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Introduction
The Adomian decomposition method (ADM) was firstly introduced 

by George Adomian in 1981  and developed in [1]. This method has 
been applied to solve differential and integral equations of linear and 
non-linear problems in mathematics, physics, biology and chemistry 
and upto now a large number of research papers have been published 
to show the feasibility of the decomposition method.

The main advantage of this method is that it can be applied 
directly to all types of differential and integral equations, linear or non-
linear, homogeneous or inhomogeneous, with constant or variable 
coefficients. Another important advantage is that the method is capable 
of greatly reducing the size of computation work while still maintaining 
high accuracy of the numerical solution [2]. The ADM decomposes a 
solution into an infinite series which converges rapidly to the exact 
solution. The convergence of the ADM has been investigated by a 
number of authors [3,4].

The non-linear problems are solved easily and elegantly without 
linearising the problem by using ADM. It also avoids linearisation, 
perturbation and discretization unlike other classical techniques [5]. 

The Adomian Decomposition Method
Consider the differential equation 

= ( ),Ly Ry Ny g x+ +              (1)

Where N is a non-linear operator, L is the highest order derivative 
which is assumed to be invertible and R is a linear differential operator 
of order less than L. Making Ly subject of the formula, we get 

= ( ) .Ly g x Ry Ny− − 				              (2)

By solving (2) for Ly, since L is invertible, we can write 
1 1 1 1= ( ) .L Ly L g x L Ry L Ny− − − −− −              (3)

For initial value problems we conveniently define L-1 for =
n

n
dL
dx

as the n-fold definite integration from 0 to x. If L is a second-order 
operator, L-1 is a two fold integral and so by solving (3) for y , we get 

1 1 1= ( ) ,− − −+ + − −y A Bx L g x L Ry L Ny 			              (4)

Where A and B are constants of integration and can be found from the 
initial or boundary conditions.

The Adomian method consists of approximating the solution of (1) 
as an infinite series 

=0
( ) = ( )

∞

∑ n
n

y x y x   (5)

and decomposing the non-linear operator N as 

=0
( ) = ,n

n
N y A

∞

∑ 					   (6)

Where An are Adomian polynomials [6,7] of y0,y1,y2,…,yn given by 
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Substituting (5) and (6) into (4) yields 
1 1 1

=0 =0 =0
= ( ) .n n n

n n n
y A Bx L g x L R y L A

∞ ∞ ∞
− − −   

+ + − −   
   

∑ ∑ ∑
The recursive relationship is found to be 

0 = ( )y g x
1 1

1 = .n n ny L Ry L A− −
+ − −

Using the above recursive relationship, we can construct the 
solution y as 

= ( ),lim n
n

y y
→∞
Φ                (7)

where 

=0
( ) = .

n

n i
i

y yΦ ∑ 					   (8)

Application to Eigenvalue Problems
Problem I

Consider the differential equation 

= 0, 0 < <y y xλ′′ + ∞

with the conditions y(0)=0, y and y′ are finite as x→∞. The equation 
can be written as 

=Ly yλ−
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(0) = 0,y

where 
2

2= dL
dx

 is the differential operator. Operating on both sides 

with the inverse operator of L (namely 1

0 0
[ ] = [ ]

t x
L dsdx− ⋅ ⋅∫ ∫ ) to get 

1( ) =y x A Bx L yλ−+ −

where A and B are constant of integration. Applying ADM technique 
yields 

1

=0 =0
= .n n

n n
y A Bx L yλ

∞ ∞
−+ −∑ ∑

Thus we obtain 

0 =y A Bx+

1
1 = , = 0,1,2, .n ny L y nλ −
+ − 

Using the condition y(0)=0, we have A=0 and therefore y0=Bx. 
Therefore we have 

3
1

1 0( ) = ( ) = .
3!
xy x L y Bλ λ−− −
5

1 2
2 1( ) = ( ) = .

5!
xy x L y Bλ λ−−

7
1 3

3 2( ) = ( ) = ,
7!
xy x L y Bλ λ−− −

and so on. Considering these components, the solution can be 
approximated as

=0
( ) = ( ) = ( )n ii

y x y y x∞
Φ ∑ , with the following expansions 

3

1 = .
3!
xBx λΦ −

3 5
2

2 = .
3! 5!
x xBx B Bλ λΦ − +

3 5 7
2 3

3 = .
3! 5! 7!
x x xBx B B Bλ λ λΦ − + −

contains the exact power series expansion of the closed form 
solution 

( ) = sin( ).By x xλ
λ

Problem II

Consider the following differential equation 

= 0, 0 < <y y xλ π′′ +

with the Neumann boundary conditions y′(0)=0 and y′(π)=0. 
Applying the Adomian decomposition method, the equation can be 
written as 

= ,Ly yλ−

where 
2

2= dL
dx

 is the differential operator. Operating on both sides 

with the inverse operator of L (namely 1

0 0
[ ] = [ ]

t x
L dsdx− ⋅ ⋅∫ ∫ ) to get 

1( ) =y x A Bx L yλ−+ −

Where A and B are constants of integration. Applying ADM 
technique yields 

1

=0 =0
= .n n

n n
y A Bx L yλ

∞ ∞
−+ −∑ ∑

Thus we obtain 

0 =y A Bx+

1
1 = , = 0,1,2, .n ny L y nλ −
+ − 

Using the condition y′(0)=0, we have B=0 and therefore y0=A. 

Therefore we have 
2

1
1 0( ) = ( ) = .

2!
xy x L y Aλ λ−− −

4
1 2

2 1( ) = ( ) = .
4!
xy x L y Aλ λ−−

6
1 3

3 2( ) = ( ) = ,
6!
xy x L y Aλ λ−− −

and so on. Considering these components, the solution can be 
approximated as

=0
( ) = ( ) = ( )n ii

y x y y x∞
Φ ∑ , with the following expansions 
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1 = .
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2 4
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2 = .
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2 4 6
2 3

3 = .
2! 4! 6!
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contains the exact power series expansion of the closed form 
solution 

( ) = cos( ).y x A xλ

Using the other condition y′(π)=0, the eigenvalues are computed 
exactly 

2= , = 0,1,2, .n nλ 

Conclusion
In this paper, we showed the accuracy, applicability and simplicity 

of the Adomian decomposition method applied to some eigenvalue 
problems. This method is very powerful and an efficient technique for 
solving different kinds of problems arising in various fields of science 
and engineering and present a rapid convergence for the solution.
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