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Abstract

Breast cancer (BC) is widely studied due to its importance in the world public health. Currently, there are multiple
standardized methods for its diagnosis including physical and molecular ones. The strategies for BC treatment are
diverse; despite the availability of different therapeutic options, BC still remains one of the leading causes of cancer
death in women. There is a need for novel diagnostic and therapeutic tools, and metabolomics approach could help
us to develop them and to improve the already existing ones, which leads us to the possibility of a personalized
treatment with reduced adverse effects and a better clinical outcome. Herein, we describe the targets that are
currently being used in the diagnosis and treatment of BC and review the development of new ones based on
metabolic alterations on BC. We conclude that a recent metabolomics approach can be a novel tool to improve the
diagnosis of BC as well as constitute the basis for identification of new therapeutic targets.
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Introduction
Breast cancer (BC) is the most frequently diagnosed cancer and the

leading cause of cancer death among women worldwide [1]. Due to the
current screening programs that include mammogram, ultrasound and
protein immunodetection and the timely diagnosis, BC mortality
rates have decreased in the last years in developed countries due to the
diversity of available treatments ranging from surgery to
chemotherapy, radiotherapy, hormonal therapy to monoclonal
antibodies, but the incidence rates continues to rise [1,2]. BC is
constituted by multiple disease states with diverse molecular behavior,
the variability of such characteristics allow researchers to apply omics
technologies to investigate this pathology [3]. For example, when
analyzing the proteomic level, differences are found in the mutations
and expressions of several genes that are currently used in the BC
clinic as biomarkers, such as estrogen and progesterone receptors (ER
and PgR, respectively), human epidermal growth factor receptor 2
(Her-2) and nuclear protein Ki-67 who play a very important role in
BC clinical decision-making in terms of recurrence,
optimal treatment plan and mortality rates in patients [4].

Due to the development and application of multiple timely
detection programs constituted by non-invasive methods, such as self-
examination, clinical examination and mammography, that have
improved and complemented the diagnosis by histopathological means
and due to the therapeutic regimens that have been developed,
mortality caused by this type of canceras well asthe progress to
subsequent phases and metastases has been reduced, especially in
developed countries [5,6].

ER, PgR, and Her-2 are the most used biomarkers when defining
the best treatment for each type of tumor. Nevertheless, these genes are
not among the most frequently mutated in breast cancer, but there are
potential driver mutations, molecular signatures, and other diagnostic
features that potentially can lead to a targeted therapy [7]. There is a
growing need to improve the clinical results that are offered to patients
with BC, since this condition leads to high mortality rate because the
diagnosis is made in late and advanced stages and because there is no
adequate range of non-invasive methods able to detect cancer at the
early stages; therefore, developing biomarkers for the first phases of the
disease could provide patients with a better prognosis and therefore a
better response to treatment and prevent the progression of the disease
[8]. In the past few years, metabolites have been proposed as BC
markers, along with genes and proteins [9]. Metabolites are the result
of the expression of various genes, RNA and proteins, so the
concentration of these represents the last scale of changes that DNA
undergoes or editions that the environment exerts in the genetic
material, secondary to non-physiological events, such as the pathology
itself, the consumption of medicaments, dietary and population
features, among other causes [4].

The total amount of cells in the body share the majority of metabolic
processes for their maintenance, suchas the processes for catabolism of
amino acids and those related to energy production, which are altered
in cells with BC. Due to diverse genetic mutations and epigenetic
changes, the cell breaks its homeostasis and enters into a state of
uncontrolled proliferation, characterized by an unbalanced apoptosis,
and dysregulation of its natural metabolic processes. Using
metabolomics tools allows researchers and physicians to develop an
approach that can be more tailored to the phenotype of each patient
[10].
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Metabolomics as Tool to Diagnose Breast Cancer
Cancer is known as a pathological condition with multiple

biochemical and physiological changes, including metabolic
alterations. The first metabolic alteration described in cancer was
Warburg effect [11,12].

The importance of metabolism in cancer is such that even to date
the activity of lactate dehydrogenase, a metabolic enzyme, is a critical
parameter for the diagnosis of cancer [13]. Currently, the new available
technologies and knowledge of metabolism have allowed the
development of metabolomics assays that constitute new strategies for
diagnosis and treatment. Particularly, in breast cancer the metabolism
is affected, mainly the metabolism of lipid and aminoacids [14-20].

Current diagnostic biomarkers
It is known that there are precise differences between the metabolic

profiles of normal and tumor breast tissues, which mainly depend on
the activation of the oncogenes of each patient and they will normally
vary, but patients with the same diagnosis will coincide in several
metabolites and be significantly different from the healthy patients, so
there is a need for a metabolic pathway-based diagnostic model
[21-24].

The main current manner to predict the presence of BC by
pathogenic germline mutations, is via the mutation of the BRCA1 and
BRCA2 genes, that indicates a strong predisposition to hereditary
breast and ovarian cancers [25-28].

Once the disease is present, the main manner to classify the cancer
subtype, to establish its prognosis and to choose the best available
treatment, is through the expression of other genes, such as ER, PgR,
Her-2 and Ki-67, which have shown different alterations in the
metabolic profile, giving rise to possible targets for timely diagnosis
[29].

Research performed to find new biomarkers
Metabolic changes in breast cancer are an excellent approach for the

development of new diagnostic strategies which also allow better
treatment options. For example, the altered glutamine metabolism
could indicate changes on glutamine transport. It has been reported
that SLC38A5, a glutamine transporter, indicates aggressive BC [30].
Additionally, the glutamate-glutamine ratio has been associated to the
condition of the estrogen receptor, which allows the enrichment of
glutamate to be a possible diagnostic biomarker for BC [31].

Despite metabolic biomarkers constituting new promising non-
invasive and cost-effective diagnostic tools, they possess various
difficulties such as lack of consistency between the experimental
protocols and biological variability in the exchange rate of metabolites.
Given this observation, machine learning computational methods that
integrate metabolites features into pathway features have been
developed and applied to identify early breast cancer diagnostic
biomarkers [23]. An ideal biomarker for any disease, needs to have a
high specificity and sensitivity and the ability to detect the disease at an
early stage. In this pursuit, several potential options have been
proposed.

Several studies have suggested the potential use of amino acids in
the early detection of BC such as valine, lysine, arginine [32], and
significant changes in the profile of amino acid concentrations have

been found in cancer patients, even in patients on asymptomatic
stages.

Different profiles in serum for targets such as choline, glutamate,
glutamine beta-alanine or xanthine have been described, depending on
the type of BC [26,33-35]. One of the most studied pathways is the
glutamine pathway, which shows a significant inhibitory effect on
highly aggressive breast cancer cells [36,37]. Other important potential
target is the Inositol 1,4,5 triphosphate (IP3R) receptor, that has an
important role in the disruption of cellular metabolism during disease
changing cell bioenergetics including amino acid and glutamate
metabolism [38].

The use of metformin is being studied as a coadjuvant in the
treatment of BC, since high glucose and lipid levels in serum have been
associated to a risk factor for BC and its progression, similar to
themetabolic profile of diabetic patients, with resistance to
carbohydrates or with metabolic syndrome [28,39].

In addition, metabolomics can also be used in patients with
resistance to classic chemotherapeutic drugs [27], whereas
neoadjuvant chemotherapy was created, with major dependent
response to choline levels and some amino acids, such as Tau and Gly
[40].

Role of Metabolomics on the Improvement of Current
Anti-Cancer Therapies

Cancer is a multifactorial disease that cannot only be explained
through a specific genetic mutation or a particular environmental
change. And BC is not an exception of this statement. Therefore, there
are new proposals for treatments, such as the use of nanoparticles. This
kind of treatment possesses the issue of not being specific and reaching
other non-cancerous tissues, affecting their metabolism [41] another
option is the use of monoclonal antibodies, which are currently
exploited such astrastuzumab, which is beneficial in Her-2 positive
patients, since this growth factor is highly expressed in malignant cells,
a trastuzumab-based combination therapy significantly reduces the
risk of death by 20 percent in the 30 months following the first dose in
patients with metastatic BC [42]. But the new omics approach is the
future approach for better diagnosis and treatment of complex diseases
such as BC. Although, products of the primary metabolism were
considered until a few years ago as "passive" compounds that did not
affect the physiology of the cells, it is known that they are involved in
the regulation of most of the cellular processes from differentiation,
proliferation, to cell death and consequently diseases processes
[43-45].

However not only cellular processes are affected by metabolites, also
gene expression and proteins translation are regulated by the amount
of metabolites present in the cell [46-48].

Therefore, the novel field of pharmacometabolomics that combines
metabolite profiling and chemical data contributes to determine the
pharmacokinetic and pharmacodynamic behaviors of a specific drug
in an individual subject. Pharmacometabolomics studies can also
provide additional information regarding the toxicity and side effects
of drugs. This valuable information can help physicians to predict the
sensitivity of tumors to an antineoplasic drug and determine whether
the treatment will be effective and toxic.

Doxorubicin and methacrylamide conjugates have been studied in
vitro cell culture models, in vivo, orthotropic breast cancer models,
protein expression and flow cytometry studies to evaluate the
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biochemical pathways and their alterations during the administration
of these drugs, finding increased apoptosis, reduced glycolysis, and
reduced levels of phospholipids, also demonstrating efficacy and
toxicity of both agents, optimization in their pharmacokinetics and bio
distribution [49].

The taxanes, as microtubule-targeting agents like docetaxel and
paclitaxel, are usually used as neoadjuvant or adjuvant with
anthracyclines or as monotherapy, have been shown to have an effect
on glycolysis, phospholipid metabolism, and glutathione metabolism
leading to the regulation of the expression of serum metabolites in
patients, with an effect depending on whether the dose was high or
low, which reveals an evident therapeutic dependence on the dose-
response variation [9,50].

Chemotherapy with Gemcitabine-carboplatin, which is effective
mainly in metastatic BC and in patients with resistance to
anthracyclines and taxanes has been shown to have a highly variable
clinical outcome among individuals, so the formate and acetate seric
levels have been proposed as potential predictive markers to predict if
this treatment will have an adequate response to make the decision to
administer this medication or not [51].

One of the most used therapeutic regimens in BC is trastuzumab-
paclitaxel for Her-2 positive patients, where significant changes were
found in the concentrations of spermidine, tryptophan,
propylcarnitine and phosphatidylcholine diacyl phospholipids, where
it was concluded that patients who showed high plasma concentrations
of spermidine and lower concentrations of tryptophan will tend to be
more benefited with this neoadjuvant treatment [26].

Unlike immunotherapy, current chemotherapeutic treatments do
not have biomarkers that can guide them to target only diseased cells.
In order to benefit a greater proportion of cancer cells effectively and
safely, and in order to reduce the variations among patients, there is a
proposal to study endogenous metabolites to predict
pharmacodynamics of chemotherapeutic drugs and offer a
personalized treatment [52].

Even for molecularly targeted drugs, using genomic data as an
indicator of treatment has limitations. Therefore, deep learning
methods have been developed to still exploit integrative omics
(genomics, metabolomics, etc.) data to train classifiers that can help
predicting the effectiveness of drugs in cancer cells. This new method
is the beginning of a huge effort to predict the efficacy of drugs,
regardless of their specificity [53].

Metabolomics for Development of New Anti-Cancer
Therapies

Because of the great variability and complexity in the patterns of
cancer expression, the pathways of cellular metabolism have been
studied, seeking alterations in the concentrations of different
metabolites, to influence these pathways and in this way be able to
offer options for new targets [54], such as described below.

Metabolic profiles to study metabolic differences
The tricarboxylic acid (TCA) cycle, which is involved in cell energy

production, the macromolecules synthesis and the redox balance
requirements, has been proposed as a possible and an attractive new
target that is already being studied in clinical phases. The inhibition of
glutaminolysis in the TCA cycle is mainly studied by means of
depletion of glutamine in plasma (L-aspariginase) or blockade of

glutamine transport (sulfasalazine). Therefore, by understanding the
tumorigenesis favored by the TCA cycle, the enzymes that are
damaged by cancer metabolic and epigenetic changes could be
inhibited in a timely and effective manner, principally succinate
dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase
[55,56].

The lipidome is a biomarker dependent mainly on diet and acts as a
result of physiologic changes. Metabolic profile and dietary exposures
are closely related to the predisposition to various types of cancer [57].
In the case of BC, it has been observed that an elevation in
monounsaturated lipids and a low ratio between n-6 and n-3 fatty
acids present a possibility to reduce the risk of developing BC,
especially in pre-menopausal women, particularly for ER+ breast
cancer. On the other hand, it is observed that high concentrations of
lysophospholipids have been found related to the development and
progression of more aggressive cancer [15]. Thus, the study of the lipid
profile may help in the prevention of BC and in classifying its
malignancy differentiation and metastatic potential [58,59].

The metabolic pathway of Choline is involved in functions like cell
signaling, lipid metabolism, and membrane integrity. It is reported that
metabolites, as phosphocholine have been found in high
concentrations in patients with cancer, in comparison with healthy
patients; whereas high concentrations of total choline levels have been
related to the malignancy degree of the neoplasm [60].

Racial features also have an important role in the metabolic profile,
since African-American women express different patterns than
Caucasian women. For example, African-American women expressed
higher levels of glutathione, choline and glutamine, and therefore,
increased activation of pathways associated with energy metabolism,
which was demonstrated at lower levels of ATP in triple-negative
breast cancer (TNBC) compared with Luminal A breast cancer;
whereas in Caucasian women, an increase in the pyrimidine synthesis
of the pentose phosphate pathway has been observed and this
expression promoted resistance to chemotherapy in TNBC and it is
normally found with an anaplastic pyruvate carboxylation, this
constitutes a possible therapeutic option for this type of patients [61].
Metabolic profiles of triple negative and luminal A breast cancer
subtypes in African Americans were correlated to key metabolic
differences [61,62].

Conclusions
The field of metabolomics has a vast potential for developing a more

realistic personalized medicine approach, specifically in the field of
oncology, where there is an enormous need for tailored and more
effective treatments. The advantage of metabolomics compared to
other omics technologies is evident since the metabolic profile of a
patient in response to a certain drug can give us the tools to prescribe
the most optimal drug for a cancer patient with a specific pathological
status that is directly related to their metabolic map.

This metabolic map constitutes also a necessary tool to identify
metabolites delivered and produced in concentrations different to the
physiological normal levels and that are an indication of non-regulated
biological pathways as a result of cancer effects. Such metabolites could
comprise new therapeutic targets that could be researched to create
new anti-cancer drugs (Figure 1).

Citation: Lemus R, Vega A, Pérez-Estrada R (2018) The Application of Metabolomics in the Development of Novel Diagnostic and Therapeutic
Tools for Breast Cancer. Metabolomics (Los Angels) 8: 202. doi:10.4172/2153-0769.1000202

Page 3 of 5

Metabolomics (Los Angels), an open access journal
ISSN: 2153-0769

Volume 8 • Issue 2 • 1000202



Figure 1: Applications of the metabolic profile. Metabolites, as a
result of the expression of genes related to cellular metabolism, can
be used for the development of various treatment tools based on
new targets in order to offer the patient a personalized treatment
and thus reduce side effects of the therapies and have a better
clinical outcome.
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