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Introduction
Azo dyes – compounds characterized by the presence of one or 

more azo groups (-N=N-) – constitute the most important class of 
dyes in the textile industry [1, 2], because they are one of the most 
easily synthesized dyes, showing both excellent fixation properties and 
permanence in fibers. Moreover, they enable a wide variety of colors to 
be obtained in contrast to natural dyes [3]. However, during the textile 
process, staining inefficiency results in a large quantity of residues, all 
of which are directly discharged into bodies of water, consequently 
contaminating the environment [4-5], creating serious environmental 
impacts [6].   

According to several authors, tests with microorganisms and 
mammal cells indicate that azo dyes are compounds of toxic [7-10], 
genotoxic and mutagenic activities [11-18].

Studies using the Salmonella test [15, 19] indicated the presence of 
textile azo dye components (BDCP – Black Dye Commercial Product) 
in both raw and treated industrial effluents, showing a mutagenic 
activity for that compound. By means of crypt foci, some researchers 
[20] even showed that there was an increase in pre-neoplasic lesions 
in the colon of rats exposed to different concentrations of those 
effluents containing BDCP. Studies of chromosome aberrations using 
the A. cepa test-organism showed mutagenicity for several tested 
concentrations of an industrial effluent contaminated with the BDCP 
azo dye [16]. Studies demonstrated that azo dyes are cytotoxic to 
hamster cells, because they induced the formation of micronucleated 
cells, and multilobulated and extremely condensed nuclei, besides 
inducing endoreplication and binucleated cells [21].  According to 
some scientists, p-dimethylaminobenzene azo dye (p-DAB) induced 
cytotoxic and genotoxic effects on bone marrow cells and rat sperms 
[22]. 

All the cytotoxic effects observed for azo dyes might be due to the 
direct action of dyes on the cells or, especially, to the formation of 
metabolites resulting from the azo bond reduction [1, 23]. Metabolites 
can react with the DNA molecule, damaging both its structure and 
function [15, 18, 24]. Because of the significant increase in chemical 
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compounds being discharged into the environment, bioassays 
have been carried out using different organisms in order to identify 
and evaluate the harmful effects of various agents at their different 
concentrations and exposure periods [25].

Higher plants constitute an important material for testing genetic 
alterations brought about by environmental pollutants. They are 
also currently recognized as excellent bioindicators of cytotoxic, 
genotoxic and mutagenic effects of environments contaminated by 
toxic substances [26, 27]. The use of plants as test-organisms has been 
recommended by several environmental agencies such as the UNEP 
(United Nations Environmental Program), the WHO (World Health 
Organization), and the US EPA (US Environmental Protection Agency) 
[28]. The Allium cepa species has been used as an efficient standard 
organism to run genetic tests for cytoxicity, especially cytogenetic and 
chromosome aberration tests [16, 26, 29-35]. 

The emergence of new techniques for chromosome staining has 
lead to an increase in information about the DNA composition and 
disposition of different constitutions along the chromosomes, allowing 
for an in-depth analysis of the chromosome structural organization in 
contrast to the conventional staining techniques [36-38]. C banding, 
AgNOR banding and base-specific fluorochrome banding are 
techniques that stand out from the existing cytogenetic ones. All of 
these techniques may be used as efficient and auxiliary tools to detect 
the mechanisms of action of chemicals in different organisms.  

Abstract
In the present study, cytotoxic, genotoxic and mutagenic actions of different concentrations (1, 10, 100 and 1000 

µg/L) of an azo dye (BDCP – Black Dye Commercial Product) were evaluated using different cytogenetic techniques 
[(conventional dye, C banding, NOR banding, base-specific fluorochrome banding and fluorescent in situ hybridization 
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As described above, azo dyes and their metabolites are known for 
potentially causing serious DNA damage. There is a great need, however, 
to better evaluate the modes of action of these dyes on biological 
materials. The BDCP, widely used in textile processing industries, was 
tested in this study using chromosome aberration and micronuclei 
tests in A. cepa. In the study, different cytogenetic techniques were 
used [(conventional staining: chromosome and nuclear aberrations 
test; chromosome bandings: C banding, NOR banding, base-specific 
fluorochrome banding CMA3/DAPI; fluorescent in situ hybridization 
(FISH)] in the A. cepa meristematic cells. The main purpose of this 
study was to analyze the cytotoxic, genotoxic and mutagenic potentials 
of BDCP, as well as the possible associations of this dye with the genetic 
material, and hence prove its action on the cells of exposed organisms.

Material and Methods
Chemical tested

The commercial azo dye evaluated was the BDCP, a product which 
is composed of three dyes belonging to the nitroaminoazobenzene 
group: C.I. Disperse Blue 373 (C21H21BrN6O6; CAS nº 51868-46-3); 
C.I. Disperse Violet 93 (C18H19BrN6O5; CAS nº 268221-71-2); and C.I. 
Disperse Orange 37 (C17H15Cl2N5O2; CAS nº 13301-61-6) [15].

Treatment solutions
The BDCP concentrations used in the assays were: 1000 µg/L, 100 

µg/L, 10 µg/L and 1 µg/L, and the highest concentration – determined 
with the help of pilot-tests – consisted of indicated solution for the 
viable application and development of cytogenetic techniques used. 
The remaining concentrations were obtained from successive dilutions 
of the highest dye concentration in ultrapure water. Summarizing 
the pilot-tests, 100, 10 and 1 mg/L concentrations were tested, and 
the A. cepa seeds germination rates and the roots development were 
analyzed in order to obtain a concentration at which the germination 
rate was above 60% and the roots were not so fragile for handling and 
for subsequent cytogenetical application. All concentrations used 
in the assays are close to those observed in environmental samples 
(river impacted by BDCP, raw and treated effluent samples) obtained 
from the aquatic environment after dying process, studied by some 
researchers [39]. 

Test organism
The Allium cepa species was used to evaluate the mechanisms 

of action of the chemical tested. A. cepa seeds (2n=16) of the Baia 
Periforme variety were used herein as a test-organism, since they are 
both genetic and physiologically homogeneous, besides being available 
throughout the year [16]. 

Assays
The A. cepa seeds (one hundred per Petri dish) were previously 

germinated in ultrapure water at room temperature. When the seeds 
reached about 1.5 cm in length, they were transferred to Petri dishes 
containing the different concentrations of the commercial dye (1000 
µg/L, 100 µg/L, 10 µg/L and 1 µg/L), using one dish per concentration. 
The seeds were held in those dishes for a 20-h period. The negative 
control (NC) was prepared by exposing the seeds to ultrapure water 
only, whereas the positive control (PC) was exposed to the 9 x 10-5 M 
concentration of methylmetasulphonate (MMS, Sigma-Aldrich, CAS 
66-27-3). As time went by, 1/3 roots were collected from each dish and 
the remaining roots were transferred to dishes containing water only, 
for the 48 and 72-h periods (recovery treatments). After those periods, 
the remaining roots were collected. 

The roots collected were fixed in Carnoy’s solution (Ethanol-Acetic 
Acid 3:1 - v/v) for 18 hours at room temperature [34, 40]. Preparation 
of slides was done using the conventional staining technique 
(chromosome and nuclear aberrations assay), chromosome bandings 
[(C banding, NOR banding, base-specific fluorochrome banding 
CMA3/DAPI) and Fluorescent in situ hybridization (FISH)].  

Conventional staining assay: For the conventional staining 
assay, the fixed roots were stained by means of the Feulgen reaction, 
as described by Feulgen and Rossenbeck in one study [41]. However, 
some changes were made. After staining with the Schiff reagent, root 
meristems were covered with a coverslip and slightly smashed in one 
drop of 2% acetic carmine. Coverslips were carefully removed in liquid 
nitrogen, and the slides were mounted in synthetic resin (Mounting 
Media, Permount®, Fisher Scientific). The slides analyses were carried 
out using light microscopy.

In the analyses, the following chromosome and nuclear aberrations 
(CNA) were considered: genetic material loss, chromosome adherence, 
C-metaphase, chromosome bridge, multipolarity, and polyploidy. 
To better interpret the results, CNA were classified into a single 
category, regarded as genotoxicity endpoint [16, 33, 35]. The presence 
of micronuclei and chromosome breaks (MN/B) observed in the A. 
cepa meristematic cells were regarded as mutagenicity endpoint [34]. 
Cells under death process, both apoptosis and necrosis (AP/NE), were 
analyzed separately and considered as cytotoxicity endpoint [34]. 
Mitotic Index (MI) – the ratio of number of cell division over total cells 
analyzed – was another category analyzed. MI was also an indicative of 
cytotoxicity [16, 34, 35]. 

All the experiments were conducted in duplicate. About 10,000 cells 
were counted per tested concentration (5,000 for each assay) and in the 
three treatments (20 hours, and recovery periods of 48 and 72 hours). 
500 cells per slide were counted, comprising a total of 20 slides. The 
same number of cells was analyzed in the negative and positive control 
tests. After obtaining the present results, a statistical analysis using the 
Kruskal-Wallis test was carried out, accepting the 0.05 probability in 
order to indicate a significant effect. 

Chromosome bandings and FISH (Fluorescent in situ 
hybridization)

In order to prepare the C, NOR, CMA3/DAPI bandings and FISH 
slides, root meristems were previously treated with a cellulase/pectinase 
enzyme solution (2:20 – v/v) for 60 minutes, followed by a two-minute 
wash in distilled water. The meristems were slightly smashed in a drop 
of an acetic acid solution at 45%. The slides were kept aside to age for 
7, 12 and 28 days, in the case of the C and CMA3/DAPI bandings, and 
the FISH technique, respectively. The NOR banding experiments were 
carried out without previous aging of the slides. 

a) C Banding: C banding was developed following the instructions 
on the technique protocol [42]. Slide staining was done with the 
Giemsa solution at 4% for 20 minutes. In order to be analyzed 
by light microscopy, the slides were mounted in synthetic resin 
(Mounting Media, Permount®, Fisher Scientific). The same types 
of cellular alterations considered in the conventional staining 
cytogenetic assays were qualitatively analyzed on the C banding 
slides. All the experiments were carried out in duplicate, and a total 
of ten slides both per concentration tested and per treatment were 
prepared (20 hours, and 48 and 72-hours recovery periods).

b) NOR Banding:The AgNOR banding experiments were conducted 
according to the protocol [43]. The slides were mounted in synthetic 
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resin (Mounting Media, Permount®, Fisher Scientific), so that they 
could be analyzed by light microscopy. They were also evaluated as 
for the presence of possible alterations in the cells and interphase 
nuclei, as well as the quantification of the nucleolar number 
variation in the cells, comparing the different concentrations and 
treatments. All the experiments were carried out in duplicate and 
a total of 5,000 cells were counted per concentration tested and 
per treatment (20 hours, and 48 and 72-hours recovery periods), 
being 500 cells per slide, comprising a total of ten slides. Statistical 
analysis was performed using the Kruskal-Wallis test, with a 0.05 
significance level.

c) CMA3/DAPI Banding: The band experiments conducted by 
means of base-specific fluorochromes (CMA3/DAPI) followed 
the method proposed in 1982 [44]. The slides were observed and 
analyzed by fluorescence photomicroscopy (450-490 nm filters for 
CMA3, and 320-380 nm for DAPI), at least 15 days following their 
preparation. All the assays performed with fluorescent staining 
were developed in a dark room. The slides resulting from CMA3/
DAPI banding were qualitatively analyzed, considering possible 
cell alterations such as those evidenced on the occasion that the 
conventional staining cytogenetic technique was used. All the 
experiments were carried out in duplicate, and a total of ten slides 
both per concentration tested and per treatment were prepared (20 
hours, and a 48 and 72-hours recovery treatment). 

d) FISH (Fluorescent in situ hybridization): The FISH technique 
were performed by means of the protocol described in 1986 [45] 
with modifications [46]. A 45S rDNA probe prepared from the 
Passiflora genome was used. The probe detection was carried out 
with a solution of 0.07% avidin-FITC (in buffer solution C) for 
one hour in a stove at 37°C. Preparations were mounted in 20 
µL of antifading (Vectashield antifade vector), and chromosome 
counterstaining was performed with 50 g/mL propidium 
iodide. The slides were observed and quantitatively analyzed by 
fluorescence photomicroscopy (filter 450-490 nm), so that the best 
images with cell alterations were photodocumented.

Results and Discussion
Conventional staining assay

The cytotoxicity rate of a chemical compound can be determined 
by either the increase or the decrease in its MI, being the case that 
these values may be used in environmental toxicology studies [33, 
47]. The MI results of the A. cepa meristematic cells exposed to four 
BDCP concentrations, to ultrapure water (NC) and to MMS (PC) 
did not show any significant differences among one another (Table 
1). Nonsignificant results of MI alterations were also recorded [16] 
when the authors studied dilutions of water from a river that received 
wastewater contaminated with the same BDCP. Therefore, considering 
the nonsignificant results for this parameter, recorded both in this 

study and another [16], we believe that the MI endpoint may not be a 
good cytotoxicity indicator for this kind of chemical compound. 

The sum total of alterations (CNA, MN/B and AP/NE) observed 
for the A. cepa meristematic cells exposed to the BDCP azo dye, for 
both the 20-hour treatments and the 48 and 72-hours recovery periods, 
indicated that only three major concentrations of the dye in the 20-
hour treatment exhibited significant values in relation to the NC test 
results (Table 2).

In the current study, the CNA were considered as genotoxicity 
endpoints, since they reflect in damage to the genetic material of the 
cells that were not necessarily fixed in the organism, because they 
are liable for repair or they can lead to complete cell death. This 
way, such alterations do not make the effect heritable to descendant 
cells; therefore, not indicating a mutation. CNA were observed at all 
stages of the cell cycle: interphase (polyploid cells), prophase (genetic 
material loss) and anaphase (chromosome adherences, chromosome 
losses, C-metaphases and polyploidies), and anaphase and telophase 
(multipolarities, bridges and chromosome losses) (Figure1). CNA 
frequencies were always higher than the ones found in the NC tests 
for all the treatments performed with the dye, being most of them 
statistically significant, except for the 100 µg/L concentration (48-
hour recovery treatment) and the 1 µg/L concentration (72-hour 
recovery treatment). The decrease in CNA frequencies for the 1 
µg/L concentration was significant only after the 72-hour recovery 
treatment. It was also observed that only the 1,000 µg/L concentration 
showed a significant decrease in CNA frequencies after both the 48 and 
72-hours recovery treatments (Table 2).     

From the high and significant CNA frequencies recorded for 
the A. cepa meristematic root tips exposed to the different azo dye 
concentrations (Table 2), we may infer that this dye presents a 
genotoxic action. This corroborates the data presented by some authors 
[16], describing the presence of chromosome aberrations in the A. cepa 
meristematic cells exposed to water samples from rivers that received 
the azo dye (BDCP). It is essential to consider that the significant 
decrease in CNA frequencies for the higher azo dye concentration 
tested (1,000 µg/L) – after the 48 and 72-hour recovery treatment 
periods – may have resulted from a possible recovery of the A. cepa 
cells, following normalization of environmental conditions, indicating 
a non-cumulative genotoxic effect of the referred dye upon the A. cepa 
cells. 

Statistical analysis of the CNA kinds were also performed 
separately, once each kind of aberration might have been induced by 
specific mechanisms, making it possible to better evaluate the modes of 
action of the BDCP components on the cells. 

Chromosome losses that result from failure of the mitotic spindle 
formation potentially produce aneuploid cells. In the present study, 
the significant frequency of genetic material losses, recorded at the 

Treatments NC PC
Black Dye Commercial Product Concentrations (µg/L)
1 10 100 1000

20 h 24.450 (0.009) 20.130 (0.009) 19.670 (0.010) 20.550 (0.009) 18.400 (0.011) 19.760 (0.010)
Recovery-48h 25.850 (0.014) 19.650 (0.009) 20.170 (0.012) 21.750 (0.015) 21.290 (0.011) 20.950 (0.009)
Recovery-72h 17.210 (0.013) 13.570 (0.013) 15.690 (0.015) 16.470 (0.015) 17.950 (0.010) 15.310 (0.015)

Note. NC. Negative Control; PC. Positive Control.
10,000 cells analyzed by concentration and treatment. Average (Standard Deviation)
The results didn’t present significant differences (p < 0,05), according to the Kruskal-Wallis test.

Table 1: Mitotic Indexes (MI) observed in A. cepa meristematic cells exposed to the different concentrations of the Black Dye Commercial Product, Negative Control Test 
(ultrapure water) and Positive Control Test (MMS), before and after recovery treatments.
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Treatment time         NC        PC
Black Dye Commercial Product Concentrations (µg/L)
           1          10         100        1000

20 h treatment

CNA

GML 0.040 (0.011) 1.090 (0.013)ª 0.880 (0.023) 0.860 (0.021) 0.980 (0.019) 1.430 (0.021)ª
CL 0.040 (0.011) 0.500 (0.021) 0.480 (0.017) 0.630 (0.018)ª 0.910 (0.026)ª 0.940 (0.013)ª
CA 0.050 (0.012) 0.660 (0.024)ª 0.640 (0.019)ª 0.760 (0.010)ª 0.580 (0.014)ª 0.550 (0.014)ª
CM 0.100 (0.016) 0.090 (0.016) 0.130 (0.015) 0.180 (0.016) 0.290 (0.018) 0.350 (0.016)
PM 0 0.010 (0.000) 0.030 (0.001) 0.050 (0.001) 0.040 (0.001) 0.120 (0.002)
PI 0 0.040 (0.001) 0.030 (0.001) 0.060 (0.002) 0.060 (0.002) 0.130 (0.003)
CB 0.020 (0.008) 0.170 (0.019) 0.240 (0.014) 0.380 (0.016)ª 0.310 (0.021) 0.160 (0.012)
MU 0 0.070 (0.002) 0.050 (0.001) 0.230 (0.010) 0.240 (0.010) 0.250 (0.011)
CNA 0.250 (0.017) 2.630 (0.012)ª 2.480 (0.015)ª 3.150 (0.026)ª 3.410 (0.020)ª 3.930 (0.021)ª

MNB
MN 0.290 (0.013) 2.010 (0.014)ª 1.570 (0.017)ª 1.390 (0.013)ª 1.230 (0.017) 1.610 (0.014)ª
CBr 0.050 (0.014) 0.690 (0.025)ª 0.310 (0.016) 0.190 (0.014) 0.560 (0.020)ª 0.390 (0.019)ª
MNB 0.340 (0.013) 2.700 (0.014)ª 1.880 (0.017)ª 1.580 (0.013)ª 1.790 (0.017)ª 2.000 (0.014)ª

AP
NE

AP 0 0 0.010 (0.004) 0 0 0.190 (0.012)ª
NE 0 1.370 (0.023)ª 1.030 (0.020)ª 1.150 (0.021)ª 2.730 (0.035)ª 1.850 (0.024)ª
APNE 0 1.370 (0.023)ª 1.040 (0.022)ª 1.150 (0.021)ª 2.730 (0.035)ª 2.040 (0.033)ª

TOTAL 0.590 (0.011) 6.700 (0.011)ª 5.400 (0.018) 5.880 (0.012)ª 7.930 (0.014)ª 7.970 (0.021)ª
48 h treatment

CNA

GML 0.190 (0.021) 1.200 (0.011) 0.390 (0.014) 0.380 (0.017) 0.320 (0.016) 0.320 (0.012)
CL 0.090 (0.017) 1.030 (0.013)ª 1.000 (0.016)ª 0.600 (0.026) 0.430 (0.020) 0.880 (0.020)ª
CA 0.170 (0.014) 0.540 (0.022) 0.660 (0.018) 0.780 (0.028)ª 0.730 (0.017)ª 0.650 (0.013)
NB 0 0 0 0.110 (0.000) 0 0
CM 0.120 (0.016) 0.380 (0.012)ª 0.390 (0.021)ª 0.260 (0.022) 0.220 (0.021) 0.330 (0.018)
PM 0 0.080 (0.012) 0.130 (0.014) 0.080 (0.013) 0.100 (0.017) 0.090 (0.019)
PI 0 0.100 (0.023) 0.160 (0.017) 0.140 (0.022) 0.150 (0.021) 0.140 (0.017)
CB 0.030 (0.010) 0.270 (0.011) 0.260 (0.021) 0.550 (0.029)ª 0.410 (0.015)ª 0.320 (0.016)ª
MU 0.050 (0.013) 0.060 (0.019) 0.120 (0.022) 0.180 (0.033) 0.210 (0.031) 0.140 (0.025)
CNA 0.650 (0.019) 3.660 (0.012)ª 3.110 (0.012)ª 2.970 (0.019)ª 2.570 (0.013) 2.870 (0.011)ab

MNB
MN 0.440 (0.023) 1.730 (0.011)ª 1.260 (0.019) 0.760 (0.023) 1.660 (0.030)ª 1.470 (0.017)ª
CBr 0.010 (0.008) 0.330 (0.009)ª 0.270 (0.023)ª 0.200 (0.026) 0.160 (0.031) 0.170 (0.022)
MNB 0.450 (0.025) 2.060 (0.018)ª 1.530 (0.028) 0.960 (0.027) 1.820 (0.037)ª 1.640 (0.029)ª

AP
NE

AP 0 0 0 0 0 0b

NE 0 0.040 (0.023)b 0.020 (0.011)b 0.010 (0.015)b 0.030 (0.026)b 0.800 (0.029)ab

APNE 0 0.040 (0.013)b 0.020 (0.005)b 0.010 (0.005)b 0.030 (0.009)b 0.800 (0.024)ab

TOTAL 1.100 (0.025) 5.760 (0.017)ª 4.660 (0.014) 3.940 (0.011) 4.420 (0.013) 5.310 (0.017)
72 h treatment

CNA

GML 0.040 (0.015) 0.740 (0.016) 0.220 (0.020)b 0.310 (0.023) 0.330 (0.018) 0.390 (0.026)
CL 0.110 (0.016) 0.420 (0.033) 0.400 (0.019) 0.570 (0.027) 0.400 (0.023) 0.520 (0.036)b

CA 0.100 (0.014) 0.150 (0.023)b 0.380 (0.025) 1.030 (0.029)ª 0.360 (0.016) 0.400 (0.030)
CM 0.050 (0.027) 0.130 (0.019) 0.160 (0.022) 0.190 (0.024) 0.090 (0.015) 0.280 (0.025)
PM 0 0.220 (0.034) 0.010 (0.029) 0.020 (0.012) 0.090 (0.019) 0.050 (0.021)
PI 0.010 (0.012) 0.240 (0.025) 0.040 (0.022) 0.080 (0.028) 0.110 (0.034) 0.120 (0.022)
CB 0.010 (0.024) 0.190 (0.025) 0.110 (0.036) 0.180 (0.023) 0.200 (0.055) 0.080 (0.013)
MU 0.010 (0.027) 0.050 (0.051) 0.090 (0.042) 0.040 (0.016) 0.090 (0.035) 0.070 (0.032)
CNA 0.330 (0.020) 2.140 (0.021)ª 1.410 (0.021)b 2.420 (0.020)ª 1.670 (0.017)ª 1.910 (0.019)ab 

MNB
MN 0.440 (0.027) 1.350 (0.036)b 0.730 (0.027)b 0.520 (0.031)b 0.860 (0.023)b 0.550 (0.029)b

CBr 0.010 (0.003) 0.160 (0.021)b 0.080 (0.013)b 0.060 (0.014)b 0.120 (0.004)b 0.040 (0.007)b

MNB 0.450 (0.027) 1.510 (0.036)b 0.810 (0.027)b 0.580 (0.031)b 0.980 (0.024)b 0.590 (0.030)b

AP
NE

AP 0 0 0.110 (0.014)b 0.040 (0.026) 0 0.010 (0.019)b

NE 0.070 (0.023) 0.120 (0.021)b 0.100 (0.023) 0.200 (0.018)b 0.610 (0.022)ab 0.640 (0.026)ab

APNE 0.070 (0.023) 0.120 (0.021)b 0.210 (0.013)b 0.240 (0.019)b 0.610 (0.022)ab 0.650 (0.029)ab

TOTAL 0.850 (0.021) 3.770 (0.037)ab 2.430 (0.018)b 3.240 (0.023)b 3.260 (0.029)b 3.150 (0.040)b

Note. NC. Negative Control; PC. Positive Control; CNA. Chromosome and nuclear aberrations; GML. Genetic material losses; CL. Chromosome losses; CA. Chromosome 
adherences; CM. C-metaphases; PM. Polyploidized metaphases; PI. Polyploidized interphases; CB. Chromosome bridges; MU. Multipolarities; MNB. Micronuclei and 
chromosome breaks; MN. Micronuclei; CBr. Chromosome breaks; APNE. Apoptotic and necrotic cells; AP. Apoptotic cells; NE. Necrotic cells; Total. Total of CNA, MNB 
and APNE. / 10,000 cells analyzed by concentration and by control. Average (Standard Deviation) / ªSignificantly different from the NC (p < 0,05) and  b Significantly different 
from the 20h treatment (p < 0,05), according to the Kruskal-Wallis test.

Table 2. Frequency (%) of alterations (CNA, MN/B e AP/NE) observed in A. cepa meristematic cells exposed to the different concentrations of the Black Dye Commercial 
Product, and to the Negative and Positive Control Tests, for the 20, 48 and 72h treatments.
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prophases, metaphases, anaphases and telophases of the meristematic 
cells exposed to the highest BDCP concentrations (20-h treatment) 
(Table 2), provided evidence for a mechanism of aneugenic action of 
the azo dye. 

Although metaphases with chromosome adherences have been 
found in all the treatments carried out with the azo dye, significant NC-
related results were only recorded for the four concentrations tested 
in the 20-hour treatment, for two 48-hour treatment concentrations 
(10 and 100 µg/L) and for the 10 µg/L concentration of the 72-hour 
treatment (Table 2). These data showed that the BDCP produced 
chromosome adherences in the A. cepa cells. This effect, however, 
did not persist after the 72-hour recovery treatment (simulating 

normalization of environmental conditions), indicating that the dye 
did not have a cumulative effect on the cells. Except for the 10 µg/L 
concentration, once it induced an increase in the number of cells with 
chromosome adherences.   

The presence of chromosome adherences may be a sign of genotoxic 
effect of the damage inducer, whose consequence of the action might 
lead to irreversible cell damage – including its death [34, 48, 49] – an 
effect also observed herein. The presence of chromosome adherences 
reinforces the evidences of the aneugenic action of BDCP, previously 
described for the chromosome losses. Inactivation of the mitotic spindle 
(resulting from the BDCP aneugenic effect) prevents the chromosomes 
from migrating towards the cell poles, consequently blocking 

Figure 1: Genotoxic damages observe in meristematic cells of the Allium cepa roots treated with the Black Dye Commercial Product. A. Polyploidized 
intherphasic nucleus; B. Prophase with genetic material loss; C. Chromosome adherence; D-F. C-metaphases; G, I, J. Chromosome losses; H. Chromosome bridges 
(arrow) and chromosome fragment (arrow head); L. Multipolar anaphase. 
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metaphase. Non-migrating chromosomes remain in a condensation 
process. They get closer and closer to one another, characterizing the 
so-called chromosome adherences [40], a cytogenetic phenomenon 
widely described in plants.

C-metaphases may result from the action of aneugenic agents on 
the cells whose compounds promote a complete inactivation of the 
mitotic spindle [29, 33, 50]. Such alterations may generate other types 
of cell abnormalities such as polyploid cells [33, 51], multinucleated and 
micronuclei-bearing cells [33, 52]. One study [16] showed the presence 
of both C-metaphase and micronuclei-bearing cells, after A. cepa seeds 
were exposed to water samples that received effluents contaminated 
with the BDCP. Our analyses indicated the presence of low frequencies 
of C-metaphase in the A. cepa meristematic cells exposed to tests 
using the BDCP azo dye; except for the statistically significant values 
shown by meristems submitted to the 1 µg/L concentration after 
a 48-h recovery treatment (Table 2), a fact which already suggests a 
possible aneugenic action of this dye on the A. cepa cells. However, the 
incongruous data observed between the results presented herein and 
our previous results [16] may be related to the possible synergy of the 
dye with other components of the water from the river investigated by 
those authors.  

Chromosome bridges might result from cohesive chromosome 
terminations or structural rearrangements [50], or even from 

chromosome adherences [53, 54] which, in the last case, may be 
multiple and persist to telophase according to the authors mentioned. 
Frequencies of chromosome bridges, always higher than the ones found 
in the NC tests, were observed. However, significant frequencies of this 
alteration were only found at the anaphase and telophase of the cells 
exposed to the 20 (10 μg/L concentration) and 48-hour treatments (10 
μg/L, 100 μg/L and 1000 μg/L concentrations) (Table 2), reinforcing 
the aneugenic action of this chemical, as previously suggested for 
chromosome adherence and losses.  

In all the experiments, non-significant values of multipolar cells 
during anaphase and telophase, as well as of lobulated nuclei and 
polyploid cells, during interphase and metaphase, were observed for 
the A. cepa cells exposed to the different azo dye concentrations and 
treatments (Table 2).

With the help of the joint analysis of the CNA, considered herein as 
genotoxicity endpoints (losses, adherences, C-metaphases, polyploidies, 
bridges and multipolar cells), it was  possible to detect that there is a 
statistically significant difference between the A. cepa cells exposed to 
the dye and the ones exposed to the NC (Table 2). Coincidentally, all 
the alterations considered result from the mechanisms of aneugenicity, 
which, once again, confirms the aneugenic action of BDCP.

Micronuclei and chromosome breaks are excellent mutagenicity-
related endpoints, because they are genetic material alterations 

Treatment Nucleolus per cell NC PC
Black Dye Commercial Product Concentrations (µg/L)
1 10 100 1000

20 h

1   8.810 (0.042) 10.070 (0.042) 11.960 (0.035)   7.190 (0.024) 18.430 (0.061) 10.240 (0.040)
2 47.560 (0.038) 47.030 (0.034) 56.300 (0.031) 32.710 (0.022) 39.390 (0.049) 43.680 (0.032)
3 40.470 (0.056) 34.480 (0.030) 27.860 (0.045) 43.550 (0.027) 34.300 (0.044) 36.480 (0.038)
4  2.450 (0.061)   7.250 (0.090)   3.480 (0.098) 14.180 (0.127)      6.570 (0.058)   7.380 (0.066)
5  0.720 (0.027)    0.940 (0.046)   0.350 (0.029)   2.060 (0.037)   1.190 (0.031)   1.570 (0.051)
6 0   0.160 (0.021)   0.060 (0.019)   0.160 (0.029)   0.110 (0.034)   0.530 (0.036)ª
7 0   0.070 (0.001) 0   0.110 (0.000) 0   0.120 (0.003)
8 0 0 0   0.040 (0.001) 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0

48 h

1   8.360 (0.045) 11.430 (0.032)    8.050 (0.030)    9.790 (0.028)     6.580 (0.036)    10.290 (0.043)
2 38.410 (0.029) 44.920 (0.038)  37.130 (0.026)  37.580 (0.031)   24.980 (0.026)    38.130 (0.039)
3 37.770 (0.040) 26.020 (0.051)  43.790 (0.021)  35.430 (0.036)   43.060 (0.022)    39.140 (0.046)
4   14.780 (0.099)b 11.890 (0.202)    9.530 (0.060)  10.440 (0.090)     22.150 (0.051)b    11.320 (0.082)
5   0.680 (0.198)    4.960 (0.040)    0.980 (0.038)    4.940 (0.036)ab     2.990 (0.024)ab   0.690 (0.027)
6             0   0.780 (0.032)a   0.340 (0.011)ab    1.780 (0.022)a     0.230 (0.005)   0.300 (0.033)
7             0             0    0.170 (0.011) 0 0   0.130 (0.024)
8             0             0             0 0 0 0
9             0             0             0 0 0 0
10             0             0             0       0.040 (0) 0 0

72h

1 13.390 (0.028) 16.150 (0.030) 12.670 (0.029)    9.830 (0.025)   15.200 (0.026)     13.620 (0.024)
2 41.630 (0.023) 37.610 (0.024) 42.820 (0.028)  26.260 (0.028)   29.350 (0.021)     30.270 (0.023)
3 37.640 (0.029) 38.030 (0.025) 36.650 (0.026)  41.190 (0.020)   36.360 (0.024)     33.710 (0.020)
4   6.120 (0.075)   7.040 (0.045)    6.170 (0.042)   20.170 (0.027)a     17.140 (0.032)ab     19.760 (0.022)ab

5   1.170 (0.031)   0.850 (0.044)  1.500 (0.032)b   2.260 (0.061)     1.730 (0.045)       2.090 (0.024)
6   0.050 (0.019)   0.320 (0.021)    0.110 (0.019)   0.190 (0.029)     0.170 (0.034)       0.430 (0.035)
7              0 0    0.080 (0.002)   0.040 (0.016)     0.050 (0.013)       0.120 (0.001)
8              0 0             0            0              0                 0 
9              0 0             0            0              0                 0
10              0 0             0      0.060 (0)              0                 0

Note. NC. Negative Control; PC. Positive Control / 5,000 cells analyzed by concentration and by control. Average (Standard Deviation).
ªSignificantly different from the NC (p < 0,05) and  b Significantly different from the 20h treatment (p < 0,05), according to the Kruskal-Wallis test.

Table 3. Frequency (%) of nucleolus quantity observed in A. cepa meristematic cells exposed to the different concentrations of the Black Dye Commercial Product, and to 
the Negative and Positive Control Tests, for the 20, 48 and 72h treatments.
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(whether in the chromosomes or in the DNA) that can no longer be 
repaired by the cells. However, these can again be passed on to the new 
cell generations, and are therefore easily fixed in the organisms [55]. 
The MN/B frequencies registered in this study for all the treatments 
carried out with the dye were always higher and statistically more 
significant compared to the ones found in the NC test; except for the 
two smaller concentrations tested in the 48-h treatment (1 and 10 
µg/L) and for the concentrations tested in the 72-h recovery treatment 
(Table 2, Figure 2A). These results showed that the BDCP is mutagenic 
in the concentrations mentioned. The significant decrease in the 
micronucleus frequencies and chromosome breaks – observed after 
the 72-h recovery treatment in ultrapure water (Table 2) – indicates 
that the azo dye promotes mutagenic effects on A. cepa while there is 
exposure to the dye; although it does not seem to act cumulatively in 
the cells. 

From the significant micronucleus frequencies observed for three 
of the dye concentrations tested (20-h treatment), and for the two 
highest concentrations (48-h treatment) (Table 2), it is possible to assert 
that the BDCP presents a mutagenic action. These data confirm the 
mutagenic activity described by researchers in the test with Salmonella 
[15] and in tests with A. cepa [16], after evaluating the effects of water 
samples that received effluents from a textile company contaminated 
with such chemical. 

Chromosome fragments may result from breaks in the chromosome 
bridges, the ones which may originate from either translocations or 
cohesive chromosome terminations [50]. Significant frequencies of 
chromosome breaks were observed at the metaphase, anaphase and 
telophase (Figure 2B-C) of the two highest BDCP concentrations tested 
(20-h treatment) and at the smallest 48-h treatment concentration, 
which confirmed a direct action of the azo dye on the DNA molecule 
of the A. cepa cells, reinforcing both the dye mutagenic potential and 
clastogenic action.

The action of chemical agents on the cells might lead to a 
complex sequence of events, which may result in cell death [56]. High 
frequencies of cell death might therefore be considered endpoints 
related to cytoxicity, once they are alterations directly interfering in cell 
viability, consequently damaging different physiological processes of 
the organisms. The current study showed significant frequencies of cells 
under death process (apoptosis and necrosis) in the A. cepa meristems 
exposed to four azo dye concentrations tested in the 20-h treatment, to 
the highest concentration in the 48-h treatment and to the two highest 
concentrations in the 72-h treatment (Table 2, Figure 3). These results 
show that the BDCP was cytotoxic to the concentrations mentioned. 
The significant decrease in the cell death frequencies (apoptosis or 
necrosis), observed after the recovery treatments in ultrapure water 
shows that, in relation to the cytotoxic damage, the effect of the dye 

may be minimized once exposure conditions are back to normal. 
In addition, the azo dye does not present cumulative effects on the 
meristematic cells of the A. cepa test-system. 

Statistically significant differences were detected when only 
frequencies of necrosis were considered. It is a phenomenon that 
simultaneously involves many cells and is a result of cell injuries – a 
process which leads to metabolic damage and, finally, to cell death. In 
plants, it may be of several kinds: spontaneous; triggered by oxidative 
or stress mechanisms; induced by infectious agents or by toxic chemical 
components, and by hypersensitivity [57]. During necrosis, the cells 
first swell. Next, the plasma membrane bursts, consequently leading to 
fast cell lysis [58].

Unlikely necrosis, the term apoptosis may be attributed to the cell 
elimination process without an apparent burst of the plasma membrane 
[59]. Morphologically speaking, the cells are first reduced and their 
nuclei condensate. They then self-disintegrate, consequently forming 
structures named apoptotic bodies [58]. Concerning the apoptotic 
cell frequencies, significant differences in relation to the NC test were 
only observed for the highest concentration (1000 µg/L) in the 20-h 
treatment with the azo dye. After performing the recovery treatments 
for the 1000 µg/L concentration, a clear decrease in the frequencies 
of the apoptotic cells was observed. The decrease showed statistically 
significant differences in contrast to the 20-h treatment (Table 2), 
demonstrating that the meristems are able to recover from the azo dye 
cytotoxic action after exposure conditions are back to normal.  

Data related to all cell abnormalities (CNA, MN/B and AP/NE) – 
observed for the 20-h treatment (Table 2) – show that the higher the 
azo dye concentration tested, the higher the frequency of damaged 
cells, which are characterized by a positive dose-response ratio of the 
A. cepa test-organism. These data confirm a cytotoxic, genotoxic and 
mutagenic action of the BDCP azo dye studied herein. Since the highest 
concentration induced significant frequencies of cell abnormalities 
(CNA+MN/B+AP/NE), it was regarded as the highest toxic potential 
of the test-organism. Furthermore, the gradual decrease in the total 
frequency of the altered cells – after the 48 and 72-hour recovery 
treatments (Table 2) – indicates that for A. cepa, the BDCP azo dye does 
not show any cumulative effects (a fact proven by the 72-hour recovery 
treatment), since they presented frequencies of CNA+MN/B+AP/NE 
significantly lower than the ones observed for the 20-h treatment. 

In view of what was exposed, it can still be inferred that the main 
mechanism of action of the BDCP is the one of aneugenic nature. 
Some scientists [33, 40, 60] showed that the trifluralin herbicide has an 
attributed aneugenic action, especially due to the presence of an NO2 
group, which connects to tubulin molecules, avoiding its polymerization 
and, consequently, microtubule formation. According to one research 

Figure 2: Mutagenic damages observed in meristematic cells of the Allium cepa roots treated with the Black Dye Commercial Product. A. Cell with a 
micronuclei; B. Cell with one chromosome fragment; C. Cell with chromosome fragments in varied number and size.
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[61], the mutagenic potential of azo dyes is directly related to the kind 
and position of substituents such as the aromatic ring and the nitrogen 
atom in the amino portion. Knowing that the BDCP has three different 
components – the blue one (C.I. Disperse Blue 373), the violet one 
(C.I. Disperse Violet 93) and the orange one (C.I. Disperse Orange 
37) – presenting the NO2 groups [15], the components supposedly 
act in a similar way on the herbicide mentioned. Therefore, those 
groups must bind to the tubulin molecules, causing disturbances in 
the mitotic spindle formation during the cell cycle. This contributes to 
CNA formation, such as chromosome losses, chromosome adherences, 
C-metaphases, chromosome bridges, polyploidies and multipolarities, 
besides micronuclei formation. 

C Banding

The NC tests developed in this study showed blocks of 
heterochromatin spread throughout the nucleus of interphase cells 
and C-positive labeling in the telomere regions of A. cepa mitotic cells, 
confirming the some studies, who observed such C-positive location 
in the telomere region of chromosomes of this species [37]. Amongst 
the cell alterations analyzed (the ones resulting from the action of the 
different BDCP concentrations and treatments) using the conventional 
staining method, some of them showed greater details after the 
application of the C banding method, such as chromosome bridges 
(Figure 4A-B), micronuclei (Figure 4C), chromosome breaks (Figure 
4D), and chromosome loss (Figure 4E).

Chromosome breaks may be related to a higher affinity between 
some DNA regions and mutagenic agents, whether by the presence of 
higher fragility sites or by the composition of specific DNA sequences, 
possibly connected to the nuclear matrix [62]. Studies conducted by 
many scientists [63-68] showed a preferential location of chromosome 
breaks induced by alquilant agents, frequently associated with 
heterochromatin and the defined chromosome bands. In the present 
study, small chromosome fragments with C-positive labeling (Figure 
4D) were observed in the A. cepa meristematic cells exposed to the two 

highest azo dye concentrations in the 20-h treatment. The fragments 
seem to have come from breaks in terminal regions of chromosomes, 
corroborating other studies [69], who assert that most of the A. cepa 
chromosome breaks take place in the telomere regions composed of 
heterochromatin. Larger chromosome fragments were also detected in 
the cells exposed to the highest azo dye concentration, which showed 
to be composed by typical euchromatin, indicating that the break 
might have taken place in a region more interspersedly disposed in 
the chromosome. According to some scientists [70], any loss of the 
chromosome portion – even though it is composed of material without 
direct gene expression – might lead to cell inviability.

The absence of C-positive labeling in the median region of most 
chromosome bridges (Figure 4A) indicates that these alterations 
may result from breaks occurring in the telomere regions of the 
chromosomes. The breaks lead to cohesive terminations which joined 
and, consequently, connected chromatids to one another. This result 
might confirm assertions by one author [50], in which he says that 
chromosome bridges may originate from translocations, or simply 
from cohesive terminations. 

Among the micronuclei-bearing cells, it was possible to notice that 
some of them did not present micronuclei with C-positive labeling, 
whereas others presented. The presence of MN without C-positive 
labeling (Figure 4C) may still demonstrate a more serious effect of 
the dye on the exposed cells. The fact is that, if the MN do not have 
heterochromatin in their composition, it is because they do not have 
the telomere portion of the chromosomes, meaning they resulted 
from double chromosome breaks. Additionally, it was possible to 
detect nuclei with entirely condensed chromatin in the meristematic 
cells exposed to the highest azo dye concentration tested, in all the 
treatments. This might be considered as a strong sign of cell death 
induction, confirming the cytotoxic action of the dye studied herein.

NOR Banding

The results obtained from the AgNOR staining showed that a 
variable location of the acidic nucleolar proteins was found during 
cell division. The proteins were detected both near the chromosome 
peripheries and distributed in the cytoplasm during prophase and 
telophase, corroborating other studies using the A. cepa root cells [71]. 

After exposing the meristematic cells to all the BDCP 
concentrations and treatments, the presence of MN with and without 
a nucleolus organizer region (NOR) was confirmed (Figure 4F-G). The 
presence of NORs in MN shows that the azo dye may act directly on 
the regions related to rDNA sites, which are indispensable in processes 
of transcription and protein translation. Studies showed that either 
NOR loss or inactivation might be related to facts such as deletion or 
translocation [72]. On the other hand, the presence of MN-bearing 
cells without NORs shows herein that the azo dye does not influence 
the regions associated with the rDNA sites only, indicating that there 
are non-specific regions of the action of this chemical compound. 

Additionally, a great variation of the nucleolus number in the A. 
cepa meristematic cells was observed. A size variation of these nucleoli 
both inside one single cell and among the cells was also observed (Table 
3, Figure 4 H-J). According to some scientists, the variation in the 
number of nucleoli in plants results from the action of genotoxic agents 
[73]. This study showed a substantial variation within the quantity of 
nucleoli in the A. cepa meristematic cells after exposure to the azo dye 
concentrations. It also showed that only the PC tests, as well as the ones 
with the azo dye, were capable of inducing cell formation containing 

Figure 3: Cytotoxic damages observed in meristematic cells of the Allium 
cepa roots treated with the Black Dye Commercial Product. A-B. Apoptotic 
cells; C-D. Necrotic cells.
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over six nucleoli, although there was not a proportional ratio for the 
dose-response of the dye. This way, it was possible to consider that 
the nucleolus number and size variation (Table 3, Figure 4 H-J) might 
be associated with the genotoxic action of the BDCP azo dye. The 
recovery treatments do not seem to have been efficient at minimizing 
the damage the dye caused to the nucleolar domains. This inefficiency 
lies in the fact that after the 48 and 72-hour periods, frequencies of cells 
containing many nucleoli were still detected, probably resulting from 
cell polyploidization processes. 

CMA3/DAPI Banding

Analyses of the slides resulting from the CMA3/DAPI chromosome 
banding demonstrated that the terminal regions of the A. cepa 
chromosomes presented positive CMA3 labeling, i.e., rich in C-G, 
corroborating the results of other cytogenetic studies already conducted 
for this species [37].

Detection of MN-bearing cells was made possible both with and 
without positive CMA3 labeling (Figure 4 L-M). The presence of 
positive CMA3 labelings in the MN of the A. cepa meristematic cells 
indicates that these MN result from the genetic material containing 
terminal portions of the chromosomes – regions that are rich in 
satellite DNA composed of C-G repetitions. The MN without CMA3 
labelings, on the other hand, might result from breaks taking place 
in two chromosome regions, because they bear more decondensed 
regions of the chromosomes. 

Most of the chromosome bridges did not present fluorochrome 
CMA3 labeling (Figure 4 N-O). This result demonstrates that the 
chromosome bridges might result from either cohesive chromosome 
terminations or structural rearrangements, concurring with what 
was mentioned by other study [50]. They might also result from 
chromosome adherences [53] at previous phases, corroborating our C 
banding results. 

Figure 4: Allium cepa meristematic cells treated with the Black Dye Commercial Product and submitted to the Chromosome Bandings and Fluorescent in 
situ Hybridization (FISH). A-E. C-Banding. A-B. Anaphases with chromosome bridges: A. without C-banded region and B. with C-banded regions (arrows); C. Cell 
with micronuclei without C-banded region; D. Chromosome fragment with one C-banded region (arrow); E. Metaphase with chromosome loss, presenting C-banding in 
telomeric regions; F-J. NOR-Banding. F-G. Micronuclei: F. with nucleolus organizer region (arrow); G. with nucleolus organizer region (arrow) and without nucleolus 
organizer region (arrow head); H. Cells with two (arrow) and four nucleoli (arrow head); I. Cell with six nucleoli; J. Cell with ten nucleoli; L-O. CMA3 Banding. L-M. 
Micronuclei: L. without  CMA3-banded region and M. with CMA3-banded regions (arrow); N. Anaphase with chromosome bridge without CMA3-banded region; O. 
Telophase with chromosome bridge without CMA3-banded region and with chromosome loss showing CMA3-banded region (arrow); P-Q. FISH. P. Micronuclei with 
various small hybridization signals (arrow); Q. Micronuclei without hybridization signal (arrow).
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FISH (Fluorescent in situ hybridization)

Fluorescent in situ hybridization (FISH) is a technique that enables 
locating DNA specific sequences both on metaphase chromosomes and 
in the interphase nucleus [74]. Among the different repetitive DNA 
sequences used in the in situ hybridization technique, the 45S rDNA 
sequence is one of the most employed probes, because it is highly 
preserved among the organisms.  

Analyses of the slides submitted to the FISH technique (for all 
the tests and treatments performed) helped detect the presence of 
several labelings smeared throughout the nuclei (Figure 4 P-Q). Cell 
alterations were observed for both the conventional staining method 
and the chromosome banding resulting from the different BDCP 
concentrations and treatments. Some of those alterations could be 
better evaluated through the FISH technique with the 45S rDNA probe, 
such as the MN. 

Among the MN, it was possible to notice a variation in their 
constitution – some of them presented several small signals (Figure 
4P), whereas others showed no signals at all (Figure 4Q). The 
signals detected in the micronuclei are associated with the ends of 
chromosomes, since some studies conducted using the FISH technique 
showed that the rDNA sequences in A. cepa are located right in these 
chromosome regions [75, 76]. Additionally, some studies that applied 
FISH in A. cepa showed that rDNA loci are present on the satellite 
chromosome 6 and the smallest chromosome 8 of this species [77]. The 
presence of hybridization signals in the MN of the A. cepa meristematic 
cells indicates that these MN bear 45S rDNA sites, presenting regions 
from chromosome 6 and/or 8. However, this chemical compound also 
induced the formation of micronuclei without hybridization signals, 
indicating that the target sites of the azo dye action might vary and be 
non-specific.

Finally, knowing that the BDCP induces MN with hybridization 
signals, we concluded that FISH using 45S rDNA probe provided us 
a useful chromosome marker. This marker helped identify specific 
chromosomes involved in aneugenic and clastogenic effect of such 
chemical, since it is known that chromosomes 6 and 8 in A. cepa 
karyotype bear 45S rDNA loci. 

Conclusions
Considering all the types of cell alterations discussed herein, we can 

conclude that all the BDCP dye concentrations tested were cytotoxic, 
genotoxic and mutagenic to the A. cepa test-organism. The alterations 
observed indicate the sort of mechanism of action of the azo dye 
(aneugenesis or clastogenesis). 

The different cytogenetic techniques were useful and efficient in 
determination of the different mechanisms of action of the BDCP. By 
aid of chromosome bandings (C, NOR and CMA3/DAPI) and FISH, 
it was possible to infer a relation between events like chromosome 
breaks and losses and varied chromosome sites. This leads us to suggest 
that these techniques must be associated with the one of conventional 
cytogenetic analysis (chromosome and nuclear aberrations assay) 
in order to evaluate genetic damage to organisms exposed to 
environmental contaminants. 

Although the recovery treatments reduced the frequencies of 
cytotoxic, genotoxic and mutagenic damages in nearly all the assays 
performed, the effects caused by the dye were not entirely eliminated 
after the exposure conditions of the test-organism were back to normal.

From the results obtained, we may conclude that the associations 

of different cytogenetic methods may fully clarify the modes of action 
of environmental pollutants. Furthermore, they might be useful for 
eventual studies carried out with other textile dyes, or even with other 
chemicals potentially harmful to the environment.
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