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Introduction
Cancer accounts for the most mortality in human diseases. It is 

a tremendous disaster for human beings. Thus, scientists all around 
the world have continuously devoted efforts to cancer research in 
order to find effective therapy from the beginning of last century. 
Chemotherapy has been used as the traditional cancer therapy for 
a long time. In the 1940s, the era of chemotherapy began by using 
nitrogen mustards and antifolate as drugs [1]. Even now, chemotherapy 
is still widely used for cancer patients. The mechanism of traditional 
chemotherapy is to inhibit the division of cancer cells by chemotherapy 
drugs. However, certain normal cells with rapid division would be 
inevitably influenced by chemotherapy, like hair, gastrointestinal 
epithelium, and bone marrow cells. Thus, many patients suffered 
from the consequent side effects, typically alopecia, gastrointestinal 
symptoms, and myelosuppression [2]. With the development of cancer 
research, the strategy of cancer therapy has shift sharply in the past 
decades. Together with the identification of DNA as the inherited 
material and the emergence of sequencing technology, targeted therapy 
of cancer genes has gradually become the optimal strategy of cancer 
therapeutics, such as breast, colorectal, lung, and pancreatic cancers, as 
well as lymphoma, leukemia, and multiple myeloma [2]. It is reported 
that more than 1% of genes contribute to human cancer [3]. However, 
the number of cancer genes is underestimated primarily due to the 
low-throughput sequencing technology. The whole cancer genome 
profiling is essential for the understanding of tumorigenesis and would 
also provide insight into target therapy. High-throughput sequencing 
technology is expected to decode the cancer genome. In recent years, 
the advent of next generation sequencing (NGS) technologies has 
greatly contributed to the achievement of the goal. 

As a powerful tool, the advent of NGS technologies has obviously 
accelerated the research of cancer genome. Benefited from high-
throughput advantage, rapid developments of genome-wide sequencing 
technologies and computational bioinformatics have contributed to 
the improvement of cancer research. The genetic codes can be mapped 
and studied at the whole genome level, instead of a certain genome 
region. This provides us new insights into diagnosis, prognosis and 

treatment of cancer. However, the massive amount of sequencing data 
has revealed that the complexity of cancer heterogeneity is far beyond 
our expectation. The result is different from our previous thought. 
Thus, we cannot directly use abundant information of cancer genomics 
for cancer medical applications. There is an invisible but huge gap 
between the scientific discovery and the clinical application. 

The gap is caused by the slow progress of translation from cancer 
research discovery to clinical use. There are two main reasons. First, 
the mainstream research tools of various assays lead to an incomplete 
catalog of various mutations in cancer genome. Therefore, the 
researchers’ view is limited to certain gene families or pathways. 
Researchers can not have the integrated insight based on whole 
genome scale. Thus, the explanations of mutations are possibly not 
comprehensive or correct. The complete map of cancer genome is 
extremely necessary for systematic cancer research at genome-wide 
level. Second, various mutations are not clearly understood for their 
roles in cancer development. Cancer exhibits the unique characteristic 
of heterogeneity, which is a big challenge for scientific research and 
translation. It means that the activities of oncogenes depend on cell type, 
tissue type, developmental stage and individual condition. Thus, it is 
tough to know how each causative gene contributes to the development 
and maintenance of cancer. This high complexity is a great obstacle for 
clinical application of cancer research. Accordingly, limited scientific 
discoveries can be applied for patients with the same cancer type. For a 
certain cancer type, at least hundreds of samples are required to explore 
the highly complex nature of cancer. NGS technologies have served as 
the engine to promote the clinical translation, and the gap is being 
covered by continuous progress in cancer genomics. 
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Abstract
Cancer has been investigated due to its high mortality ever since last century. Although chemotherapy has been 

traditionally used for cancer patients for a long time, the obvious side effects have prevented its further application. With 
the progress of DNA sequencing technology, targeted therapy has been developed by affecting targeted molecules 
in the signaling pathways. It could act as an alternative strategy of cancer therapeutics. In this way, cancer patients 
could undergo fewer side effects than traditional chemotherapy. In the 21st century, next generation sequencing (NGS) 
technologies have emerged to dramatically promote the cancer genome research. Recent researches have shown that 
the rapid discoveries of mutated cancer genes by NGS are potential to revolutionize cancer therapeutics. In the future, 
the development of NGS technologies is hopeful to achieve personalized therapeutics in clinic.
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In this paper, we will first review the previous techniques and 
achievements of cancer research before the advent of NGS technologies. 
Then, recent advances in NGS technologies will be highlighted to 
demonstrate the potential contribution of cancer genomics in the 
future for prevention, detection and treatment.

Cancer Research before NGS Technologies
Traditional cytogenetic study

During the cancer research in the past several decades, a variety 
of techniques were applied to investigate various cancer types. In the 
earliest stage of cancer research, the chromosome cytogenetic study of 
cancer cells was the mainstream method. By observing a population 
of cancer cells, scientists had found that cancer cells appeared to be 
apparently more unstable than normal cells. Thus, it was hypothesized 
that the tumor progression might result from acquired genetic 
variability within the original clone. These researches demonstrated the 
cytogenetic heterogeneity in human malignancies, suggesting that each 
patient may require personalized diagnosis and treatment [4]. 

According to the low resolution of cytogenetic study, chromosome 
was the preferred objective in cancer research. In 1960, the chromosome 
translocation between chromosomes 9 and 22 was revealed in Chronic 
Myeloid Leukemia (CML) cells, leading to BCR-ABL fusion gene [5]. 
Four decades later, the BCR-ABL fusion is regarded as the effective drug 
target to treat CML patients. In a word, traditional cytogenetic study 
had demonstrated the cytogenetic heterogeneity of cancer cells and the 
phenomenon of chromosomal translocation. Moreover, the type and 
extent of cancer cell aberrations were suggested to be associated with 
tumorigenesis. Thus, insights had been offered into cancer research that 
laid the basis for subsequent research and indicated the developmental 
direction in the future.

PCR-based direct sequencing study

Based on the development of cytogenetic techniques in recent years, 
the resolution of cancer genome research continuously increased. In the 
20th century, it was available to focus on the aberrant genomic regions. 
Thus, not only recurrent chromosomal rearrangements, but the first 
cancer gene was identified. In the 1980s, HRAS was identified as the 
first cancer gene, a point mutation at codon 12 in HRAS responsible 
for activation of cancer development [6,7]. The oncogenic mutation 
could induce the change from glycine to valine. Subsequently, two 
members of RAS family were identified in the next few years. KRAS [8-
10] and NRAS [11] were found to be activated in human tumors. Since 
then, RAS family genes had been the hotspot of cancer research. They 
are a set of several similar genes with similar biochemical functions. 
RAS family genes could encode small proteins with enzymatic 
GTPase activity, generally responsible for cell signal transduction. The 
signaling activation by RAS family would lead to cell proliferation and 
survival, which would function as regulatory switches governing a 
variety of cellular behaviours. Thus, the dysregulation of RAS signaling 
pathways was one of the main foundations of tumorigenesis. The 
activation mutations of RAS family genes had been found in various 
human cancers, such as colon, kidney, liver cancers. Furthermore, the 
frequency was especially high in specific tumor types. For example, 
it was observed that 90% of pancreatic cancer harbored the KRAS 
mutation [12]. In conclusion, the important roles of three cancer genes, 
consisting of HRAS, KRAS and NRAS, had attracted the attention of 
cancer researchers. 

Even though the significance of cancer gene has been acknowledged, 
it may be still underestimated due to the limitation of techniques in the 
20th century. First, the resolution of methods then was not high enough 
to identify small-scale variants. Hence, the identification of genome-
wide base substitution and small indels was not available for previous 
methods. Second, the identification was based on the primer design 
of Polymerase Chain Reaction (PCR) reaction to amplify interested 
sequences for analysis. Before the accomplishment of Human Genome 
Project (HGP), there was no comprehensive template for PCR-
based cancer research. However, the lack was covered along with the 
accomplishment of human genome draft map in 2000, which served 
as the perfect reference. After that, extensive research by targeted 
sequencing of candidate genes had been conducted in the field of 
cancer genomics, leading to the identification of some cancer genes as 
drug targets. For example, a recurrent point mutation in BRAF could 
result in the substitution from glutamic acid to valine at residue 600. 
The mutation was found to be closely associated with tumorigenesis 
and highly prevalent in malignant melanomas [13]. BRAF is a central 
transduction mediator in the RAS-RAF-MEK-ERK-MAP signaling 
pathway. Binding to RAS proteins, BRAF could transfer the upstream 
growth factor signals through its phosphylation and the subsequent 
phosphylation of downstream MEK proteins. The highly prevalent 
and recurrent characteristics of BRAF mutation in melanomas make 
it suitable for therapeutic target [14]. In 2010, eight years after its 
discovery, mutant BRAF inhibitors have been preliminarily translated 
into personalized medicine. PLX4032 (also known as vemurafenib or 
zelboraf) exhibits extraordinarily good effects in the stage of clinical 
trials. This is relatively rapid translation from cancer research discovery 
to targeted therapy. 

Targeted cancer therapy

Along with the progress of PCR-based direct sequencing and 
pathway analysis, targeted therapy has dramatically improved 
cancer therapeutics in the past more than one decade. Different 
from traditional cytotoxic chemotherapy, the mechanism of targeted 
therapy is to block the propagation of cancer cells. It is achieved by 
the interference with targeted molecules in certain signaling pathways. 
These targeted molecules are responsible for cell proliferation and 
over expressed in normal cells. According to current research, these 
pathways with the enrichment of targeted molecules mainly exist in 
solid tumors, such as lung, colorectal, and breast cancers. Furthermore, 
human epidermal growth factor receptor (HER1 or EGFR), vascular 
endothelial growth factor (VEGF) and HER2 are frequently reported 
among targeted molecules in the pathways [15,16]. The inhibition 
can be guided by blocking the binding of ligand and receptor or by 
the interference with downstream molecules [2]. As the mechanism 
described above, targeted therapies could try to avoid destroying the 
normal cells as much as possible. Thus, patients could suffer fewer side 
effects than traditional chemotherapy, such as cardiac dysfunction and 
proteinuria. Since 2000, U.S. Food and Drug Administration (FDA) 
has approved much more drugs of targeted cancer therapies than those 
of traditional chemotherapy. 

Here, a few examples of targeted cancer therapy will be 
demonstrated. As mentioned above, RAS family had been involved in 
extensive cancer research in the 20th century, especially HRAS, KRAS 
and NRAS. These three RAS genes were found to regulate the GTPase 
activity of RAS family, contributing to prevent GAP from promoting 
the hydrolysis of GTP on RAS. Among them, KRAS mutation (about 
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85%) was frequently found in tumors, with less frequency of NRAS 
(about 15%) and HRAS mutations (about 1%) [12]. With the clear 
understanding of its characteristics, KRAS is expected to be the most 
potential member in RAS family for clinical translation as a effective 
target. In the 21st century, the accomplishment of HGP is the milestone 
for human research in every aspect, including human cancer research. 
Since it can provide the genome with single base resolution, HGP 
has made great contribution to cancer research. KRAS and BRAF are 
representative examples of targeted cancer therapy. In 2000, BRAF 
was discovered to be a potential new therapeutic  target through a 
systematic genome-wide sequencing screen [13]. BRAF mutations 
were found to be mutated in 66% of malignant melanomas, but with 
the lower frequency in other cancers. A single substitution (V600E) in 
the BRAF accounted for 80% of all mutations. BRAF encodes a serine/
threonine kinase, while mutated BRAF proteins exhibit the elevated 
activity of kinase. As a downstream mediator in the RAS-RAF-MEK-
ERK-MAP pathway, mutant BRAF  could enable the proliferation of 
cancer cells without RAS function. Recently, V600E mutant inhibitors 
of BRAF were reported to be in phase 1 trials, showing good responses 
for metastatic malignant melanomas with V600E mutations [17]. 
Although recurrence is found after BRAF inhibitors therapy, further 
exploration has revealed some recurrence-associated mutations as 
potential therapeutic targets [18,19]. 

In addition to the discovery of BRAF as the therapeutic target, the 
mechanism and role of KRAS discovered in 1983 are also increasingly 
clear. KRAS is reported to be the downstream signaling mediator 
of EGFR in the EGFR-KRAS-BRAF signaling pathway. KRAS and 
BRAF in wild type could not transduce the growth signal. Thus, the 
proliferation, survival and metastasis of cancer cells are blocked. 
Oppositely, mutant KRAS and BRAF would activate the signaling 
pathway. KRAS is currently treated as a marker of clinical testing for 
patients with lung or metastatic colorectal cancer. It is used to evaluate 
the response to anti-epidermal growth factor receptor (EGFR) therapy. 
The choice of drug in EGFR-targeted therapy is dependent on the result 
of KRAS testing, which serves as a predictive and prognostic indicator 
[20-23]. For example, for metastatic colorectal cancer with EGFR 
mutation, cetuximab and panitumumab are totally useless for mutant-
KRAS patients. However, they exhibit higher treatment rate and longer 
survival time for wild-KRAS patients [21,22]. Likewise, for non-small 
cell lung carcinoma (NSCLC), the effect of erlotinib is better for wild-
KRAS patients than mutant-KRAS ones [23]. RAS family genes are 
involved in different pathways. And frequent mutations of them are 
found in human cancers. Thus, RAS family genes are regarded as the 
crucial contributor in tumorigenesis, as well as the targets of many 
anti-cancer therapies. 

Along with technique advances in the 21st century, research 
methods show higher resolution than previous cytogenetic method. In 
this way, many novel cancer genes have been detected by investigating 
in the regions with recurrent copy number variation [3,24]. 
Furthermore, gene fusions caused by chromosomal rearrangements 
have been identified to be more than 300 [25]. Gene fusions are found 
widely distributed in human malignancies, not only hematopoietic 
malignancies [26], but also some solid tumors, e.g. lung and prostate 
cancers [27,28]. It is reported that gene fusions are presented in all 
malignancies, accounting for 20% of human cancer morbidity [25]. 
According to the high prevalence, gene fusions have been recognized 
as a diagnostic and prognostic indicator. It is proven by accumulated 
evidence in the initiation stage of tumorigenesis. Imatinib (also 
known as Gleevec or Glivec) is an excellent example to illustrate the 

role of gene fusion in targeted cancer therapy. As one of the specific 
inhibitors in targeted therapy, imatinib has been approved by FDA 
in 2001 to effectively treat CML by inhibiting BCR-ABL tyrosine 
kinase [29]. BCR-ABL is originated from Philadelphia chromosome 
translocation that fuses BCR sequences on chromosome 22 to ABL 
genes on chromosome 9 [5]. Since the chromosomal abnormality 
was found to be present in almost all CML patients, 98% patients 
showed completely good hematologic response to imatinib therapy 
[30,31]. In 2002, imatinib has also been approved by FDA to treat 
gastrointestinal stromal tumors (GISTs). Besides BCR-ABL, imatinib 
could also inhibit other targets, e.g. c-kit and Platelet-Derived Growth 
Factor Receptor (PDGF-R). Now, imatinib has been used for several 
kinds of cancers and diseases, e.g. hyper eosinophilic syndrome and 
dermatofibrosarcoma protuberans [32].

In addition to drug targets mentioned above, the effectiveness 
of targeted therapy relies on drug dose. Drug overdose could lead to 
toxicity. Thus it is partially responsible for the side effects of targeted 
therapy. It is reported that optimal drug dose can be determined by 
assessing the dynamics of pharmaceutical treatment, e.g. the levels of 
circulating tumor cells and endothelial cells or the serial level of target 
molecules in tumor tissue [2,33-35]. How to choose the drug dose of 
targeted therapy is a challenge for cancer researchers. It is expected to 
be solved with the advances of technologies in the future. 

Cancer pathway study

A large set of candidate cancer genes (CAN genes) have been 
identified based on previous researches. And there is heterogeneity for 
CAN genes. CAN genes would even differ between two tumors within 
the same type. However, the pathway analysis so far has suggested 
that signaling pathways are more responsible for tumorigenesis than 
individual cancer gene. Although many CAN genes have been revealed 
in the past decades, the number of dysregulated signaling pathways 
is reported to be limited in cancers [36]. The variety of CAN genes 
could function through the few signaling pathways. For example, the 
aberration of WNT signaling pathway is found to be associated with 
colorectal cancer as well as breast cancer. However, the causative cancer 
genes are diverse in the two cancer types. Specifically, the adenomatous 
polyposis of the colon (APC) gene in the WNT pathway could induce 
colorectal cancer with high frequency of mutations. In breast cancer, 
WNT pathway is activated by the stabilization of β-catenin that is a 
downstream component of WNT pathway [37]. The phenomenon 
indicates the importance of signaling pathways in the contribution 
to tumorigenesis. Mutations in any component of signaling pathways 
would lead to the similar dysregulation effects for tumorigenesis.

The example of WNT pathway in both colorectal and breast cancers 
mentioned above demonstrates the involvement of one signaling 
pathway in several cancer types. Since many CAN genes are enriched 
in the signaling pathways, the tumorigenesis of various cancer types 
is often induced by the dysregulation of common signaling pathways. 
For example, it is revealed that several dysregulated signaling pathways 
in glioblastoma multiforme are also associated with pancreatic, 
colorectal and breast cancers. In addition to the common pathways, a 
few specific pathways in the glioblastoma multiforme would act as ion 
channels in nervous system-specific cellular pathways. However, the 
proliferation of cancer cells in these cancer types are mainly controlled 
by the common pathways, which are responsible for cellular growth, 
apoptosis and adhesion [38,39]. Thus, it seems that the dysregulated 
signaling pathways rather than individual cancer gene would dominate 
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the tumorigenesis. The inspiration has prompted the researchers to 
focus on signaling pathways, rather than individual mutant genes.

Generally, only the genome-wide screening of cancer genome can 
identify all CAN genes in a certain cancer type. Thus, the information 
of genome-wide screening is required to analyze the contribution of 
pathways to tumorigenesis. Although the achievement of HGP has 
significantly improved the cancer research, the high cost and low 
capacity of direct sequencing technology in the 21st beginning cannot 
meet the requirement of cancer pathway study. Thus, high-throughput 
NGS is critical to decode the genomes of various cancer types and 
analyze the oncogenic signaling pathways. 

Cancer Research with NGS Technologies
Next generation sequencing era

The appearance of numerous cancer patients each year requires a 
time and cost-effective method for clinical application. The problem is 
expected to be solved with the advent of NGS technologies, due to the 
advantages of  massively parallel sequencing and high-throughput data 
output. In 2008, the first comprehensive cancer genome was generated 
through whole geonome sequencing (WGS) of acute myeloid leukaemia 
(AML) [40]. This suggests that cancer genome research has entered into 
the NGS era. By sequencing the genomic DNA of a typical AML-M1 
tumor and the matched normal skin from the same patient, ten genes 
with acquired mutations were discovered. Among them, eight SNVs 
were new mutations in almost all tumor cells at present and relapse 
11 months later. The research revealed a single dominant clone in the 
patient including all the mutations, and demonstrated the power of NGS 
to reveal novel genes that might respond to targeted therapies. Inspired 
by the above results, several whole genome sequencing researches on 
AML were subsequently conducted. And these researches had led to 
the discovery of novel isocitrate dehydrogenase 1  (IDH1), isocitrate 
dehydrogenase 2 (IDH2), DNA methyltransferase 3a (DNMT3A) and 
TP53 mutations as AML-associated cancer genes [41-44]. However, 
the clinical features of these mutations remained unclear. Then, 
other researchers continued to investigate their prognostic impact on 
AML [45-47]. It was found that IDH1 and IDH2 mutations were 
poor prognostic factors for  cytogenetically normal  AML (CN-AML) 
patients [45,46]. But, the screening of IDH1 mutations could be used 
for risk stratification to identify the CN-AML patients with high-risk 
[47]. The results of researches on the same cancer type suggest that the 
known cancer genes are limited. And more causative cancer genes still 
remain to be discovered than those known ones. 

With the wide application of NGS technologies, a series of cancer 
genome researches has been conducted on many other cancer types, 
such as colorectal cancer, lung cancer, breast cancer, hepatocellular 
carcinoma, etc (Table 1). The comprehensive information of the large-
scale cancer genome sequencing has revealed the catalogue of cancer 
mutations, which would lead the diagnosis, prognosis and treatment of 
cancer into the NGS era.

The catalogue of cancer mutations

These foregoing cancer genome researches have revealed the 
comprehensive catalogue of somatic mutations in individual cancer 
genome, including single nucleotide variation (SNV), indels, copy 
number variation (CNV) and structural variation (SV) [48]. As the 
cost of NGS decreases dramatically in recent years, thousands of whole 
cancer genomes have already been sequenced. These comprehensive 

researches of diverse cancer genomes have offered us the first insight 
that the landscape of somatic mutations could be categorized into 
driver and passenger mutations [49]. Driver mutations could confer 
the growth advantage to cancer cells, allowing them to be out of 
control in the cell proliferation, differentiation and apoptosis. Thus, 
driver mutations can enable cancer cells to grow in primary tissues 
and metastasize to the surrounding tissues. Although the cancer in the 
final stage may not carry them, driver mutations have absolutely played 
an important role in the cancer development. And the rest mutations 
are passenger mutations, conferring no growth advantage to cancer 
cells. So far, the majority of mutations in individual cancer genome 
are passenger mutations [50-53]. From the view of evolution, cancer 
would arise as the accumulated driver mutations in cancer cell clones 
with cell division [48]. 

Due to the central role of driver mutations in tumorigenesis, the 
key challenge is to distinguish the type and number of novel driver 
mutations from the numerous mutations in the cancer genome research 
by NGS. On one hand, there are other types of mutations except 
common point mutations. For example, the large-scale structural 
variations induced by chromosomal rearrangements remain relatively 
unfrequent and unexplored. Although the presence of chromosomal 
abnormality has been revealed by early cytogenetic study before [5], 
the prospect of chromosomal rearrangements has gradually become 
clear by the recent NGS-based cancer genome researches [54]. Many 
somatically acquired  genomic rearrangements are found in human 
cancer genome. They have obviously distinct pattern from germline 
rearrangements. On the other hand, individual cancer differs in the 
number of mutations. For point mutation, some cancer genomes 
have more than 100,000 while fewer than 1,000 reside in others. For 
somatically acquired rearrangements, some cancer genomes exhibit 
numerous while others contain only few [48]. Now, it is unable to 
explain the pattern of somatic mutations with low frequency. But, 
another pattern of highly prevalent somatic mutations is reported to 
be probably caused by exposure to environmental carcinogens, as well 
as DNA repair defects [49]. For example, ultraviolet light  exposure 
has been recognized to enhance the risk of malignant melanoma, 
while tobacco carcinogens can induce lung cancer [51,52]. Other 
mechanisms underlying the opposite patterns of somatic mutations in 
human cancers still remain to be investigated. 

The solution to solve the challenge of identifying driver mutation 
is dependent on the integration of bioinformatic analysis and large 
sample size. Although NGS technologies have enabled the discovery 
of many driver mutations in cancer genes, most of them are low-
frequency mutations with no significance in clinical use. Due to the 
heterogeneity of cancer, at least hundreds of samples are required to 
identify cancer genes as the effective biomarkers. They might be used 
for clinical application on a particular cancer type. Meanwhile, the 
large-scale cancer genome research will generate a mass of sequencing 
data to deal with. Thus, strong bioinformatics software is required to 
filter errors with unbiased strategies to utilize useful sequencing data. 
Then, it is necessary to conduct the follow-up functional study of the 
identified cancer genes. So they could be confidently used for clinical 
application. In general, extensive efforts must be done to identify the 
effective driver mutations in clinic.

Somatic mutations in metastases

Metastasis refers to the fact that tumors would be found in other 
organs beyond primary tumor tissue ever since years of diagnosis. As 
an extremely complex process, it is always a major obstacle in cancer 
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Renal Carcinoma Varela I, Tarpey P, Raine K, Huang D, Ong CK, et al. (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex 
gene PBRM1 in renal carcinoma. Nature 469(7331): 539-542.
Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, et al. (2010) Systematic sequencing of renal carcinoma reveals inactivation of 
histone modifying genes. Nature 463(7279): 360-363.

Gastric Cancer Holbrook JD, Parker JS, Gallagher KT, Halsey WS, Hughes AM, et al. (2011) Deep sequencing of gastric carcinoma reveals somatic 
mutations relevant to personalized medicine. J Transl Med 9:119.
Zang ZJ, Ong CK, Cutcutache I, Yu W, Zhang SL, et al. (2011) Genetic and Structural Variation in the Gastric Cancer Kinome Revealed 
through Targeted Deep Sequencing. Cancer research 71(1): 29-39.

Pancreatic Cancer Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, et al. (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in 
pancreatic neuroendocrine tumors. Science 331(6021): 1199-1203.
Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, et al. (2010) The patterns and dynamics of genomic instability in 
metastatic pancreatic cancer. Nature 467(7319): 1109-1113.
Yachida S, Jones S, Bozic I, Antal T, Leary R, et al. (2010) Distant metastasis occurs late during the genetic evolution of pancreatic 
cancer. Nature 467(7319): 1114-1117.

Leukemia Link DC, Schuettpelz LG, Shen D, Wang J, Walter MJ, et al. (2011) Identification of a novel TP53 cancer susceptibility mutation 
through whole-genome sequencing of a patient with therapy-related AML. JAMA 305(15): 1568-1576.
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, et al. (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 
363(25): 2424-2433. 

Table 1: The list of some cancer genome researches by NGS application on many cancer types since 2010.
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therapy. According to cancer genome research, metastasis is originated 
from somatic mutations in the primary cancer cell clones under the 
selective pressures of microenvironment [48]. When the cancer cell 
clones continue to disseminate and adapt to the microenvironment 
of a distant tissue, the minority of cancer cells would colonize to 
the metastatic site. During the process of clonal expansion, a driver 
mutation from the primary cancer cell clone will establish the 
dominant subclone. Then, the dominant subclone would further form 
a minor subclone containing another driver mutation. The emerging 
driver mutation from the minor subclone would continually give rise 
to the next dominant subclone (Figure 1). Thus, there is a complex 
evolutionary history in the cancer with multiple clonal expansions. 

By analyzing driver mutations along the process of clonal 
expansion, it is able to reconstruct the evolutionary tree of individual 
cancer from complex subclonal structure [55]. This is confirmed by a 
recent cancer research based on NGS. Compared with primary basal-
like breast tumour, the differential frequencies of mutations, as well as 
the patterns of structural variations, in metastasis and xenograft have 
been revealed. The result further indicates the distinct characterization 
of metastatic tumour [56].  For colorectal  cancer, KRAS mutations 
seem to be associated with lung metastasis in patients  [57]. These 
findings highlight somatic mutations as the potential biomarker to 
treat the metastatic cancers. However, the clinical application still 
requires extensive researches. The advent of single cell sequencing 
technology based on NGS is able to demonstrate the genetic diversity 
within cancer cell clones at the resolution of single cell [58]. Based on 
the subclones information from single cell sequencing technology, the 
process of cancer metastasis could be precisely reconstructed. Thus, it 
is expected to reveal the subclones carrying metastatic mutations and 
identify the clinical biomarker for metastasis treatment by single cell 
sequencing technology.

The Prospect of Personalized Therapeutics by NGS 
Patients have benefited a lot from targeted cancer therapy and 

consequently avoided the harmful side effects of previous cancer 
therapies such as chemotherapy. However, a large subset of patients 

still suffers from a certain cancer type, since they don’t have good 
response to targeted cancer therapy. If each patient is expected to be 
cured, it is critical to shift the therapeutic strategy from targeted therapy 
to personalized therapeutics. To achieve the goal, it is necessary to 
identify specific biomarkers for each subset of patients. The increased 
understanding of cancer genome by NGS has laid the underlying basis 
for personalized therapeutics. Thus, NGS technologies provide the 
possibility to develop the special clinical test for each individual so as 
to achieve personalized therapeutics. Generally, correct diagnosis is the 
first and critical step for good therapeutic response. As the first step of 
personalized therapeutics, it is most potential to identify individually 
diagnostic biomarkers for prevalent cancer types. Such biomarkers can 
solve the problem of high false positive in diagnosis, which is originated 
from traditional methods, e. g. histopathology. 

Blood is very suitable to serve as the source of personalized 
therapeutics because it is easy and noninvasive to obtain from 
individuals. Circulating tumor cells (CTCs) in peripheral blood from 
cancer patients, identified in a wide range of malignancies, has already 
been used as the biomarker for diagnosis and prognosis [59,60]. 
CTCs have been found in solid tumors, such as prostate and lung 
cancer [61,62]. Cancers could give rise to CTCs that are central to the 
establishment of metastasis. The presence and prognostic significance 
of CTCs have been highlighted by recent researches in the patients 
with metastatic cancers [62,63]. These researches have demonstrated 
that CTCs are very promising as the prognostic biomarker. However, 
the sensitivity of CTCs is limited for common capturing methods by 
single marker. Thus, CTCs have limited availability as the diagnostic 
biomarker for early-stage cancers. But, the multimarker method could 
capture CTCs. It seems to potentially improve the availability of CTCs 
as the diagnostic biomarker. A recent research has demonstrated a 
three-marker method (CK19, hMAM and CEA) to detect CTCs in 
the patients with breast cancer [64]. The sensitivity of CTCs in early-
stage breast cancer reached 58.8%, showing the higher sensitivity of 
multimarker than single marker. Even if this is an obvious progress, 
the sensitivity is still not high enough in clinic. Recent researches 
have showed that NGS technologies are very promising in developing 
accurate clinical testing for personalized therapeutics [65,66]. The 
possibility of detecting CTCs in peripheral blood shows its potential of 
clinical use in personalized therapies. It could serve as the evidence of 
early-diagnosis and prognosis. If cancer genome sequencing gradually 
becomes affordable with decreasing price, NGS will greatly improve 
the personalized therapeutics. Other types of cancer-derived DNA in 
blood or body fluids, together with the development of more sensitive 
methods, are also expected to be identified by NGS technologies as 
effective biomarkers in personalized therapeutics.

Certain cancer genes have already been used to diagnose early-
stage cancer patients and predict their response to therapies. Thus, 
the testing of specific mutant genes has already entered into the 
stage of clinical trials. However, the final purpose of cancer genome 
research is to identify all mutated genes in each cancer type for 
diagnosis, prognosis and treatment. Now, the clinical application is 
only restricted to prevalent cancer types and the limited cancer genes. 
It is still a long way to achieve personalized therapeutics for various 
cancer types in clinic. To accelerate the discovery of individualized 
biomarkers and achievement of personalized therapeutics, scientists 
with professional cancer research knowledge in the universities and 
institutes should collaborate with the clinicians in hospitals providing 

 Figure 1: The cancer cell clones in primary stomach tumor (a), metastatic liver 
tumor (b) and metastatic esophagus tumor (c). The main tumor subclones are 
marked in yellow. The different level of yellow in primary and metastatic tumors 
means the genetic diversity within the subclonal. The red represents the domi-
nate subclone whereas the other color means the minor subclones. The figure 
indicates that metastatic tumour may arise from the cells within the primary tu-
mour. 
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sufficient tumor tissue samples, as well as organizations offering NGS 
service. For example, the largest genome center in the world, Beijing 
Genomics Institute (BGI), has announced in the 6th international 
conference on genomics that four thousand of cancer genomes have 
been sequenced in 2011. With collaborations of worldwide scientists, 
more cancer genomes are supposed to be sequenced in the coming 
several years. Furthermore, it is also essential to constitute the global 
cancer research association for international collaboration. In 2010, 
International Cancer Genome Consortium (ICGC) was launched 
to coordinate global collaborators to conduct research projects of 
50 different cancer types and/or subtypes with clinical and societal 
importance around the world [67]. The primary goals of the ICGC 
are to generate comprehensive catalogues of genomic abnormalities 
by NGS technologies and make the data available to the entire 
research community for clinical application. It is expected that more 
international collaborations will promote the early achievement of 
personalized therapeutics. The complete set of causative cancer genes 
in each cancer type is hopeful to be identified in the near future. Their 
roles in tumorigenesis are also expected to be interpreted clearly. In 
this way, cancer genome sequencing will become a routine clinical 
testing for individuals to achieve personalized therapeutics. 
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