ISSN: 2684-4575 Open Access

The Digital and Molecular Evolution of Cytopathology

Keiko Tanaka *

Department of Clinical Pathology, Osaka Biomedical University, Osaka, Japan

Introduction

Cytopathology is undergoing a fundamental transformation, driven by technological advancements and a deeper integration with molecular medicine. Let's break it down: the rise of digital pathology is reshaping the field by enabling remote diagnosis and consultations, which is a massive leap for accessibility and collaboration. It also sets the stage for powerful Artificial Intelligence (AI) algorithms to assist in analysis, though the practical challenges of workflow integration, validation, and navigating regulatory hurdles remain significant before widespread adoption is possible[1].

Al is no longer a distant concept but an emerging practical tool designed to screen slides, quantify biomarkers, and even suggest diagnoses, promising greater efficiency and consistency, especially in high-volume areas like cervical cancer screening[6].

This digital shift is complemented by the proven reliability of telecytology, which for over a decade has allowed pathologists to provide remote, real-time adequacy assessments for fine-needle aspirations, effectively bringing expert consultation to any location[10].

At the same time, there is a major push towards standardizing diagnostic language to ensure clarity and clinical utility. The Papanicolaou Society of Cytopathology's system for pancreaticobiliary cytology provides a clear framework that links diagnostic categories to a well-defined risk of malignancy. What this really means is that it turns a cytology report into an actionable plan, guiding clinicians on whether to pursue surgery, surveillance, or other treatments[3].

This principle is echoed in other areas. A decade after its introduction, The Paris System for Reporting Urinary Cytology has proven its value by successfully increasing the sensitivity and specificity for detecting high-grade urothelial carcinoma while reducing ambiguous 'atypical' diagnoses[4].

The Milan System for Reporting Salivary Gland Cytopathology serves a similar purpose, helping to reduce diagnostic ambiguity, particularly in the tricky atypical category, to guide surgeons toward the most appropriate course of action and avoid both under- and over-treatment[7].

Similarly, the 2023 update to The Bethesda System for Reporting Thyroid Cytopathology directly incorporates the growing role of molecular markers. It introduces new reporting categories that use molecular findings to provide a more nuanced risk stratification, moving beyond what morphology alone can offer[5].

This integration of molecular biology is a recurring theme. The latest World Health Organization (WHO) classification of lung tumors underscores that a simple morphological diagnosis is often no longer sufficient. Cytopathologists are now cen-

tral to ensuring samples are adequate for the molecular testing that determines targeted therapies, shifting cytology from a purely diagnostic tool to a cornerstone of personalized medicine[2].

This evolving role extends to new sample types and techniques. Liquid biopsy is a major new frontier, with cytopathologists analyzing circulating tumor DNA from blood samples to diagnose lung cancer, monitor treatment response, and detect resistance mutations. This minimally invasive approach places cytology expertise at the heart of dynamic cancer management[8].

Finally, procedural innovations are crucial to support these advanced diagnostic capabilities. Rapid on-site evaluation (ROSE) during fine-needle aspiration is a prime example. By having a cytopathologist assess sample adequacy in real-time, it reduces the need for repeat procedures and, most importantly, ensures enough material is collected not just for diagnosis but for all the essential ancillary molecular studies that modern patient care demands[9].

Description

The field of cytopathology is rapidly evolving, driven by a confluence of digital technology, molecular science, and a concerted effort to standardize diagnostic reporting. One of the most significant shifts is the integration of digital tools that are fundamentally changing laboratory workflows. Digital pathology enables remote diagnosis and consultations, breaking down geographical barriers and enhancing access to expertise[1]. This digital infrastructure is also the foundation for the deployment of Artificial Intelligence (AI), which is transitioning from a theoretical concept to a practical tool. AI algorithms are being developed to screen slides for abnormalities, quantify biomarkers, and improve diagnostic consistency, though their path to full implementation requires rigorous validation and integration into existing systems[6]. This technological embrace is further exemplified by telecytology, a practice that has proven its reliability over the last decade for providing remote, real-time evaluation of fine-needle aspiration biopsies, ensuring sample quality without requiring a pathologist to be physically present[10].

Alongside this technological revolution, there is a strong movement towards standardized reporting systems to improve clinical communication and patient management. These frameworks provide a common language and link cytological findings to specific risks of malignancy, creating clear and actionable reports. For instance, the Papanicolaou Society's system for pancreaticobiliary cytology allows clinicians to better stratify patients for surgery or surveillance based on well-defined risk categories[3]. The Paris System for urinary cytology has similarly demonstrated its effectiveness over the past decade by improving the detection of highgrade urothelial carcinoma and minimizing ambiguous diagnoses[4]. This trend continues with the Milan System for salivary gland cytopathology, which clarifies

T. Keiko J Surg Path Diag, Volume 7:1, 2025

difficult cases and guides appropriate surgical decisions[7], and the recently updated Bethesda System for thyroid cytopathology, which now includes new categories that integrate molecular testing for more precise risk assessment[5].

This increased focus on molecular data marks another core evolution in the field. A simple morphological assessment is often no longer sufficient for comprehensive patient care. The latest World Health Organization (WHO) classification for lung tumors, for example, is heavily influenced by molecular biology, placing the cytopathologist at the center of ensuring samples are adequate for the tests that guide targeted therapies[2]. This shift redefines cytology as a critical component of personalized medicine. The role of the cytopathologist is expanding into new diagnostic frontiers, most notably with the advent of liquid biopsy. Here, cytopathology expertise is applied to analyzing circulating tumor DNA from blood samples for cancer diagnosis, treatment monitoring, and the detection of resistance mutations, representing a minimally invasive but powerful approach to managing diseases like lung cancer[8].

To support these advanced diagnostic demands, procedural techniques have also been refined. Rapid On-site Evaluation (ROSE) has become a critical practice during fine-needle aspiration procedures. A cytopathologist's real-time assessment of sample adequacy at the time of collection confirms that the material is diagnostic and sufficient for all necessary ancillary studies. This not only improves efficiency and patient comfort by reducing the need for repeat procedures but, more importantly, ensures that a single intervention yields the maximum possible diagnostic and molecular information, making it an indispensable part of the modern diagnostic process[9].

Conclusion

Cytopathology is experiencing a significant evolution on multiple fronts. The integration of technology is a major driver, with digital pathology enabling remote diagnosis and providing a platform for Artificial Intelligence (AI) to assist in slide analysis, improving both efficiency and accessibility. This is supported by established practices like telecytology, which has proven effective for remote, real-time evaluation.

At the same time, the field is moving towards greater clarity and clinical utility through standardized reporting systems. Frameworks like The Paris System for urinary cytology, the Milan System for salivary glands, and the Papanicolaou Society's system for pancreaticobiliary cytology all aim to reduce diagnostic ambiguity and provide clear, risk-stratified guidance for patient management. These systems are also adapting to new science; for example, the updated Bethesda System for thyroid cytopathology now incorporates molecular testing into its diagnostic categories.

This reflects a broader shift where cytopathology is becoming central to personalized medicine. The role has expanded beyond morphological diagnosis to ensuring samples are adequate for crucial molecular testing, as highlighted by the latest WHO classification for lung tumors. This extends to new techniques like liquid biopsy, where cytopathologists analyze circulating tumor DNA. Procedural enhancements like Rapid On-site Evaluation (ROSE) are critical in this new land-scape, ensuring that samples collected are sufficient for both traditional diagnosis and these essential ancillary studies.

Acknowledgement

None.

Conflict of Interest

None.

References

- Matthew G. Hanna, Liron Pantanowitz, Andrew J. Evans, Luis E. De Las Casas, Vanda F. Torous, Sara E. Monaco. "The current state of digital pathology in cytopathology." Cancer Cytopathol 130 (2022):586-599.
- Irem Kilic, Sinchita Roy-Chowdhuri, Deepali Jain, Lester J. Layfield, Zubair W. Baloch. "The 2023 World Health Organization Classification of Lung Tumors: Impact of Advances in Molecular Biology and Machine Learning on Lung Cytopathology." Acta Cytol 67 (2023):437-451.
- Martha B. Pitman, Barbara A. Centeno, Lester J. Layfield, Daniel F. I. Kurtycz, Muriel W. G. Genevay, Andrew S. Field. "The Papanicolaou Society of Cytopathology System for Reporting Pancreaticobiliary Cytology: The Expected Risk of Malignancy and Diagnostic Yield for Each Diagnostic Category." Cancer Cytopathol 131 (2023):707-717.
- Momin T. Siddiqui, Güliz A. Barkan, Christopher J. VandenBussche, Eva M. Wojcik.
 "A Decade of The Paris System for Reporting Urinary Cytology: A Review." J Am Soc Cytopathol 13 (2024):15-26.
- Syed Z. Ali, Edmund S. Cibas, Zubair W. Baloch, Marc P. Pusztaszeri, Jeffrey F. Krane, Ricardo H. Bardales. "The 2023 Bethesda System for Reporting Thyroid Cytopathology." *Thyroid* 33 (2023):1039-1044.
- Andrew S. Risbud, Liron Pantanowitz, Oscar N. Reig, Richard M. Friedlander, Jeffrey L. Fine. "Artificial intelligence in cytopathology: a review of the literature and overview of a path to implementation." J Am Soc Cytopathol 11 (2022):233-243.
- Zahra Maleki, Austin C. Gable, Christopher J. VandenBussche, Marc P. Pusztaszeri, Rema A. Rao. "Implementation of the Milan System for Reporting Salivary Gland Cytopathology: A 5-Year Institutional Experience, with a Focus on the Atypical Category." Acta Cytol 67 (2023):29-37.
- Alessandra C. Schmitt, Andrea S. M. Valente, Naiara S. N. Z. e Z. Siqueira, Fabio Tavora, Luciana F. N. de A. Cavalcanti. "Liquid biopsy in lung cancer: The new frontier of molecular diagnostics for cytopathologists." Cytopathology 34 (2023):187-200.
- Zubair W. Baloch, Marc P. Pusztaszeri, Esther Diana Rossi, Tarik Tihan, Jeffrey F. Krane. "Rapid on-site evaluation of fine-needle aspiration specimens: A review of its role, utility, and current practices." *Diagn Cytopathol* 49 (2021):651-662.
- Rose C. Anton, Walid E. Khalbuss, Sara E. Monaco, Karen E. Schoedel, Liron Pantanowitz. "Telecytology for remote evaluation of fine-needle aspiration biopsy: a decade of experience in a large academic center." J Am Soc Cytopathol 10 (2021):489-497.

How to cite this article: , Keiko Tanaka. "The Digital and Molecular Evolution of Cytopathology." *J Surg Path Diag* 07 (2025):5.

Г. Кеіко	J Surg Path Diag, Volume 7:1, 2025

*Address for Correspondence: Keiko, Tanaka, Department of Clinical Pathology, Osaka Biomedical University, Osaka, Japan, E-mail: k.tanaka@osakabio.jp

Copyright: © 2025 T. Keiko This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Feb-2025, Manuscript No. jspd-25-172573; **Editor assigned:** 04-Feb-2025, PreQC No. P-172573; **Reviewed:** 18-Feb-2025, QC No. Q-172573; **Revised:** 24-Feb-2025, Manuscript No. R-172573; **Published:** 28-Feb-2025, DOI: 10.37421/2684-4575.2025.7.005