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Abstract

Purpose: To predict overall survival (OS) in non-metastatic esophageal cancer using texture analysis of pre-
therapy computed tomography (CT) images.

Materials and Methods: Records from 762 non-metastatic esophageal cancer patients with non-contrast CT
scans (obtained from 1998-2011) before receiving chemoradiation were retrospectively reviewed. 328 quantitative
image features were extracted from the esophageal gross tumor volume (GTV). A random survival forest model
compared how well five of these features (entropy, histogram 10th percentile, volume, volume-to-area ratio, fraction
GTV pruned after thresholding) predicted OS versus all 328 features. Cox proportional hazards modeling was used
to derive scores, based on these five features, which could stratify patients by survival in a training set consisting of
50% of the 762 cases, chosen randomly from the data. This model was then tested in a validation set (remaining
50% of cases). Multivariate analysis was done with the image-derived score and other prognostic variables.

Results: CT texture analysis based on the five image-derived features yielded a similar concordance rate for
predicting OS (56%) as did all 328 features (56%), and in fact showed higher concordance for predicting OS than
disease stage alone (44%). This image-derived score was also able to significantly stratify OS (P<0.05) in both the
training and validation set, as well as independently predict OS in multivariate analysis (HR 1.61, 95% CI 1.13-2.29,
P=0.009), along with stage, treatment with surgery, tumor grade, and radiation modality.

Conclusions: Texture features from pretreatment CT images can independently predict OS in patients with non-
metastatic esophageal carcinoma.

Keywords: Chemoradiation; Positron emission tomography;
Fluoropyrimidine; Radiation therapy; Thoracic/esophageal tumors

Advances in Knowledge
• In a cohort of 762 patients with non-metastatic esophageal cancer,

computed tomography (CT) texture analysis (based on five
imaging features: entropy, histogram 10th percentile, volume,
volume-to-area ratio, and fraction GTV pruned after thresholding)
was found to independently predict overall survival (OS) in
multivariate analysis (HR 1.61, 95% CI 1.13-2.29, P=0.009), as did
clinical stage, treatment with surgery after chemoradiation, tumor
grade, and radiation modality.

• Using a random survival forest model where survival concordance
was assessed by computing an estimate of the cumulative hazard
function, this CT-based textural analysis was found to produce
higher concordance for OS (56%) than was disease stage alone
(44%), and similar to baseline standardized uptake values on
positron emission tomography (55%).

• Using log-rank tests, CT–based texture analysis was found to
stratify OS with statistical significance (P=0.0119) in a randomly
chosen validation set (N=381, random 50% of the 762 patients),

and was also seen to dichotomize survival (P=0.0086) in
esophageal cancer patients who received definitive chemoradiation
without surgery (N=383).

Implication(s) for Patient Care
CT texture features may serve as a useful and novel imaging

prognostic biomarker for risk stratification of non-metastatic
esophageal cancer patients and optimization/individualization of
treatment.

Introduction
The prognosis for patients with esophageal cancer is dismal. The

current standard of care for locally advanced esophageal cancer is
neoadjuvant chemoradiation followed by surgery, which has led to
improved survival compared to surgery alone [1]. However, the
benefit of surgery after chemoradiation is controversial [2,3], as is the
potential benefit of induction chemotherapy before chemoradiation
[4]. Identifying novel predictors of outcome for patients with
esophageal cancer may allow better risk stratification for guiding more
optimized management strategies.
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Tumor heterogeneity is a well-known indicator of adverse
prognosis in esophageal cancer. Genomic and phenotypic
heterogeneity in esophageal cancer can negatively affect treatment
response to a variety of cytotoxic agents [5,6]. Additionally,
heterogeneity in tumor vascularity can result in hypoxic areas within
the tumor, which can drive genomic instability [7], promote tumor
survival, and result in treatment failure [8]. Noninvasive ways of
assessing biological tumor heterogeneity may be useful for predicting
treatment response and survival.

One noninvasive approach to assessing tumor heterogeneity is to
analyze textural qualities on images of tumors, which would provide
surrogate information on the tumor microenvironment. Both positron
emission tomography (PET) and computed tomography (CT) have
been used to derive textural information on tumors, which is then
analyzed by using structural, model-based, or statistical methods
[9,10]. Statistical methods, used widely for oncologic texture analysis,
are based on representations of texture from the distribution and
relationship of pixel gray-level values in an image. The value of
statistic-based CT texture analysis as a prognostic marker in cancer
has been promising in evaluations of several types of cancer, including
non-small cell lung cancer [11], liver cancer [12], colorectal cancer
[13], and renal cell cancer [14]. However, few studies (with limited
sample sizes) have investigated the potential of CT texture analysis for
predicting prognosis in esophageal cancer [15-17]. The goal of our
current study was to assess whether texture analysis of pre-therapy
non-contrast CT images can be used as a prognostic marker for OS in
a large cohort of patients with non-metastatic esophageal cancer.

Materials and Methods

Patients
This study was approved by the appropriate institutional review

board. We identified 762 consecutive patients with biopsy-confirmed
non-metastatic esophageal cancer who had undergone non-contrast
CT scans before receiving chemoradiation ± surgery between 1998 and
2011. All patients must have had pre-therapy CT scans with consistent
imaging parameters (please see “CT Image Acquisition” below);
patients with CT scans of differing tube voltage (N=5) and slice
thickness (N=45) were excluded from analysis. Beam hardening or
metal artifacts were not examined as an exclusion parameter. Disease
stage was determined according to the 6th (2002) edition of the
American Joint Committee on Cancer staging manual.

Treatment
Chemotherapy consisting of a fluoropyrimidine (IV or oral) and

either a platinum compound or a taxane was given concurrently with
radiation therapy to a median dose of 50.4 Gy delivered in daily 1.8-Gy
fractions. The GTV was defined as all known gross disease based on
the non-contrast radiation planning CT and all available clinical
information (including baseline PET/CT, diagnostic CT with contrast,
and endoscopy/endoscopic ultrasound results). Each GTV for all 762
patients was manually contoured by a radiation oncologist with
expertise in the treatment of thoracic/esophageal tumors.

CT image acquisition
All pre-therapy CT images were acquired by using imaging systems

manufactured by either GE Medical Systems or Philips. Images were
obtained across various machine models, but attention went into

assuring that all image sets had consistent imaging parameters
including: 1) tube voltage of 120 kVp for all patients, 2) consistent slice
thickness with modal average of 2.5 mm (range: 2.5-3 mm), 3)
comparable in-slice pixel dimension of 0.98mm (range 0.94-0.98 mm
allowed), and 4) use of convolution kernel with body filter for all
patients.

CT texture analysis and statistical methods
Non-contrast CT image sets obtained from all 762 patients before

chemoradiation were available in institutional archives for analysis. To
analyze the textural features on CT images of esophageal tumors, 328
distinct quantitative image features (based on tumor geometry,
intensity histogram, absolute gradient image [IGR], co-occurrence
matrix [COM], and run-length matrix [RLM]) were extracted from the
physician-delineated GTV on each image set. Histograms were
calculated from intensity of pixels, without consideration of spatial
relations between pixels. IGR derives features from gradient
magnitude map of the image. COM is a second-order histogram,
computed from intensities of pairs of pixels, and RLM holds counts of
pixel runs with the specified gray-scale level and length. Details of
these features are described elsewhere [18].

For the current study, instead of using all 328 image features, five
representative image-texture features (entropy, histogram 10th

percentile, tumor volume, volume-to-area ratio, and fraction GTV
pruned after thresholding) were ultimately chosen for the final
texture-analysis. These five features were chosen based on a previously
published study which sought to identify CT image features that were
reproducible (small variation between sessions or between CT
scanners), non-redundant (not highly correlated with other features),
and informative (features that vary between patients) [18]. For these
features, the noise (change in the value of the feature if the patient is
imaged twice) is small compared with the variability in the value of the
feature between patients. Thus, based on both this non-small cell lung
cancer study [18] and another yet-to-be published study examining a
smaller range of useful imaging features in esophageal cancers, these 5
features were felt to be the most relevant for assessing CT texture in
esophageal tumors. To determine whether these 5 features were indeed
accurate representations of the initial 328 quantitative image features,
a random survival forest model [19] was used to compare the model
error of these five image features with that of all 328 image features for
predicting OS. The error of the random forest model was estimated by
computing an estimate of the cumulative hazard function. Each node-
split of a tree in this ensemble was obtained via a log-rank test. An
estimate of the model’s performance was assessed through the out-of-
bag (OOB) error rate. This error rate was estimated through the
formula: 100*(1-C), with C being a concordance index [19] that
measures how well the random forest correctly ranks survival of any
two individuals in the data. In addition to providing an estimate of
error rate, the model also outputs a measure of variable importance,
i.e. a ranked list of predictor variables that are important to the model
[19]. The importance measure of a variable is the value of prediction
error of the entire model (i.e. all the variables) subtracted from the
error of a model containing randomized values for that variable. The
relative importance value is the value of importance measure divided
the maximum possible importance value across all the variables.

A Cox proportional hazards model was then used to model the
relationship between OS and the five representative imaging variables
in 50% of the 762 patients in the study population, chosen at random
(i.e., the training set). The coefficients from this Cox proportional
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hazards model were used to produce an image-derived score for each
patient (i.e. coefficient*tumor volume + coefficient*volume-to-area
ratio + coefficient*fraction GTV pruned after thresholding +
coefficient*histogram 10th percentile + coefficient *entropy = image-
derived score, with score ranging from 2.852 to 6.650). Using a k-
adaptive partitioning algorithm, we then sought a cut-point on the
score continuum that could stratify survival among the training set
consisting of a random 50% of the 762 cases. This identified cutpoint
(3.811) was then tested within a validation cohort (consisting of the
remaining 50% of the cases not present in the training cohort). The
training set and validation set were balanced by vital status; although
we did not balance by demographics, baseline covariates were
controlled for in the multivariate model described below. As another
validation method, we also used k-adaptive partitioning algorithm to
derive a cut-point along the continuum of image-derived score for the
set of patients who received preoperative radiation followed by
surgery. Using a log-rank test, we then assessed whether this cut-point
could also induce a statistically significant survival difference in the set
of patients who received definitive chemoradiation alone.

Next, to assess whether this image-derived score would remain an
independent predictor of survival outcomes, a new multivariate Cox
proportional model was constructed using the image-derived score
and other potential prognostic variables including age at diagnosis,
Karnofsky performance status (KPS), baseline PET standardized
uptake value (SUV) both as a continuous and a dichotomized variable
(using a clinical and median cut-off of SUV ≤ 2 vs. >2 and SUV ≤ 10
vs. >10, respectively), disease stage, tumor histology, radiation
modality, tumor grade and length, pathologic response to
chemoradiation, receipt of induction chemotherapy, and treatment
with surgery.

Dates of death were determined by reviewing clinical follow-up
information in the patients’ medical records and Social Security Death
Index. OS was calculated from date of diagnosis to date of death or last
follow-up.

Results

Patient characteristics
Table 1 summarizes the patient-, disease-, and treatment-related

characteristics of the study group. The median age at diagnosis was 64
years; 84% (643/762) were men with moderate-to-poorly differentiated
esophageal adenocarcinomas. While 49.7% (379/762) of the patients
received trimodality therapy with neoadjuvant chemoradiation
followed by surgery, 50.3% (383/379) received definitive
chemoradiation alone.

Characteristics Value or No. of Patients (%)
(N=762)

Age at diagnosis, years  

Median 64

Mean 63.2

Range 25-87

Gender  

Male 643 (84%)

Female 119 (16%)

KPS  

80-100 685 (90%)

40-70 75 (10%)

Histology  

Adeno 585 (76%)

SCC 165 (22%)

Other 12 (2%)

Tumor Differentiation  

Well 10 (1%)

Moderate 310 (43%)

Poor 403 (56%)

Overall Clinical Stage  

1 13 (2%)

2 259 (35%)

3 412 (56%)

4a 56 (7%)

Induction Chemo  

Yes 305 (40%)

No 457 (60%)

Radiation Modality  

3DCRT 326 (43%)

IMRT 316 (41%)

PBT 120 (16%)

Surgery  

Yes 379 (50%)

No 383 (50%)

Table 1: Baseline patient and treatment factors. Abbreviations: KPS:
Karnofsky Performance Status Score; Adeno: Adenocarcinoma; SCC,
Squamous Cell Carcinoma; 3D CRT: Three-Dimensional Conformal
Radiation Therapy; IMRT: Intensity-Modulated Radiation Therapy;
PBT: Proton Beam Therapy.

Quantitative image features
As previously noted, a total of 328 quantitative image features based

on tumor geometry, intensity histogram, IGR, COM, and RLM were
extracted from the esophageal cancer GTV for each image set. A
random survival forest model was used to compare the concordance of
five of these features (entropy, histogram 10th percentile, tumor
volume, volume-to-area ratio, and fraction GTV pruned after
thresholding) versus that of all 328 quantitative image features for
predicting OS. The estimated error rates for predicting OS were 43.6%
for all 328 variables vs. 43.9% for the five image variables. Because the
five image features yielded a comparable error rate (44%) for
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predicting OS, only those five were used to create an image-derived
score for subsequent analysis. Notably, the error of those five image
variables was lower than overall clinical stage (56%) and similar to
baseline PET SUV (45%) for predicting OS. A detailed list and relative
importance of each of the 5 image texture features are displayed in
Table 2.

Variable Importance Relative Importance

GEO_volume 0.0139 1.000

GEO_fx_pruned 0.0073 0.521

IHIST_entropy 0.0042 0.305

GEO_ROI_VA_ratio 0.0037 0.268

IHIST_p10tile 0.0025 0.182

Table 2: Five image variables used for CT textural analysis.
Abbreviations: IHST_entrop = entropy, IHIST_p10tile = histogram 10
percentile, GEO_volume=tumor volume, GEO_ROI_VA_Ratio =
volume-to-area ratio, and GEO_fx_pruned=fraction GTV pruned
after thresholding. The importance measure of a variable is the value
of prediction error of the entire model (i.e. all the variables) subtracted
from the error of a model containing randomized values for that
variable. The relative importance value is simply the value of
importance measure divided the maximum possible importance value
across all the variables.

Prediction of survival based on image-derived score
Next, using Cox proportional hazards modeling, we constructed an

image-derived score to model the relationship between OS and the five
imaging variables within the training set (random sample of 50% of
the study group) (Table 3). A cutpoint along this image-derived score
(derived from the training set) was able to stratify OS with statistical
significance (P=0.0119) in the validation set (Figure 1A). Similarly, a
cutpoint was derived along the continuum of the image-derived score
for the set of patients treated with preoperative chemoradiation
followed by surgery. This cutpoint along the image-derived score was
also seen to dichotomize survival (P=0.0086) in the remaining patients
who received definitive chemoradiation alone (Figure 1B).

Variable Comparis
on

Hazard
Ratio

95% CI P-Value

GEO_volume Per 1000-
unit

1.012 1.007, 1.017 <0.0001

GEO_ROI_VA_rati
o

Per unit 0.860 0.649, 1.140 0.29

GEO_fx_pruned Per unit 26.91 1.079, 671,1 0.045

IHIST_p10tile Per unit 1.005 0.999, 1.010 0.09

IHIST_entropy Per unit 0.851 0.695, 1.042 0.12

Table 3: Cox proportional hazards model for predicting overall
survival using the five imaging variables. Abbreviations:
CI=Confidence Interval, IHST_Entrop=Entropy,
IHIST_P10tile=Histogram 10th Percentile, GEO_Volume=Tumor
Volume, GEO_ROI_VA_Ratio=Volume-To-Area Ratio, And
GEO_Fx_Pruned=Fraction GTV Pruned After Thresholding.

Figure 1: Stratification of overall survival based on image-derived
score. (A) Survival difference in randomly chosen validation group
(50% of the 762 patients not present in training set) using the
cutpoint chosen from training set (50% of the 762 patients chosen
randomly from the dataset). (B) Survival difference among patients
receiving definitive chemoradiation (N=383) using a cutpoint
chosen from patients treated with neoadjuvant chemoradiation
followed by surgery (N=379).

Multivariate analysis of survival outcomes
Other known prognostic patient and disease factors, along with the

image-derived-score, were then included in a multivariate analysis of
predictors of OS. The five-feature image-derived score remained an
independent predictor of OS on multivariate analysis (P=0.009), as did
treatment with surgery (P<0.0001), overall clinical stage (P=0.0003),
tumor grade (P=0.03), and radiation modality (P=0.03) (Table 4).

Characteristic Comparison Hazard
Ratio

95%
CI

P-Value

Age at Diagnosis Per Year 1.004 0.99,
1.02

0.52

Baseline PET SUV Per Unit* 1.01 0.99,
1.02

0.23

Entropy Per Unit 0.94 0.76,
1.18

0.61

Performance status Per Unit 0.996 0.98,
1.01

0.6

Tumor Histology SCC vs. Adeno 0.75 0.52,
1.07

0.11

Tumor Length Per Unit 0.97 0.92,
1.02

0.25

Induction Chemo Yes vs. No 0.88 0.67,
1.16

0.37

Path Response Yes vs. No 1.27 0.30,
5.40

0.74

Tumor Grade Poor vs. Well/
Moderate

1.34 1.03,
1.73

0.03

Radiation Modality IMRT vs. 3D-CRT 0.73 0.55,
0.97

0.03
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Protons vs. 3D-CRT 0.64 0.42,
0.97

0.03

Surgery Yes vs. No 0.34 0.22,
0.53

<0.0001

Overall Clinical
Stage

3-4a vs. 1-2 1.75 1.29,
2.36

0.0003

Image-Derived
Score

Per Unit 1.61 1.13,
2.29

0.009

Table 4: Multivariate analysis of potential predictors of overall survival
outcomes. Abbreviations: CI, confidence interval; PET, positron
emission tomography; SUV, standardized uptake value; IMRT:
Intensity-Modulated Radiation Therapy; 3D-CRT: Three-Dimensional
Conformal Radiation Therapy. *Note baseline PET SUV was also
analyzed as a dichotomized variable (using a clinical cutoff of SUV ≤ 2
vs. >2, and a median cutoff of SUV ≤ 10 vs. >10) in our multivariate
model and its p-value for predicting OS remained >0.05.

Discussion
Our findings suggest that textural features extracted from

pretreatment CT images may serve as an independent predictor of OS
in patients with non-metastatic esophageal carcinoma, even after
adjusting for other known prognostic covariates. While textural
features have been established to provide predictive data on outcomes
in other cancers, establishing its ability to predict survival outcomes in
esophageal cancers specifically not only further validates texture
analysis as a legitimate prognostic biomarker that warrants prospective
evaluation, but also highlights CT texture analysis as a novel method
that can be used to risk-stratify and guide management decisions in a
dismal cancer. Patients with the worst prognoses, for example, could
be guided towards randomized trials evaluating targeted agents
beyond standard chemoradiation. Similarly, the need for induction
chemotherapy before chemoradiation, or surgery after
chemoradiation, could be better considered in light of the risk group
in which patients are placed based on this prognostic imaging-
biomarker score.

One possible explanation for the link between textural appearance
of tumors on CT and patient survival is that the relationship between
tumor heterogeneity and hypoxic voids/areas of necrosis (as related to
tumor vascularity), which may be seen as differences in pixel intensity/
attenuation on CT [11]. Hypoxia can then result in oxidative stress,
promotion of survival factors, increased tumor aggression, and
treatment resistance [7]. Tumor textural features has in-fact been
linked with tumor hypoxia on histologic examinations of non-small
cell lung cancer (NSCLC) patients [20]. Because hypoxia is a
recognized marker of poor outcome, a relationship between tumor
hypoxia, tumor heterogeneity, CT textural heterogeneity, and survival
outcomes would make sense from a biologic standpoint.

Previous studies have indeed shown CT texture analysis to have
promise as a prognostic and predictive marker in a variety of types of
cancer. In NSCLC, tumor heterogeneity as assessed by CT textural
analysis and disease stage seemed to independently predict survival
and was more predictive than tumor uptake of fluorodeoxyglucose
[11,21]. In colorectal cancer, liver texture on portal phase CT images
was superior to CT perfusion images at predicting survival [13].
However, only two studies have been done to-date assessing CT
texture features as a potential prognostic biomarker in esophageal
cancer. Ganeshan et al. [16] found associations between CT textural

features, high tumor metabolism, and advanced disease stage in 21
patients with esophageal cancer; interestingly, CT textural features
independently predicted survival but SUV and disease stage did not.
Another study by Yip et al. [15] confirmed the association between CT
textural features and survival time in 36 patients with esophageal
tumors undergoing contrast-enhanced CT before and after
chemoradiation. These preliminary studies highlighted the potential of
using CT textural analysis as a prognostic marker in esophageal
cancer; but, drawing conclusions are difficult given the relatively small
numbers of patients analyzed.

The study reported here further validates these results by examining
the utility of baseline CT texture analysis in a larger and more
relatively uniform cohort of 762 esophageal cancer patients all treated
with chemoradiation. Although a recent meta-analysis could not
confirm SUV to be independent of other predictive factors such as
stage [22], we found CT imaging-derived score to independently
predict OS on multivariate analysis, despite adjustments for disease
stage, baseline SUV, and other known prognostic covariates. In fact,
similar to findings in previous studies, baseline SUV (whether
continuous or dichotomized) also did not independently predict OS in
our study. This suggests that although CT texture score was
comparable to SUV in predicting OS in our forest survival model, it
may provide additional prognostic information beyond SUV alone.

Other imaging-related characteristics being evaluated for
prognostic value in esophageal cancer include post-treatment
SUVmax, SUVmean, SUVpeak [23,24], diffusion-weighted magnetic
resonance imaging of tumors [25], dynamic contrast-enhanced CT
measurements of tumor perfusion [26], and use of other metabolic
tracers with PET [16]. Future comparative studies of CT textural
analysis against these other potential imaging biomarkers are needed.
Another step would be to combine CT texture analysis with other
established prognostic clinical variables to derive an even more
sophisticated model for predicting outcomes, but this would require
extensive validation and more detailed exploration beyond the scope
of this paper.

Other limitations of our study include its retrospective nature.
Because our image-derived score was based on a random sample of
patients from one institution, the robustness of the cutpoint for that
score is unclear and our results may not be generalizable to other
centers. Nevertheless, our image-derived score was able to stratify
patients into distinct risk-groups, and remained an independent
predictor of OS even as a continuous variable. Another limitation is
the potential for gas to have been present within the delineated
tumors, which could influence the values of the extracted quantitative
features; we minimized this confounding by using thresholding
techniques. Finally, textural analyses were done on CT scans obtained
without intravenous contrast enhancement. The inclusion of contrast
material could improve the ability of CT textural analysis to pick up
subtleties in vascular heterogeneity; but, not every patient will be able
to tolerate contrast.

Despite these limitations, this study is still the largest to-date to
investigate the potential of using CT textural analysis as an imaging-
based biomarker of prognosis in esophageal cancer. Our results
suggest that features extracted from pretreatment CT images can
independently predict OS in patients with non-metastatic esophageal
carcinoma and warrant further investigation.
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