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History of Gene Editing 
Gene editing technology is a new tool that can be used to introduce 

targeted modifications into the genome. Currently, there are three 
well-defined technologies for gene editing: Zinc Finger Nucleases 
(ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), 
and Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) 
with CRISPR-associated (Cas) nucleases. Each of these systems is 
characterized by an adaptable sequence-specific DNA binding domain 
and a nuclease domain that creates a double-strand cleavage. The site-
specific DNA binding domains of the ZFN and TALEN systems are 
based on chimeric protein, whereas the CRISPR- Cas system utilizes 
an RNA molecule. 

ZFN technology represents the first generation of engineered 
nucleases for genome editing. ZFNs consist of an engineered Zinc 
Finger Peptide (ZFP) fused to the cleavage domain of the FokI 
restriction enzyme. The engineered DNA binding protein domain 
specifically localizes the ZFN at a predetermined location in the 
genomic sequence of interest and facilitates targeted genome editing 
by creating double-strand cleavage by the catalytic domain of the 
FokI endonuclease. ZFNs have relatively low resolution in unique 
sequence recognition and hence low specificity. This is partly because 
the ZFP region contains a tandem array of Cys2-His2 zinc fingers, 
and each motif (finger) recognizes 3 base pairs (bp) of nucleotides [1]. 
Thus, unique target sequence recognition in the eukaryotic genome is 
difficult. Over time the method has been improved considerably. For 
example, to improve the DNA binding specificity of ZFN, the array 
of fingers in the ZFP has been optimally increased from three to six to 
bind an 18 bp target, which enables the ZFN dimers to specify 36 bp of 
DNA per cleavage locus [2]. Even with this improvement, however, the 
tool remains inefficient and may confound biological interpretations. 

TALENs, the second generation of genome engineering nucleases, 
were discovered in 2010 [3] and gained rapid momentum among 
researchers because these nuclease molecules permit more predictable 
and specific binding to target DNA [4]. A TALEN has two functional 

domains: a transcription activator-like effector domain, which is an 
oligopeptide array of modules (each module constitutes 33~35 amino 
acids) from the bacterium Xanthomonas spp., and a cleavage domain 
of FokI nuclease. Because there are four different modules, one for each 
nucleotide base, constructing customizable sequence-specific TALENs 
is a convenient method to target nearly any sequence of interest [5,6]. 
TALENs function as obligate heterodimers in which each monomer 
binds 15-20 bp of DNA that flank a 12-24 bp spacer region. Target 
DNA sequence recognition occurs in the central domain of the tandem 
repeats. Compared with ZFNs [7], TALENs are easy to manufacture, 
several times cheaper, and functionally better than ZFNs. However, 
because TALENs are much larger molecules than ZFNs, efficient 
delivery into the cell may be difficult. 

CRISPR together with Cas proteins form the CRISPR-Cas system 
[8], which is the newest gene editing method. CRISPRs constitute a 
family of short DNA repeats that are important components of the 
adaptive immune system in bacteria and archaea. These elements 
protect the microbes against various viral invasions. Cas proteins 
have functional domains that are similar to nucleases, helicases, 
polymerases, and polynucleotide-binding proteins [9]. Originally, the 
CRISPR-Cas system was divided into eight subtypes [9]. However, a 
new system is introduced because the previous classification did not 
take into consideration the distant relationships between various Cas 
proteins [10]. In this new classification, the CRISPR-Cas system is 
divided into three different types. The type I and III systems involve 
the specialized Cas endonucleases which process the pre-crRNAs 
and once mature, the crRNA will assemble into a large Cas protein 
complex. The complex is capable to recognize and cleave nucleic acids 
complementary to the crRNA [11]. The type II, which discuss here, 
CRISPR-Cas9 system is characterized as a small RNA-based immune 
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Abstract
The CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats with CRISPR-associated protein 

9) system is a genome editing system that is easy to design, highly specific, efficient, robust, and well suited for high-
throughput and multiplexed gene editing for a variety of cell types and organisms. In this review we describe current 
applications of this new system, which is growing in popularity and is increasingly being employed to selectively 
control gene expression on a genome-wide scale. 
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system of bacteria and archaea [8], and recently it was developed for 
efficient genome engineering [12,13]. Cas9 is an RNA-guided DNA 
nuclease enzyme that provides an effective means of introducing 
targeted loss-of-function mutations at specific sites in the genome 
[12,14] by generating DNA Double Stranded Breaks (DSBs) at specific 
genomic loci. This system is easy to design, highly specific, efficient, 
and well-suited for high- throughput and multiplexed gene editing for 
a variety of cell types and organisms [15]. 

An engineered single guide RNA (sgRNA) containing a CRISPR 
RNA (crRNA) and a partially complementary trans-activating RNA 
(tracrRNA) are necessary and sufficient for genome editing [12]. The 
first 20 nucleotides located at the 5’-end of sgRNA, called the spacer, 
direct the Cas9 nuclease to the complementary 20 nucleotides of the 
target sequence, where they hybridize. A highly conserved secondary 
structure downstream of the spacer, called the protospacer, in the 
presence of a short nucleotide motif (known as the Protospacer 
Adjacent Motif (PAM)) (Figure 1) must be recognized by the CRISPR-
Cas9 nuclease complex before cleavages occurs [13-16]. The CRISPR-
Cas9 system’s potential to target genomes appears to require only a 
PAM sequence (NGG). This simplicity makes it a cutting edge genome 
editing tool. 

Processes in Genome Editing 
Developing a genome editing tool requires engineering 

endonucleases that can create highly efficient and accurate DSBs at 
a user defined location in the genome and subsequently activate the 
cellular pathways involved in DSB repair processes via Homologous 
Recombination (HR)-mediated gene repair or Non-Homologous End 
Joining (NHEJ). HR uses homologous DNA sequences as templates for 
precise repair. It involves strand invasion and requires a homologous 
DNA template to precisely edit a genomic sequence or insert 
exogenous DNA that results in gene knock out or gene knock in. NHEJ 
is an error-prone ligation process that results in small insertions or 
deletions (indel mutations). This process involves the re-ligation of the 
two broken ends at the cleavage sites and is catalyzed by DNA ligases 
[16,17]. Indel generation is exploited as a convenient method for gene 
silencing (knock-out mutation). CRISPR is capable of modifying the 
chromosomal target by indel mutations at high frequency [18]. In 
addition, CRISPR-Cas9 allows the simultaneous targeting of several 
sequences for multiplexed gene editing [14,19] and has the potential 
for gene replacement by concurrently targeting the sequences upstream 
and downstream from a given locus [20]. 

The CRISPR-Cas system is a prokaryotic immune system. The type 
II CRISPR-Cas9 system is widely used for efficient genome editing 
[14,19,21-23] and the establishment of gene silencing [24]. When in 
complex with sgRNA (Figure 1), Cas9 introduces DSBs in a target 
sequence that is homologous to the spacer moiety of crRNA [11]. The 
generation of DSBs in the target DNA initiates the genome editing 
process. Chromosomal DSBs trigger DNA repair either by HR or 
NHEJ in the absence of a homologous repair template (Figure 2). These 
repair systems can be harnessed for genome editing [25]. 

Genome-scale CRISPR knock-out screening 

Recent progress in modifying CRISPR has led to extremely efficient 
gene disruption in many model organisms [12, 19,26-28]. For example, 
the generation of gene encoding serine threonine kinase ROP18 knock 
outs in the type 1 GT1 strain of Toxoplasma gondii using CRISPR-
Cas9 extends reverse genetic techniques to diverse isolates of T. gondii 
[29]. Chen et al. initially demonstrated that DSBs can be engineered 

at precise locations in the Caenorhabditis elegans genome by injecting 
the CRISPR-Cas9 complex, resulting in gene knock out [30]. DSBs also 
can be used for transgene- instructed gene conversion and allow for the 
systematic study of gene function in this widely used model organism 
[30]. 

High rates of mutagenesis efficiency (75-99%) have been reported 
when testing one homozygous egfp reporter gene and four endogenous 
loci in zebra fish [31]. These five genomic loci can be targeted 
simultaneously, resulting in multiple loss-of-function phenotypes in 
the same injected fish, which in turn support multiple biallelic gene 
inactivations [31]. Similarly, the simultaneous disruption of five 
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Figure 1: CRISPR-Cas9 target recognition. In the CRISPR system, a sgRNA 
(containing a CRISPR RNA (crRNA) and a partially complementary trans-
activating RNA (tracrRNA) is essential for RNA processing and for recognition 
by Cas9 (CRISPR- associated protein 9). Cas9 is a RNA-guided, dsDNA binding 
protein that uses a nuclease to cleave both strands of target DNA. Cas9 relies 
on the PAM site and base pairing with the sgRNA and the target DNA.
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Figure 2: Genomic double stranded DNA breaks (DSBs) are repaired by 
Homologous Recombination (HR) or Non-Homologous End Joining (NHEJ). 
HR relies on a donor template that can be used to deliver foreign DNA at a 
specific location. NHEJ is prone to errors, resulting in indel mutations (insertions 
or deletions) that disrupt the target site.
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genes (Tet1,2,3, Sry, Uty-8 alleles) in mouse embryonic stem cells was 
observed when CRISPR-Cas- mediated gene editing was employed. 
Further co-injection of Cas9 mRNA and sgRNAs targeting Tet1 and 
Tet2 into zygotes generated mice with biallelic mutations in both genes 
with an efficiency of 80%. This shows that CRISPR-Cas9 is highly 
efficient at simultaneous targeting of multiple genes in stem cells and 
mice [19]. 

In another study, the eyeless gene in Daphnia magna was knocked 
out using CRISPR- Cas, suggesting that it is a useful marker gene in this 
system [32]. The CRISPR-Cas9 system also has been used to generate 
stable knock-out cell line models in human endometrial cell lines [33], 
human myeloid leukemia cells [34], and human melanoma cells [35] 
for genetic screening. These findings suggest that the knock-out cell 
line models generated by the CRISPR-Cas9 system could be used to 
complement mouse knock-out models, which will offer a new strategy 
for investigating the function of genes in differentiated cells and tissues. 
For example, studies of the disruption of four genes (ApoE, B2m, Prf1, 
and Prkdc) in rats by co-injection of Cas9 mRNA and sgRNA into one-
cell fertilized eggs demonstrated the potential of the CRISPR system to 
efficiently and reliably generate gene knock-out rats [36]. Furthermore, 
RNA guided endonucleases (RGENs) containing Cas9 protein and 
sgRNA complexes efficiently induced mutations in the mouse Prkdc 
gene in up to 93% of newborn mice with minimal toxicity [37], which 
suggests CRISPR-Cas9-mediated mutagenesis in animals model has 
been achieved. 

Genome-scale CRISPR knock-in screening 

Knock-in methods rely on HR between engineered DNA and a 
targeted locus. This approach enables proteins to be modified at specific 
loci and to generate fluorescent protein fusions [30,38]. Homologous 
repair of Cas9-induced DSBs has been demonstrated in multiple 
organisms [38-40]. For example, CRISPR-Cas9-mediated knock-in of 
DNA cassettes into the zebra fish genome at predetermined target sites 
occurred at a very high rate via homology-independent DSB repair 
pathways [20]. 

DiCarlo et al. demonstrated high frequencies of oligonucleotide 
recombination with a transient gRNA CRISPR system in yeast [39]. They 
showed that co-transformation of a gRNA plasmid and a donor DNA in 
cells resulted in almost 100% donor DNA recombination frequency. In 
addition, CRISPR-Cas9 achieved knock in to destabilization domain-
tag the essential gene Treacher Collins-Franceschetti syndrome 1 in 
human 293T cells, leading to rapid modulation of protein levels in 
mammalian cells [40]. 

Gratz et al. reported that a 50 nucleotide modification was 
successfully introduced into the yellow locus by Cas9-induced HR 
in Drosophila [41] by co-injection of Cas9 mRNA, gRNAs against 
yellow and single-stranded oligos as donor DNA for recombination. In 
another study, Xue et al. used the Cas9 transgenic system to generate 
knock-in mutations in Drosophila by insertion of a large piece of 2 kb 
heterologous DNA aided by the use of a visible marker [42]. 

CRISPR Advanced Gene Therapy 
Xie et al. used CRISPR-Cas genome editing technology to correct 

disease-causing mutations in cells from beta-thalassemia patients; the 
correction in human induced pluripotent stem cells restored normal 
function and provided a rich source of cells for transplantation [43]. 
Ebina et al. reported that CRISPR aimed at disrupting HIV-1 provirus 
may be capable of eradicating viral genomes from infected individuals 
by editing the HIV-1 genome and blocking its expression. They found 

that the CRISPR- Cas9 system is able to remove internal viral genes 
from the host cell chromosome [44]. Zhen et al. recently demonstrated 
that the CRISPR-Cas9 targeting promoter of human papillomavirus 
oncogenes (E6 and E7) resulted in accumulation of p53 and p21 
proteins and markedly suppressed the proliferation of cervical cancer 
cells in vitro and in vivo [45]. 

In another study, a dominant cataract-causing mutation in the 
Crygc gene in mice was corrected using CRISPR-Cas9, thereby 
demonstrating the potential of this system for efficient correction of 
a genetic disease [46]. The CRISPR-Cas9 genome editing system also 
has the potential to repair the cystic fibrosis transmembrane conductor 
receptor locus by HR in cultured intestinal stem cells of cystic fibrosis 
patients [47]. Long et al. [48] recently used the CRISPR-Cas9 gene 
editing system to correct the dystrophin mutation in developing mdx 
mice; a model for in Duchenne Muscular Dystrophy (DMD) suggests 
that CRISPR-Cas9 gene therapy might work in animals. The corrected 
cells may ultimately generate many healthy muscle fibers where this 
strategy may one day allow correction of disease-causing mutations in 
the muscle tissue of patients with DMD [48]. 

Concluding Remarks and Future Directions 
The simplicity of programming CRISPR-Cas9 has contributed to 

its rapid implementation in genome engineering. Its use has resulted 
in rapid generation of genome-scale knock-out libraries for complex 
model systems, including human cells and animal disease models, and 
it has potential for use in ex vivo gene therapy in humans. Nevertheless, 
the CRISPR system may have limitations that have yet to be identified. 
The delivery and specificity of the gRNA is still not fully understood. 
Hence, the effectiveness of the CRISPR delivery system must be 
measured and further validated in order to utilize this system as a safe 
and reliable tool, especially in the treatment of human diseases. 
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