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Abstract

The HIV-1 epidemic continues around the world, but also in the United States where we continue to see
approximately 50,000 new diagnosis of HIV-1 infection each year. It is estimated that there are currently more than
1.2 million individuals in the United States living with HIV-1 infection, with 12.8% unaware of their infection. Effective
therapy for HIV-1 is allowing infected individuals to have greater life expectancies. We now have an older aging
population infected with HIV-1, reaching ages where diseases such as malignancy are increased in incidence. Even
compared to age matched peers there is clearly an excess of malignancies affecting the HIV-1-infected population.
Malignancies are now the most common cause of death for patients in the United States living with HIV-1 infection.
B-cell malignancies are the most common malignancy accounting for death in HIV-1 infected patients in the United
States. It is not clear that all that we have come to understand regarding B-cell lymphomas applies to the lymphomas
developing in the HIV-1-infected population. It is particularly important to understand the factors leading to and
molecular disturbances involved in these lymphomas developing in the HIV-1-infected population as they appear to
be increasing in frequency and characterized by aggressive courses with short median survival times. Although much
attention has focused on the chronic immune activation hypothesis of cancer in HIV-1 infection, this article explores
the possible contribution of decreased immune surveillance and exposure to highly active antiretroviral medications to

the development of B-cell lymphomas in HIV-1-infected patients.
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Background

The HIV-1 epidemic continues with 50,000 new diagnosis of HIV-
1 infection each year in the United States and is now characterized
by an aging population of 1.2 million individuals in the United States
living with HIV-1 infection who are reaching ages where diseases
such as malignancy are increased in incidence [1-6]. Malignancies,
particularly B-cell malignancies, are now the most common cause of
death for patients in the United States living with HIV-1 infection,
and is a significant factor driving 30 day hospital readmissions [7-10].
Currently available highly active antiretroviral therapy (HAART) is able
to suppress viral replication, maintain CD4 T-cell levels and increase
life expectancy in the majority of HIV-1-infected individuals [11,12].
B cell lymphoma is the most common of the malignancies responsible
for cancer mortality in the current HAART treated HIV-1-infected
population [8,13-15]. Although the genetic basis of and heterogeneity
of B-cell lymphomas has been extensively studied in the HIV-negative
population, much remains to be learned about the genetics of and causes
underlying B-cell lymphomas in HIV-1-infected individuals [16]. In
addition to a possible oncogenic milieu developing as a consequence
of the chronic immune activation present in many HIV-1-infected
individuals it is possible that loss of immune surveillance or exposure to
certain medications contained in modern HAART regimens is driving
the process [17,18].

Malignancies in HIV-1-uninfected patients

Six hallmarks of cancer have been suggested as essential for tumor
development and dissemination [19,20] Along with the six suggested
pillars of oncogenesis: sustained proliferative signaling, evasion of
growth suppressors, resistance to cell death, induction of angiogenesis,
acquisition of replicative immortality, and activation of invasion
and metastasis, immune evasion may be a critical seventh pillar of
oncogenesis [19-21] (Figure 1). In many ways the first six hallmarks

of cancer seem very tumor-centric. From the perspective of the host
these are import checkpoints that must be maintained for homeostasis.
The host’s immune system, however, is the last defense of the host
against a cell that has lost the critical controls and transformed into
a malignancy [21]. Advances, in the understanding of malignancies,
have led to an expanded model with 10 hallmarks of cancer that now
includes immune evasion [20].

Advances in the understanding of cancer biology have established
the importance of immune evasion as a critical feature of malignancies
[19,20]. Immune evasion is critical for the success of all malignancies,
including B-cell lymphomas, in HIV-1-uninfected individuals [21].
Without immune evasion malignant cells could be recognized by innate
and adaptive cells of the immune system and cleared or destroyed [22].
There is thus a tremendous selective pressure for successful immune
evasion placed on evolving tumor cells that is evident in both the genome
and in the tumor exome of tumors developing in immunocompetent
hosts [23].

Immune evasion by malignancies in HIV-1-infected Patients,
the seventh pillar of oncogenesis

Unfortunately early in HIV-1 infection there is a significant and
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Figure 1: The seven pillars of oncogenesis. The current six pillars of
oncogenesis sustained proliferative signaling, evasion of growth suppressors,
resisting cell death, induction of angiogenesis, acquisition of replicative
immortality, and activation of invasion and metastasis with the addition of the
critical seventh pillar of immune evasion.

permanent loss of mucosal immune cells and permanent damage to
the immune system despite rebound of CD4 counts from initial nadirs
[24]. It is thus not surprising that, in addition to malignancies driven
by oncogenic pathogens, there is an increased incidence of many
malignancies not associated with oncogenic pathogens in HIV-1-
infected patients [6]. The barrier posed by the immune system in HIV-
1-uninfected individuals may be less formidable in the HIV-1-infected
population.

Immune evasion may be accomplished through avoidance of
detection by the immune system, neutralization of immune cells,
induction of tolerance, and/or modulation of the immune response.
In many malignancies immune evasion involves reduction in the
surface expression of antigen presentation molecules [25]. Avoidance
of detection by the immune system can be accomplished by a decrease
in the antigen presentation by MHC class I antigens. This may be
due to defects in the machinery that processes aberrant proteins and
delivers MHC class I molecules with contained peptides to the cell
surface [26,27]. An interesting aspect of B cell malignancies is that the
malignant cells also serve as professional antigen presenting cells with
inherent expression of MHC class-II molecules [28]. Decreased class
IT expression is associated with decreased immune response and poor
prognosis [29]. Diffuse large B-cell lymphoma (DLBCL) is also often
characterized by down regulation of MHC-II molecules, HLA-DR and
HLA-DR, which correlates with T cell infiltration and is likely a strategy
for immune evasion [30].

Malignancies may avoid destruction by the immune system
by neutralizing host immune cells. B-cell lymphomas have been
demonstrated to express elevated levels of Fas ligand (FasL) which
can trigger Fas mediated apoptosis of cytotoxic T lymphocytes [31].
Malignancies may also accomplish neutralization of host immune
cells through expression of programmed death ligand 1 (PDL1) or
programmed death ligand 2 (PDL2), which reduces the proliferation
of host T-cells [32].

Certain malignancies, such as B-cell lymphomas, both Hodgkins

and non-Hodgkins lymphomas, also appear to have the ability to
influence the surrounding tumor microenvironment and induce
proliferation of tumor tolerant CD4* CD25* FoxP3* T-regulatory
cells [33-35]. Although it remains unclear how these T-regulatory
cells are induced, they do appear to secrete IL-10 and interfere with
the generation of anti-tumor Th17 cells. Myeloid derived regulatory
cell induction appears to be another critical component of the B-cell
lymphoma immune evasion strategy and is associated with poor overall
survival [36-38]. Not only are malignant cells modulating immune
cells toward an immune-tolerant phenotype but they are also attracting
immunosuppressive cells to the tumor microenvironment with chemo-
attractant chemokines such as CCL2/MCP-1, CXCL12, CCL22, CCLS5,
CCL17/TARC, and fractalkine/CX3CL1 [21].

Malignancies also have the ability to express immune modulatory
molecules and produce a number of secreted or soluble factors that
facilitate their immune evasion. Through malignant cell expression of
Galectib-1, T cells are polarized toward a Th2 phenotype and T cell
proliferation and IFN-y production is decreased [39]. Prostaglandin
E2 can also be produced by certain lymphomas and can influence
both CD4+ T-cells and B-cells [40,41]. Malignancies are able to evade
natural killer (NK) cells by the secretion of the decoy protein NKG2D
which prevents activation through a surface NK cell receptor [42,43].
Serum sIL-2Ra may be produced and interfere with IL-2 mediated T
cell activation in certain contexts [44,45].

In addition to the induction of suppressive cells that secrete
immunosuppressive cytokines, certain malignancies are often capable
of secreting immunosuppressive cytokines such as IL-10 and IL-6
themselves [46]. Some B-cell lymphomas may in fact be developing from
subsets of B cells that spontaneously or with appropriate stimulation
secrete IL-10 [47,48]. Analysis of B-cell chronic lymphocytic leukemia
cells has demonstrated similarities to IL-10 producing regulatory B10
cells and innate IL-10 spontaneously secreting B cells [49-53]. TGF-p is
another immunomodulatory molecule produced in both membranes
bound and secreted forms by malignancies as part of their immune
evasion [54].

With the importance of evading a competent immune system
demonstrated and our understanding of how this is achieved, the
appearance of an increased incidence not associated uncontrolled
activity of an oncogenic virus starts to seem more expected than
surprising. Currently, however, little is known about whether the
decreased immune pressure present in an HIV-1-infected patient is
evident in the degree and type of immune evasive changes. Further
investigation is needed in order to discover how much decreased
immunity contributes to the excess frequency of cancers and cancer
related mortality.

The impact of antiretroviral therapy on immune surveillance
and malignancy development

In addition to the fact that lower levels of CD4* T cells and decreased
competence of the immune system change the environment in which
tumors develop, there are also a number of chronic medications that
most HIV-1-infected individuals are currently taking. There are now
a large number of antiretroviral medications in use for the treatment
of HIV-1 infection [55]. Although these medications are available and
effective, a growing percent of HIV-1-infected individuals are dying due
to malignancies despite suppressed HIV-1 viral load and preservation
of CD4 count and percentage [8,9,15]. It is usual and necessary for
a number of these medications to be used together in a ‘cocktail’ to
successfully treat HIV-1 infection [55].
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The classes of medications used to treat HIV-1 infection are;
nucleoside/nucleotide reverse transcription inhibitors (NRTIs),
non-nucleoside reverse transcription inhibitors (NNRTIs), protease
inhibitors, integrase inhibitors, fusion inhibitors, and entry inhibitors
[55]. A concern with the use of these different medications is how they
impact different cellular mechanisms in the context of the immune
activation present at therapy initiations and the chronic immune
activation that continues in alarge percentage of HIV-1-infected persons
despite being on HAART [17,18]. It may be that certain medications
are best used during the induction phase and in patients with chronic
immune activation while others have a safety profile making them
more suited for the chronic therapy of HIV-1 patients without immune
activation [56]. It is possible that exposure to particular medications
may correlate with specific genetic lesions that are critical to the
development of malignancies in HIV-1-infected patients.

Protease inhibitors (PIs) have been suggested to be agents that
prevent malignancy and may even be ripe for repositioning as cancer
therapeutics [57]. A number of studies have demonstrated the ability of
currently used PIs to inhibit cancer cell growth, and improve sensitivity
to chemotherapy and radiation therapy [57]. Protease inhibitors
have been demonstrated to promote regression of Kaposi’s Sarcoma,
lymphomas, fibrosarcomas, multiple myeloma, prostate cancer and
several cancer cell lines [58-65]. Despite the encouraging data presented
in some in vitro systems and these demonstrations of tumor regression,
several studies have reported increased rates of malignancies in patients
on PI containing regimens [66,67]. It has also been observed that the
aspartyl protease inhibitors used to treat HIV-1 have negative impacts
on human immune cells that might be critical for successful immune
surveillance such as dendritic cells [68]. Currently used protease
inhibitors may also interfere with T cell function preventing their
efficacy in tumor surveillance [69].

Non-nucleotide reverse transcriptase inhibitors (NNRTIs) have
also been shown to have anti-proliferative effects on cancer cells [70].
It was therefore unexpected when HIV-1-infected patients on HAART
regimens containing NNRTIs containing regimens were observed to
have increased rates of cancer [71]. NNRTIs may also have immune-
suppressive effects on monocyte derived dendritic cells [72]. It may be
that the suppression of dendritic cells and other highly proliferating
immune cells is enough to overcome the antiproliferative effect on
cancer cells.

Integrase inhibitors have been shown to achieve the highest rates of
virological control in HIV-1-infected patients [73]. Integrase inhibitors
are suggested to be ideal agents due their limited drug interactions.
With this class of drugs being one of the newest options available for
patients infected with HIV-1 there is much less information about
their potential role in preventing or promoting cancer. One publication
that followed a cohort of approximately 2000 patients did describe an
increase rate of cancer in patients on integrase inhibitors versus those
on HAART regimens not containing integrase inhibitors, but this may
reflect a preference by treating physicians to change prior regimens to
integrase inhibitor containing regimens to avoid drug interactions when
initiating chemotherapy [9]. With there being no clear host homologue
to the targeted HIV-1 integrase it may be that this class of medications
lacks any negative impacts on host immune tumor surveillance.

Conclusion

With over 1 million patients in the United States infected with
HIV-1 being and new diagnoses each year, we are still unfortunately
in the midst of an ongoing epidemic. A current challenge facing

the aging HIV-1 positive population is malignancies, in terms of
prevalence, morbidity and mortality. Although awareness of the
increased prevalence and associated mortality and morbidity of cancer
in the HIV-1-infected population is growing, the mechanisms driving
this problem are currently unknown. The chronic immune activation
present in many HIV-1-infected patients may be involved in increasing
the risk of cancer, but the role of decreased immune surveillance and the
effects of antiretroviral medication on this surveillance may be critical.
Large cohort studies of the relative incidence of cancer in patients on
integrase inhibitor therapy compared to those on PI or NNRTT based
regimens are currently underway. Further basic science investigation
will be critical to understanding the molecular features of these cancers
and the impact of various antiretroviral agents on their development.
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