed Infants and Children; P2C2 
HIV: Pediatric Pulmonary and Cardiovascular Complications of Verti-
cally Transmitted HIV Infection 

Introduction
With the advent of antiretroviral therapy (ART), the incidence of 

perinatal HIV-1 transmission has decreased from 20-25% to less than 
2% [1]. In the developed world, ART prophylaxis during pregnancy 
is the standard treatment given to HIV-infected pregnant women, 
subjecting all infants born to HIV-positive mothers to drug toxicity. 
In the United States (US), this represents about 10,000 HIV-negative 
children exposed to ART born each year [2]. As the elimination of 
mother-to-child transmission of HIV becomes a reality, more patients 
are becoming exposed to antiretrovirals in utero, while long-term 
effects of these exposures remain unknown. 

However, recent studies suggest that exposure to antiretroviral 
medications may have marked adverse effects, independent of 
HIV status [3,4]. Nucleoside analogs and protease inhibitors have 
been linked to mitochondrial toxicity and various metabolic and 
cardiovascular complications. Since the mid-1990s, highly active ART 
(HAART), a combination therapy of three or more HIV-suppressing 
drugs, has significantly improved the immunological status of the 
infected population, making HIV a manageable illness. Though 
mothers on HAART regimens may have optimal health, they expose 
their children to potent drugs and possible toxicity. 

The long-term effects of these agents are better understood in 
HIV-infected adults, who present with the side effects of cumulative 

antiretroviral exposure. These effects on children have received less 
attention, partly because many become orphaned or are unaware of 
their fetal exposure, and partly because of the lack of follow-up after 
HIV-negative status has been established.

Accordingly, we performed a rapid systematic review of the 
literature for studies reporting any cardiac or somatic effects on infants 
and children exposed to these medications in utero and in early life. 
Although we focus on cardiac and somatic growth effects, other systems 
may be affected as well. Here, we report the results of our review. 

Methods
We searched Pub Med for articles on the risks of exposure to the 

antiretroviral drugs used in preventing mother-to-child transmission 
of HIV. Using a basic Boolean search technique, we used the search 
terms “antiretroviral therapy” OR “NRTI” OR “protease inhibitor” 
AND “mitochondrial.” We were also interested in the effects that in 
utero exposure to HAART has on the cardiovascular system and what 
cardiac effects are present in this population during early childhood, 
since these are well-known developmental changes associated 
with drug toxicities. We searched with the terms “HAART” OR 
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“antiretroviral therapy” AND “cardiovascular” OR “cardiac” AND “in 
utero” OR “fetal.” We searched for similar cardiac endpoints using the 
same strategy. 

To determine the effects of in utero exposure on growth, we 
searched under “HAART” OR “antiretroviral therapy” AND “growth” 
OR “height” OR “weight” OR “preterm.” To compare the outcomes of 
different strategies given different circumstances for preventing vertical 
HIV transmission, we used search terms such as “monotherapy” AND 
“prophylaxis” OR “antiretroviral therapy.” We also examined selected 
published abstracts on this topic. 

Results
Mitochondrial toxicity associated with antiretrovirals 

Prenatal antiretroviral exposure depletes mitochondrial DNA, and 
nucleoside analogs are the leading cause of antiretroviral mitochondrial 
toxicity [5-10]. Blanche et al. reported mitochondrial dysfunction 
in HIV-uninfected children fetally and postnatally exposed to the 
nucleoside reverse transcriptase inhibitor (NRTI) zidovudine, raising 
concerns over the growing use of multiple nucleoside analogs in 
prophylactic ART [7]. Since then, several studies have found that 
mitochondrial DNA levels were below normal in HIV-uninfected 
children exposed to antiretroviral agents in utero [6,11,12]. Poirier 
et al. compared HIV-negative infants born to HIV-negative mothers 
with HIV-negative infants born to HIV-positive mothers who received 
either no ART or zidovudine while pregnant. This study linked 
mitochondrial DNA depletion to in utero exposure to zidovudine 
[11]. Both Blanche et al. and Poirier et al. found that the incidence of 
mitochondrial dysfunction was higher in HIV-uninfected infants than 
it is in the general population, and this risk was even higher for children 
prenatally exposed to multiple NRTIs than it was for infants exposed to 
zidovudine monotherapy [13].

Data from a more recent study conflict with the above proposition 
that antiretroviral exposure is linked to mitochondrial dysfunction. 
These data indicate that mitochondrial DNA depletion is not related 
to antiretroviral exposure, but rather to HIV exposure [14]. Although 
mitochondrial DNA levels were lower in ART-exposed infants than 
in healthy infants, these levels in HIV-exposed but uninfected infants 
were markedly lower in ART-unexposed infants than they were in 
ART-exposed infants. In HIV-uninfected children, concentrations 
of mitochondrial DNA increase to normal in antiretroviral-exposed 
children after 5 years, but they remain depressed in antiretroviral-
unexposed children, suggesting that the effect on mitochondrial DNA 
depletion is more related to HIV exposure [14]. 

Several animal studies have found that gestational exposure to 
antiretroviral drugs is clearly associated with mitochondrial toxicity, 
irrespective of HIV status. Fetal Erythrocebus patas monkeys exposed 
in utero to daily doses of zidovudine had abnormal mitochondria, 
decreased mitochondrial DNA levels, and mitochondrial myopathy in 
cardiac and skeletal muscle cells [15]. The results from another primate 
model revealed mitochondrial DNA depletion not only in cardiac and 
skeletal muscle cells of antiretroviral-exposed fetuses, but also in the 
cerebellum and cerebrum [16]. Studies in mice have also indicated 
that the heart is the target organ for NRTI-induced mitochondrial 
damage [17,18]. For example, combination zidovudine-lamivudine 
therapy caused cardiac mitochondrial cell mutations and substantial 
mitochondrial DNA depletion [17]. A similar mouse study also 
found that prophylactic NRTI-based regimens cause marked cardiac 

damage that persisted months after the exposure and increased with 
combination NRTI-therapy [19]. 

Another study on cell lines suggests that HAART may exacerbate 
HIV-associated cardiovascular complications because of antiretroviral-
induced endothelial mitochondrial dysfunction [20]. Additionally, 
NRTIs may cause mitochondrial mutations. Alterations in the 
mitochondrial DNA from umbilical cord tissue may explain adverse 
vascular effects, and combination therapy results in more frequent 
mutations [21]. 

NRTIs similarly deplete mitochondria in adipose tissue, which 
may adversely affect mitochondrial metabolism, causing lipid 
disorders such as lipodystrophy, lipoatrophy, and diabetes [22-24]. 
Some HIV protease inhibitors potentially induce oxidative stress, 
alter mitochondrial function, and alter glucose metabolism [25-
28]. Researchers examining protease inhibitors in animal models 
for their effect on glucose homeostasis found that some do target 
glucose transporter-4 [29]. In rodent models, ritonavir, indinavir, 
and lopinavir cause impaired glucose transport, and ritonavir inhibits 
glucose transport to the myocardium [29-31]. A study on healthy 
human volunteers has associated protease inhibitors with adverse 
metabolic effects [32]. Although most of the clinical data are from 
adults, impaired glucose tolerance has been detected in HIV-infected 
children on long-term HAART regimens [33-35]. Protease inhibitor 
therapy may lead to insulin resistance in children by impairing the 
b-cell response to insulin sensitivity [33].

Antiretroviral agents and cardiac end points

The long-term cardiac effects of in utero exposure to HAART have 
not been well studied. Although several studies have noted the increased 
prevalence of cardiovascular diseases and left ventricular dysfunction 
in HIV-infected persons, they could not conclusively attribute these 
conditions to ART [36,37]. In early studies of HIV-infected patients not 
treated with HAART, cardiac complications have been associated with 
lower CD4+ cell counts, myocarditis, and poor nutritional status [38-
40]. However, recent evidence has independently linked in utero multi-
agent ART exposure to impaired cardiac structure and growth during 
gestation and early life [3,41-43]. The results of the National Heart, 
Lung, and Blood Institute (NHLBI) Cardiovascular Status of HAART 
in HIV-Exposed Infants and Children (CHAART-I) cohort study show 
that in utero exposure to multi-agent ART improved left ventricular 
systolic function, but cardiac growth parameters were below normal. In 
HIV-exposed but uninfected infants, septal thickness, left ventricular 
mass, and left ventricular dimension during the first 2 years of life were 
lower in ART-exposed infants compared to ART-unexposed infants 
[3].
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Cardiac effects in HIV-uninfected children

The NHLBI Pediatric Pulmonary and Cardiovascular 
Complications of Vertically Transmitted HIV Infection (P2C2 HIV) 
study, which followed patients in the pre-HAART era, suggested that 
fetal exposure to HIV infection, associated disease factors, and other 
health habits increased the risk of cardiovascular complications, but 
single-agent ART prophylaxis had no adverse effect [44]. The P2C2 

HIV study found a high prevalence of cardiac abnormalities and left 
ventricular dysfunction associated with HIV infection, but it did not 
find any statistically significant differences between children exposed 
to zidovudine and those not exposed [44-46]. The NHLBI CHAART-I 
study compared HIV-uninfected and ART-unexposed infants from 
the P2C2 HIV study with HIV-uninfected and multi-agent ART-
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exposed infants. The results showed that in utero ART exposure is 
independently associated with cardiac abnormalities [3]. Although 
multi-agent ART exposure is associated with improved left ventricular 
contractility and fractional shortening in the first 2 years of life, left 
ventricular function is still below normal during this same time. Multi-
agent ART appears to inhibit myocardial growth, which may cause 
progressive left ventricular dysfunction. Girls were more sensitive to 
these cardiac effects, a finding that confirms results from a rodent study 
revealing the increased vulnerability of female mice to zidovudine 
exposure compared to males [17]. These early effects may predict early 
and advanced cardiovascular disease (Figure 1).

The Pediatric HIV/AIDS Cohort Study’s Surveillance Monitoring 
of ART Toxicities (SMARTT) protocol is a prospective study supported 
by the National Institute of Child Health and Human Development 
(NICHD) that follows HIV-uninfected infants and children exposed to 
ART. Echocardiograms from this study showed that the hearts of ART-
exposed children have marked structural differences that were not 

observed in unexposed children during the first trimester of pregnancy 
[41]. Data suggest that in utero abacavir exposure is associated with 
decreased left ventricular dimension, nevirapine with increased left 
ventricular wall thickness, and nelfinavir with lower aortic valve 
diameter, reduced left ventricular wall thickness, and more left 
ventricular remodeling 4 years after birth [41]. Antiretroviral agents 
probably induce cardiac toxicity because several studies have indicated 
that the heart is a target organ of NRTI-associated mitochondrial DNA 
depletion and alteration, which may explain the impaired cardiac 
growth in both the CHAART-I and SMARTT studies [17,19,47]. 

The link between abacavir and an increased risk for cardiovascular 
disease is still unclear. A meta-analysis of 26 randomized controlled 
trials with minimized selection bias conducted by the US Food and 
Drug Administration (FDA) showed no association between abacavir 
and myocardial infarction in adults [48]. The data from a recent 
Veterans Affairs observational study of 11,000 patients who were 
mostly men contrasts the FDA study, as they suggest an increased risk 

Figure 1: Cardiac Measurements of 136 CHAART-I Infants and 216 P2C2 HIV Infants.

Data from antiretroviral therapy (ART)-positive infants in the CHAART-I study are shown by the blue line with open boxes.  Data from ART-negative infants in the 
P2C2 HIV study are shown by the red line with solid boxes.  Rectangles show interquartile ranges, and vertical lines show the 5th percentile to the 95th percentile.  
Dots represent outliers. EDD = end-diastolic dimension; ED SWT = end-diastolic septal wall thickness; ESD = end-systolic dimension; FS = fractional shortening; 
LV = left ventricular.
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for cardiovascular events in patients exposed to abacavir [49]. However, 
the original Veterans Affairs study of 19,000 abacavir-treated patients 
did not show increased risk for myocardial infarction, but it did show 
that abacavir was associated with reduced risk for cerebrovascular 
events [50]. Additionally, a recently published Danish study found 
that abacavir was associated with an increased risk for cerebrovascular 
events, and it was the only antiretroviral studied to show any association 
with cerebrovascular risk [51]. These studies provide conflicting results, 
warranting further screening for cardiovascular and cerebrovascular 
disease in patients exposed to abacavir. 

HIV-uninfected infants exposed to ART in utero also exhibit 
lower-than-normal platelet, total lymphocyte, CD4+, and CD8+ cell 
counts that persisted through the first 2 years of life [52]. These infants 
also have marked anemia and neutropenia in the first 3 months of life, 
and hematologic values were more severely altered with increasing 
intensity of the maternal ART regimen [53]. Further data suggest that 
transplacental zidovudine exposure is associated with genotoxicity [54]. 
The long-term clinical implications of these low hematologic values, 
as well as reduced myocardial mass and structural abnormalities are 
unknown and thus necessitate long-term follow up of infants born to 
HIV-infected mothers, regardless of HIV status.

Cardiac effects in HIV-infected children

The NHLBI CHAART-II study of HIV-infected children born 
in the HAART era reported results similar to those found in HIV-
uninfected multi-agent ART-exposed infants. Those exposed to multi-
agent ART had markedly lower intracardiac septal thickness, left 
ventricular mass, dimension, and afterload and higher left ventricular 
fractional shortening and contractility than those of unexposed 
HIV-infected children [42]. The Adolescent Master Protocol (AMP), 
another sub-study of the Pediatric HIV/AIDS Cohort Study, follows 
HIV-infected adolescents and pre-adolescents who have received ART 
since fetal life. AMP has reported increased cardiovascular risk in 
these adolescents and has suggested that exposure to multi-agent ART 
is associated with long-term adverse cardiac effects. Children treated 
with long-term HAART had alterations in left ventricular dimension, 
left ventricular ejection fraction, and increased aortic valve dimension 
compared to HIV-uninfected controls, and HAART-exposed children 
with higher viral loads and the presence of non-cardiac HIV symptoms 
had increased aortic valve dimensions [55]. 

Miller et al. found that elevated biomarkers of vascular dysfunction 
in HIV-infected children were more related to HIV disease severity 
than antiretroviral exposure [56]. A high rate of coronary artery 
abnormalities in HIV-infected children has also been reported and is 
probably a result of early plaque development, suggesting an increased 
risk of atherosclerosis [57]. As noted previously, the link between 
abacavir exposure and cardiovascular disease is unclear. Combination 
ART regimens may adversely affect vascular structure and function 
[58]. The results of a Canadian study comparing 7,053 HIV-positive 
adults with 27,681 HIV-negative adults showed that any exposure to 
abacavir, efavirenz, lopinavir, or ritonavir caused a marked increased 
risk of acute myocardial infarction [59]. This study demonstrated 
that each of the commonly used classes of antiretroviral drugs—
NRTIs, non-nucleoside reverse transcriptase inhibitors, and protease 
inhibitors—are associated with increased cardiovascular risk. 

Charakida et al. measured carotid intima-media thickness and 
brachial artery flow-mediated dilation in HIV-infected children, 
and they found that children on protease inhibitor-based ART had 
greater carotid intima-media thickness and impaired flow-mediated 

dilation than children who did not receive a protease inhibitor [60]. 
Thus, protease inhibitor regimens may increase cardiovascular risk 
in infected children who already face HIV-related atherosclerotic 
cardiovascular complications [44,61].

Although cardiovascular disease is associated with HIV infection 
itself, protease inhibitors and NRTIs cause metabolic disturbances 
such as insulin resistance, glucose intolerance, dyslipidemia, and 
the lipodystrophy syndrome, all of which are factors associated with 
accelerated cardiovascular disease [4,62-67]. Bitnun et al. reported 
that insulin sensitivity was lower in HIV-infected children treated 
with protease inhibitors than in protease inhibitor-naïve children, 
suggesting that protease inhibitor therapy may result in insulin 
resistance, increasing the risk that treated children would develop type 
2 diabetes mellitus [33]. AMP revealed that 12.4% of HIV-infected 
children showed insulin resistance, and these children also had better 
virologic control than the rest of the cohort, suggesting ART impairs 
insulin sensitivity [68]. Further, switching to a protease inhibitor-
sparing regimen can reverse this dyslipidemia and other metabolic 
disturbances and improve high-risk cardiovascular profiles [23,69]. 

Effects on somatic growth and nutrition

The uterine environment of HIV-infected mothers may have 
profound effects on fetal life. HIV-associated inflammation and 
oxidative stress may adversely affect fetal growth. ART prophylaxis 
is associated with prematurity and reduced growth, but the results 
are inconsistent [70-76]. Townsend et al. demonstrated an increased 
incidence of low birth weight for women on HAART when compared 
to women on monotherapy, and additionally found that the incidence 
of premature birth among 3384 mothers treated with HAART was 1.5 
times that among 1061 mothers treated with a monotherapy or dual 
therapy regimen [77].

Protease inhibitors as part of an ART regimen may increase the risk 
of preterm delivery. Cotter et al. found that prophylactic combination 
therapy with a protease inhibitor had a higher association with 
premature birth than did monotherapy or combination therapy without 
a protease inhibitor [14]. The incidence of low-birth-weight infants 
was lower in women receiving prophylactic zidovudine monotherapy 
than it was in uninfected women, whereas women receiving ART with 
a protease inhibitor had a higher incidence of preterm deliveries [71]. 
These findings link protease inhibitors to preterm delivery; thus, ART 
prophylaxis with a protease inhibitor should be used with caution 
[78]. Another study found no difference in the incidence of preterm 
births between mothers receiving non-nucleoside reverse transcriptase 
inhibitor-based or protease inhibitor-based therapies [72]. Patel et al. 
also found that protease inhibitors were not associated with preterm 
birth [73]. 

Low birth weight (<2500 grams) and very low birth weight (<1500 
grams) are often associated with prematurity, although clinicians 
may classify infants as “small for gestational age.” Studies have 
demonstrated lower birth weights in children born to HIV-infected 
women. One study reported that infants exposed to protease inhibitor-
containing HAART had a higher risk of low birth weight than infants 
exposed to zidovudine monotherapy or HAART without a protease 
inhibitor [79]. More recent data published by Powis et al. indicated 
that the weight of HAART-exposed infants was below normal at birth 
but returned to normal during the first 6 months of life [74]. Another 
study that associated low birth weight with HAART exposure claimed 
that whether HAART affects growth retardation or is associated with 
higher rates of premature birth was unclear [80]. In an additional study 
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which reported no association between HAART and low birth weight, 
infants exposed to different multi-ART combinations did not differ 
markedly from those exposed to different protease inhibitors [81]. 

HIV infection has long been associated with below average growth 
parameters [40]. Since the advent of HAART, it is not clear whether 
antiretroviral agents independently affect growth. One study in the 
pre-HAART era reported that ART exposure contributes to growth 
failure in HIV-infected infants [75]. Weight and length were below 
normal for HIV-infected infants by age 6 months, and those on 
zidovudine had lower growth parameters [75]. Another study showed 
that HIV-infected children on HAART had reduced pre-pubertal 
height and final height, with no difference according to duration 
or type of HAART regimen [82]. Buchacz et al. reported that HIV-
infected children on protease inhibitor therapy had small incremental 
increases in height and weight and were not likely to achieve target 
final height [83]. While protease inhibitors may have a positive effect 
on growth by improving nutrient absorption and metabolism, they 
have raised concerns regarding potential adverse gastrointestinal side 
effects and loss of appetite, which may contribute to malnutrition [84]. 
Musoke et al. reported that, much like the aforementioned study on the 
effect of protease inhibitors, Ugandan children treated with HAART 
demonstrated improved weight and height within the first year on the 
regimen [85]. These results were more evident in children who initiated 
a HAART regimen at a younger age. 

Numerous nutritional deficiencies have been demonstrated 
in HIV-infected children [86,87]. Vitamin D deficiency is gaining 
attention, as recent data reveal the prevalence of low bone mineral 
density in both HIV-infected children and adults [88-90]. Though 
an association between low bone mineral density and ART has been 
suggested, current studies show conflicting results [91,92]. Jacobson 
et al. reported reduced bone mineral density in HIV-infected children 
and that nevirapine, a non-nucleoside reverse transcriptase inhibitor, 
had positive effects on bone health [88]. Other studies have shown 
that tenofovir, an NRTI, markedly reduces bone mineral density [93], 
while others could not attribute these adverse bone effects to tenofovir 
exposure [94,95]. 

HAART has improved the nutritional status of HIV-infected 
children, ending the popular media image of wasting associated with 
HIV in the pre-HAART era. Hendricks et al. examined the dietary 
patterns of HIV-infected men and reported higher than recommended 
caloric intake and weight gains that contrast the wasting in the pre-
HAART era [96]. With the prevention of opportunistic infections 
and improved immunologic status made possible by HAART, HIV-
infected children now have diets similar to those of healthy children 
and are likewise just as susceptible to the general trend of childhood 
obesity [97]. Although HAART has greatly reduced malnutrition, 
gastrointestinal dysfunction and insulin resistance are still reported 
nutritional problems in HIV-infected children [86]. HIV-infected 
children’s diet quality must be monitored to prevent added risk to 
preexisting HIV- and HAART-associated cardiovascular risks. 

Glucose metabolic disturbances are common in HAART-treated 
children. Abnormal lipid profiles and decreased insulin sensitivity 
independently associated with ART have been reported in recent 
studies [24,33,34,67]. Parakh et al. reported lipodystrophy in Indian 
children treated with World Health Organization recommended NRTI-
based HAART [98]. The antiretroviral agents in HAART regimens are 
associated with mitochondrial dysfunction in adipocytes, which may 

be the mechanism for glucose metabolic disorders and abnormal lipid 
profiles [24,65,99,100]. These metabolic abnormalities raise concerns 
for early and advanced cardiovascular risk due to HAART treatment [4].

Discussion
The use of ART has vastly improved the longevity and quality of 

life of HIV-infected individuals and has virtually eliminated perinatal 
infection. It is currently the optimal treatment for both the health of 
HIV-infected mothers and the lowest incidence of vertical transmission. 
Our results suggest that although combination ART prophylaxis has 
the most success in preventing transmission, antiretroviral agents have 
effects on fetal and postnatal life, regardless of HIV status. The ultimate 
clinical importance of these ART effects is unknown. In fact, we may be 
exchanging one disease for another—HIV for cardiovascular disease—
which poses important ethical considerations. 

In our review of the literature we found that ART exposure 
was independently associated with reduced intracardiac septal 
thickness and left ventricular mass and dimension to below-normal 
measurements [3]. Although these children also had increased left 
ventricular contractility and fractional shortening within the first 2 
years of life, this was thought to further contribute to the reduced left 
ventricular mass [3]. In other studies, these changes in left ventricular 
structure have been shown to lead to progressive cardiac dysfunction, 
which causes concern that this may be going unnoticed in the ART-
exposed child without proper follow-up [101-103].

In the pre-HAART era, zidovudine prophylaxis had no cardiac effect 
on exposed infants [45], but studies have shown that more complex 
prophylactic regimens result in reduced cardiac growth. Though animal 
models have demonstrated antiretroviral-induced mitochondrial 
damage and cardiotoxicity, it is unknown if these cardiac effects in 
humans are related to ART-associated mitochondrial dysfunction. 
The recent findings that multi-agent ART inhibits myocardial growth 
confirm the results of previous animal studies [3,19,47]. HIV-infected 
children face greater risk of cardiac morbidity and mortality as a result 
of increased left ventricular mass and decreased fractional shortening 
related to the HIV virus [104], although recent data suggests adverse 
cardiac effects may be related to ART exposure [3] (Figure 2).

Other abnormalities in ART-exposed, HIV-negative children 
include anemia, neutropenia, thrombocytopenia, lower CD4 and CD8 
T-lymphocyte counts, and increased micronucleated erythrocytes [52-
54]. Fetal HAART-exposure, in particular, is associated with markedly
lower hemoglobin levels and significant anemia [53]. Conflicting data
have been reported on the effect of ART on prematurity and birth
weight, and further evaluations are needed to determine the root causes
of HIV-related birth complications. In HIV-infected children, long-
term HAART-exposure is associated with marked metabolic disorders
[23,35,62,67].

Depending on worldwide access to antiretroviral drugs, HIV-
infected mothers have received diverse regimens to prevent vertical 
transmission. In resource-limited settings, a single-agent regimen 
is widely used because access to multi-agent ART is limited. For 
example, single-agent nevirapine is a common treatment for HIV-
positive pregnant women in Africa, and it effectively reduces perinatal 
transmission [105]. Single-dose nevirapine added to zidovudine 
prophylaxis further reduces transmission in resource-limited settings 
[106]. The Six Week Extended Dose Nevirapine study found that 
the transmission rate for single-dose prophylactic nevirapine was 
10.4%, whereas that for extended-dose was 8.9% [107]. Thus, there 
is little difference in transmission rates, and single-dose prophylactic 
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nevirapine is less harmful to HIV-uninfected infants than is an 
extended-dose regimen [107]. The complexity and duration of 
regimens may determine the level of mitochondrial toxicity. In a study 
of HIV-uninfected children exposed in utero and perinatally to NRTI-
based multi-agent ART, about half of the subjects developed benign 
hyperlactatemia [108], whereas in Cote d’Ivoire, the prevalence of 
hyperlactatemia was 13% in HIV-uninfected children of mothers 
who received short duration antiretroviral prophylaxis or single-dose 
nevirapine [109]. Since lactic acidosis is a reported result of NRTI-
induced mitochondrial dysfunction [110], these findings suggest that 
longer duration multi-agent ART prophylaxis may cause increased 
mitochondrial toxicity. 

The US President’s Emergency Plan for AIDS Relief has reported 

the effectiveness of treating HIV-infected pregnant women with 
single-dose nevirapine to avert 84% of new infections in Sub-Saharan 
Africa [111]. With a $48 billion budget, the US will provide more 
combination ART abroad to report even lower vertical transmission 
rates in 2011, but will expose an increasing number of infants to potent 
drugs [111,112]. Although less-complex prophylactic regimens present 
lower adverse mitochondrial risks, the success of three-drug ART 
prophylaxis currently demands attention. Ciaranello et al. concluded 
that in Sub-Saharan Africa, multi-agent ART should be used when 
available because the risk of mitochondrial toxicity is at least an order 
of magnitude lower than the risk of HIV infection associated with 
less-effective regimens [113]. To date, the known benefits of ART 
prophylaxis outweigh the unknown long-term risks of drug toxicity 
from fetal exposure. 

Citation: Mas CM, Miller TL, Cordero C, Dauphin D, White MB, et al. (2011) The Effects of Fetal and Childhood Exposure to Antiretroviral Agents. J AIDS 
Clinic Res S2:001. doi:10.4172/2155-6113.S2-001

 

Cardiovascular Complications in Children of HIV+ Mothers!

HIV+ children!

HIV-associated risks!

left ventricular dysfunction, 
dilated cardiomyopathy, 

inadequate left ventricular 
hypertrophy, increased heart 

rate and blood pressure!

HAART-associated effects!

alterations in left ventricular 
dimension, left ventricular 

ejection fraction, and 
increased aortic valve 

dimension!

metabolic disturbances: 
lipodystrophy, insulin 

resistance, glucose 
intolerance!

impaired ßow-mediated 
dilation associated with 

protease inhbitors!

!"#$"%&"'(&)(*+",%-("*%"./0
1"2%*34-+"

HIV- children exposed to 
antiretroviral agents!

exposed to multi-ART!

improved LV contractility 
and fractional shortening in 

the Þrst 2 years of life!

reduced LV mass, septal 
thickness, and dimension; 

impaired LV compliance and 
relaxation!

associations with speciÞc 
drug exposures, seen 4 years 

after birth!

abacavir: smaller LV 
dimension!

nevirapine: great LV wall 
thickness and more LV 

remodeling!

nelÞnavir: reduced LV wall 
thickness and aortic valve 

dilation!

exposed to monotherapy or 
single-dose prophylaxis!

zidovudine monotherapy 
had no cardiac effect !

possible mitochondrial 
dysfunction associated with 

NRTI!

5"67$"%&"'(&)(*+",%-("*%"
./01"2%*34-+"

HIV+ = HIV-positive; HIV– = HIV-negative; LV = left ventricular

Figure 2: Cardiovascular Complications in Children of HIV-Positive Mothers.



Page 7 of 10 

ISSN:2155-6113 JAR, an open access journal J AIDS Clinic Res Pharmacology of Antiretroviral Agents: HIV

With the increased cardiac, growth, and nutritional risks 
associated with ART have come additional concerns about potential 
carcinogenicity [114,115]. As a result, monitoring these patients 
long term will be necessary to understand the clinical implications 
and the mechanism of ART toxicity. The 2010 National Institutes of 
Health guidelines recommend that the follow-up of HIV-uninfected 
children exposed to ART should be extended beyond the current 
period of 18 months after birth [116]. The effects of in utero exposure 
to ART are reminiscent of the delayed effects of anthracyclines on 
childhood cancer survivors. Collaborations between oncologists and 
cardiologists in longitudinal studies on drug toxicities have greatly 
increased awareness of anthracyclines’ adverse cardiac effects and the 
discovery that the iron chelator dexrazoxane could reduce long-term 
damage [117]. A similar collaboration between clinicians of different 
sub-specialties and researchers could benefit the increasing number of 
infants and children exposed to ART early in life. 

Limitations of the review

We selected studies to examine based on their relevance to our 
specific interests and background—cardiac and growth parameters. 
Given our narrow focus, this review does not address the full scope 
of beneficial or adverse pharmacological effects of antiretrovirals in 
children. It is also possible that we overlooked studies published in 
journals that were not available on Pub Med. 

Furthermore, although we reviewed enough studies to justify a 
conclusion, not enough longitudinal clinical trials have been conducted 
on HIV-uninfected children born to HIV-infected mothers. For 
example, the clinical importance of the findings from the CHAART 
and P2C2 HIV studies cannot be determined since there are no existing 
studies on the effects of HIV and ART exposure on clinically-significant 
cardiac endpoints to corroborate recent findings. Current ongoing 
studies, such as the CHAART and Pediatric HIV/AIDS Cohort studies, 
have collected additional data that have not yet been published, and 
thus were not included in our review. 

Conclusions
Although ART is presently the most effective treatment for 

reducing vertical HIV transmission, ART medications may have long-
term adverse cardiovascular effects. The growing population of children 
who were only exposed to ART in utero prompts more rigorous and 
systematic follow-up. General pediatricians should consider evaluating 
cardiovascular risk in patients with any past exposure to HIV or ART. 
HIV-infected children who face cumulative toxicity from HAART 
should receive complete metabolic screens and lifestyle interventions 
to modify these risks.

Additionally, the standard treatment of ART prophylaxis without 
an option for HIV-positive mothers does not allow for a clear 
assessment of the benefits of a less complex prophylactic regimen. To 
determine the best treatment for both the mother and child, it may be 
useful to conduct clinical trials giving pregnant women the choice of a 
single-agent prophylaxis or of conventional ART prophylaxis. Further 
long-term prospective clinical trials are needed to understand the side 
effects of in utero exposure to antiretroviral agents and, in particular, to 
clarify the mechanism of ART-related mitochondrial dysfunction and 
cardiomyopathy.
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