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Introduction
Population based family studies have been used in genetic 

epidemiology to assess the association of environmental risk factors 
with disease and to quantify the aggregation of cases within families. 
These types of studies integrate statistical methods and classical 
epidemiology to analyze the correlations among family members who 
share the same genetic and environmental background. There are 
several advantages in using family study designs. The use of extended 
pedigrees or even nuclear families enhances the statistical power for 
gene discovery. Clinical characteristics common to family members 
may also be used to increase information by defining subgroups of 
families for analysis such as in the investigation of familial aggregation 
of components of metabolic syndrome [1]. Another important feature 
of family studies in contrast to studies of unrelated individuals is 
the issue of internal control. The analysis of traits of interest for 
family members should account for both genetic background factors 
and environmental exposures. A common example is the case of 
monozygotic twins where maximum genetic control is achieved. It is 
well-known that nuclear family members tend to have relatively similar 
environmental conditions, diet, and perhaps levels of physical activity. 
The familial aggregation of much chronic and infectious disease is 
also well documented. For example, results from recent studies have 
shown that pathogens causing Th1 diseases are passed from parents 
to child. Information accessed on December 23-2012 from (http://
bacteriality.com/2008/07/31/hpv/) reveals that some of the chronic 
bacterial species that cause inflammatory illness can remain alive in 
breast milk and thus be passed from mother to child through breast 
feeding. Growing evidence suggests that the Th1 pathogens, rather 
than genetic mutation, are the driving force behind this familial 
aggregation. Although their role is unclear, researchers have also found 
a relationship between bacterial infection and cancer [2]. This chain 
of reasoning provides a possible explanation for the aggregation of 
cancer in families. A study conducted in 2010 using the PET scanner 
to examine the prevalence of plaque in brains (which is the hallmark 
ofAlzheimer’s disease) found that a child’s level of plaque is consistent 
with the corresponding levels of their fathers and in particular of their 
mothers, even years before the child’s diagnosis [3].

In many population-based family studies, interest is focused in 
detecting gender differences in the risk of developing a chronic disease. 
For example, a recent study [4] aiming at examining sex-specific 
associations between cardiovascular risk factors and type 2 diabetes 
mellitus showed that there are gender-related dissimilarities that are 
apparently involved in disease development. Another study conducted 
on a sample of families from South Australia [5] found that men and 
women face different challenges in the management of diabetes and its 
associated complications.

One of the major limitations of the above studies is that the 
comparisons between males and females were based on parallel 
group designs, and consequently suffer from the lack of control over 
possible confounding. Another limitation is that the lack of a reference 
population makes the problem of statistical inference (estimation and 
hypothesis testing) less meaningful. A further methodological challenge 
that faces researchers is that estimates of trait correlations, specifically 
the intra-class correlations for males and females, are themselves 
correlated. Although studies on comparing sib-sib correlations have 
been of frequent interest [6,7] comparisons among these correlations 
have been usually made descriptively. When traits are measured on the 
continuous scale, Donner et al. [8] developed several procedures for 
comparing the sib-sib correlations among males and females, including 
likelihood-based tests, while assuming that the underlying mechanism 
generating the data is multivariate normal. When the trait of interest 
is measured the binary scale, efficient methods for comparing sib-
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Abstract
Estimation of measures of familial aggregation is considered the first step in establishing whether a specified 

disease has a genetic component. Population based family study designs areusually used to estimate correlations 
among siblings. When the trait of interest is quantitative (e.g. blood pressure, body mass index, blood glucose level) 
testing the effect of gender differences on sib-sib correlations is achieved using the likelihood method of estimation 
under the assumption of multivariate normality. When the trait of interest is measured on the binary scale testing the 
equality of a brother-brother and sister-sister correlation is more complex. In this paper we develop likelihood-based 
inference procedures for this purpose which may beapplied to nuclear family data.
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sib correlations characterizing males and female have not yet been 
developed.

This paper has a threefold objective. First, we develop a multivariate 
probability distribution for the vector of binary observations based on 
a random sample of independent sib-ships. The vector will be split into 
two sub-clusters, separating female responses from male responses. 
Second we construct the likelihood function of the sample as based 
on the joint distribution of the created sub-clusters. This allows us to 
develop score and Wald chi-square-tests of significance that compare 
the levels of similarity among males and females from the same family. 
Finally, we illustrate our procedures using published arterial blood 
pressures data.

Models
Suppose that we have a random sample of k sib-ships, where 

each sib-ship constitutes a cluster. Let yi=(yi1,yi2,…,
iiby ,xi1, xi2,…

iisx )T denote the vector of observations from the ith cluster, where 
bi=number of brothers in the ith family, si=number of sisters in the ith 

family, ni=bi+si=sibship size of the ith family, 
1=

=∑ k

i
b  bi= number 

of brothers in the sample of k families, 
1=

=∑ k

i
s  si=number of sisters 

in the sample of k families, and N=b+s= number of siblings in the k 
families. It is clear then that each cluster (sib-ship) is naturally divided 
into two sub-clusters, one cluster represents brothers and the other 
sub-cluster represents sisters.

Let yij=1(0) denote the presence (absence) of a trait observed on the 
jth brother from the ith family (j=1,2,…bi;i=1,2,…k). Similarly, let xij=1(0) 
denote the presence (absence) of this trait as observed on the jth sister in 
the ith family (j=1,2,…si;i=1,2,…k). Let ( 1| )λ λ= =ib ij ibp y  denote 
the probability that a randomly selected brother from the ith family is 
classified as having the trait of interest, and let 1 ( 0 | )λ λ− = =ib ij ibp y . 
Moreover let ( 1| )λ λ= =ij is isP x , and ( 0 | ) 1λ λ= = −ij is isP x . We initially 
assume that the distribution of the brothers’ scores is conditionally 
independent of the distribution of the sisters’ scores. To introduce 
the correlation among brothers within the ith family we shall assume 
that λib is an element of a random sample obtained from a beta 

distribution with parameters (αb,βb) so that ( ) αµ λ
α β

= =
+

b
b ib

b b

E , 

2( ) (1 )
( ) (1 )

α βλ ρ µ µ
α β α β

= = −
+ + +

b b
ib b b b

b b b b

Var ,

Where ρb=(1+αb+βb)
-1. 

Similarly

2( ) ( ) (1 )
( ) (1 )

α αµ λ λ ρ µ µ
α β α β α β

= = = = −
+ + + +

s s
s is is s s s

s s s s s s

E Var  , 

where ρs=(1+αs+βs)
-1.

We can show that the population common intraclass correlation 
among brothers in the samesub-cluster is:

ij ij 'Corr (y , y ') = ρb

and the common intraclass correlation among sisters in the other sub-
cluster is:

ij ijCorr (x , x ') = ρs

i≠j׳ =a,2,…bi, and m≠l=1,2,…si for all i=1,2,…k.
We further define the interclass correlation among brothers and 

sisters as:

Corr (yij, xil)=ρ12 i=1,2,…k, j=1,2,…bi and l = 1,2,…si.

Note that, because of the exchangeability condition, the 

unconditional distribution of 
1=

=∑ ib
ib ijj

y y  is that of a beta-
binomial distribution with: 

E(yib)=biµb                     (1)
2 ( ) (1 )[1 ( 1) ]σ µ µ ρ= = − + −
ib ib i b b i bVar y b b                  (2)

Similarly, the unconditional distribution of 1=
=∑ is

is ijj
x x  

will be that of a beta-binomial distribution with

E(xis)=siµs                        (3)

2 ( ) (1 )[1 ( 1) ]σ µ µ ρ= = − + −si is i s s i sVar x s s                     (4)

Details may be found in references [9-11].

The beta-binomial probability distributions of yib and xis are given 
respectively as:

* *

*

0

( ) (1 )
( ) ( ) 0,1,2,...

(1 )

µ θ µ θ

θ

−

= =

=

+ − +
= =

+

∏ ∏
∏

i i i

i

y b y
b b b bj o j obi

yii i ib
bj

j j
p y y b

j
    (5)

* *

*

0

( ) (1 )
( ) ( ) 0,1,2,...

(1 )

µ θ µ θ

θ

−

= =

=

+ − +
= =

+

∏ ∏
∏

i i i

i

x s y
s s s sj o j osi

i xi i is
sj

j j
p x x s

j
    (6)

(α*=a-1), ϑb=ρb/(1-ρb), with a similar transformation for ϑs=ρs/(1-ρs).
The above set-up assumes that the three sibling correlations ρb, ρs, 

and ρbs are constant among families in the parent population. With 
this assumption our main interest is in developing a likelihood-based 
approach for testing several hypotheses that are inherently related. 
We first construct a bivariate distribution based on the marginal 
distributions given in (5) and (6) which includes all the parameters 
of interest. However a different approach is needed to construct 
the bivariate distribution of the sibling scores characterized by the 
interclass correlation. This approach, developed by Sarmanov [12] 
and Lancaster [13], is known as Positive Dependence byExpansion 
(PDE). Danaher [14] proposed a simplified and flexible form of the 
distribution basedon Lancaster’s representation.

We are interested in testing the following hypotheses:

1- H0 : ρ12=0

2- H0 : ρb=ρs

As a first step, we follow Lancaster [13] in constructing a bivariate 
distribution by joining the marginal distributions given in (5) and (6). 
The resulting representation is given by:

12
.( , ) ( ) ( ) 1 µ µρ

σ σ

   − −
= +         i i

i i b i i s
i i i i

b s

y b x sp x y p x p y             (7)

yi=0,1,2,...bi, and xi=0,1,2,… si. Direct computations show that 
Corr(xi,yi)=ρ12. The sum of theright hand-side of equation (7) over all 
the possible values of (xi,yi) is one. Therefore, the equationrepresents 
a proper bivariate probability distribution with parameters vector 
φ=(µb,µs,ρb,ρs,ρ12)'. 

Methods
Our inferences on the parameters of interest are based on the 
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likelihood principle. To test the hypothesis H0:ρ12=0 against the 
alternative H1:ρ12>0, we assume that a random sample of k sib-ships is 
available. The log- likelihood function of the sample is given by:

 
1

121

log ( , )

{log ( ) log ( ) log[1 ( , )]},ρ
=

=

=

= + + +

∑
∑

k
i ii

k
i i i ii

l p x y

p x p y H x y

Where, ( , ) µ µ
σ σ

  − −
=     
  i i

i i b i i s
i i

b s

y b x sH x y . The score 

function | 12 012 ρρ
∂

= =∂
lu  is given by:

1

1 1
( ) ( ) ( )µ µ σ σ −

= =

= − − =∑ ∑
k k

i i b i i s bi si i
i i

u y b x s u  

By the central limit theorem and for fixed bi and si, the distribution 
of each component ui tends uniformly to the standard normal 
distribution under H0 as →∞k . Moreover, we can show that under 
H0 that the statistic s2=u2/k will be asymptotically distributed as chi-
square with one degree of freedom [15]. This statistic is the locally 
most powerful one-sided test of H0:ρ12=0 against H1:ρ12>0. Full details 
of the proof can be found [15,16]. Moran [17] showed that if the 
remaining parameters are replaced by any consistent estimators under 
the null hypothesis the asymptotic properties of this test statistic will 
be preserved. Such consistent estimators can be either the maximum 
likelihood (MLE) or the moment estimators. 

In Table 1 we provide estimates of the sample sizes (number of 
sib-sips) needed to detect thedeparture from H0:ρ12=0 in the direction 
of a two sided alternative under several scenarios. We limited our 
computations to the balanced case with equal response rates. It can be 
seen from Table 1 that when we have a small departure from the null 
hypothesis, a large sample is needed, regardless of the sib-ship sizes. 
Moreover, when the response rates are far from their boundary values 
(0, 1), a substantially smaller number of sib-ships are needed. Tables 
2 and 3 present the empirical powers, when the design is balanced 
(number of brothers equals number of sisters within the same family), 
for µb=µs=0.1 and µb=µs=0.5, respectively. It is clear that the power 
increases with the increase in the number of sib-ships, and is unaffected 
by sib-ship sizes. Again, a noticeable increase in the power is achieved 

when the response rates are far from their boundary values. In Table 4 
we show that the effect of unbalanced design (number of brothers does 
not equal number of sisters within the same family) on the power is 
nottangible.

Maximum Likelihood Estimation
The MLE’s of the model parameters are obtained by simultaneously 

solving the likelihood equations: 

12

0, 0, 0, 0, 0
µ µ θ θ ρ
∂ ∂ ∂ ∂ ∂

= = = = =
∂ ∂ ∂ ∂ ∂b s b s

l l l l l
 

We obtain the variance-covariance matrix Σ of the MLE’s by 
inverting the matrix of the negative of the second partial derivatives 
of ℓ with respect to the five parameters. The two matrices are given as:

11 12
21 22

 
  

= I I
I II , and 1 11 12

21 22
− Σ Σ

Σ Σ
 
  

= =∑ I .

Here, Σ is the variance-covariance matrix of 12
ˆ ˆ ˆˆ ˆ( , , , , )µ µ θ θ ρb s b s . To 

find the elements of Σ we use the method of matrix partitioning [18].

The matrix I11 is a 2×2 and symmetric, I12=I'21 is a 2×3 matrix and 
I22 is a 3×3 diagonal matrix. The elements of the covariance matrix are 
given in closed form as: 

 1 1
11 12 22 2211

( )− −= −∑ I I I I
 

 
1 1 1

22 22 21 11 12 2222
− − −= + Σ∑ I I I I I

1
22 12 2212

( )−= ∑∑ I I  

1
22 21 2221

( )−= ∑∑ I I

In the Appendix we provide expressions for the elements of I and Σ.

Hypothesis testing

In this section we develop an approach for testing the effect of 
gender differences on sib-sib correlations. If the trait of interest is 
normally distributed, the sib means and the sib-sib correlations are 
orthogonal to each other, implying that the expected value of the second 
partial derivatives of the likelihood function with respect to the mean 

μb=μs=.1 μb=μs=.5
ρb ρs ρ12 b=s 2 5 10 b=s 2 5 10
.2 .2 .1 715 697 693 612 612 612
.2 .5 .1 715 613 613 612 612 612
.5 .5 .5 44 44 44 22 22 22
.8 .8 .5 45 41 41 22 22 22
.8 .8 .8 21 21 21 7 7 7

Table 1: Sample size requirements for Type I error rate 5% and power 80%. To 
test the hypothesis H0:ρ12=0.

μb=μs=.1
k=25 k=50 k=100

ρb ρs ρ12 b=s 2 5 10 b=s 2 5 10 b=s 2 5 10
0 0 0 .051 .051 .051 .051 .051 .051 .051 .051 .051
.2 .2 0 .051 .051 .051 .051 .051 .051 .051 .051 .051
.5 .5 .2 .336 .334 .334 .440 .440 .440 .594 .595 .595
.8 .8 .5 .661 .661 .660 .820 .820 .820 .950 .950 .950
.8 .8 .8 .830 .830 .830 .950 .950 .950 .990 .990 .990

Table 2:  Power Calculations for testing H0:ρ12=0.

μb=μs=.5
k=25 k=50 k=100

ρb ρs ρ12 b=s 2 5 10 b=s 2 5 10 b=s 2 5 10
0 0 0 .051 .051 .051 .051 .051 .051 .051 .051 .051
.2 .2 0 .051 .051 .051 .051 .051 .051 .051 .051 .051
.5 .5 .2 .336 .334 .334 .489 .489 .489 .643 .643 .643
.8 .8 .5 .661 .661 .660 .820 .820 .820 .950 .950 .950
.8 .8 .8 .839 .839 .839 .985 .985 .985 .999 .999 .999

Table 3: Power Calculations for testing H0:ρ12=0.

ρb ρs ρ12 b s k=25 k=50 k=100
.5 .5 .2 2 4 .257 .409 .643
.5 .5 .2 10 5 .258 .411 .645
.8 .8 .5 10 2 .841 .986 .999
.8 .8 .5 6 3 .840 .985 .999
.2 .2 .2 2 4 .260 .409 .650

Table 4: Power calculations for testing H0:ρ12=0, μb=μs=.5, Under unbalanced 
design.
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and correlation is zero [19]. This orthogonality also implies that the 
maximum likelihood estimators of these parameters are asymptotically 
independent. Therefore, as in Donner et al. [8] we can test the equality 
of ρb and ρs independent of the values of µb and µs. For the bivariate 
beta-binomial distribution, the orthogonality condition is not satisfied 
and therefore we propose an omnibus test in the form:

: ρ ρµ µ == o b s b sH                       (8)

This hypothesis takes into account the correlations among all the 
estimated parameters. Let ( , , , )ψ µ µ ρ ρ ′= b s b s  and consider the 
affine transformation.

H0:Aψ=0 versus H1:Aψ=δ>0

The matrix A has 2 rows and 4 columns and is specified as:

 1 1 0 0
0 0 1 1

−
−=   A

To test the stated hypothesis, an omnibus test statistic is constructed, 
using the asymptotic distributional properties of the MLE of ψ. From 
Serfling [20], the MLE ψ̂  has the asymptotic distribution:

ˆ( ) ( , )ψ ψ →− dk N O V  .

where V is the variance-covariance matrix of ψ̂ and is obtained by 
deleting the 5th row and the 5th column of Σ. Letting H=Aψ, the question 
reduces to testing H0: H=δ>0.

ˆ ψ̂=H A  is therefore distributed as )ˆ ( ,
T

dH N H AVA .

Hence, from Graybill [21] the quadratic form:
1 ˆ( )ˆ( ) −∈ = T TAV A HQ KH                  (9)

is asymptotically non-central chi-square with 2 degrees of freedom 
and non-centrality parameter 

є=KHT(AV AT)-1 H

Moreover, є=0 if and only if H0 is true. Hence referring Q(0) to 
the table of chi-square distribution with 2 degrees of freedom, H0: H=0 
is rejected if Q(0) exceeds the tabulated value of a chi-square with 2 
degrees of freedom at the chosen level of significance.

Example: Mial and Oldham’s blood pressure data

The data used for illustration here are obtained from a survey that 
aimed at assessing the levels of similarity in systolic and diastolic blood 
pressure among family members living within 25 miles of Rhonda 
Fach Valley in South Wales and published by Miall and Oldham [22] 
previously analyzed [23,24]. Observations were made on parents 
and their offspring, with each observation consisting of systolic and 
diastolic blood pressures measured to the nearest 5 mmHg. However 
among 250 sampled families, only 204 contained information on 
brothers and sisters. Furthermore, because of the impossibly low 
systolic blood pressure (15 mmHg) for one daughter, another family 
was omitted leaving 203 families for the analysis. Since these data 
weregiven on a continuous scale, we dichotomized the observations 
such that for an individual whose systolic/diastolic blood levels above 
130/80, the assigned binary score was 1, otherwise, set as 0. The results 
of the data analysis are summarized in Tables 5 and 6. Table 5 shows 
the maximum likelihood of the model parameters, together with their 
standard errors. Table 6 displays the variances and covariances among 
the estimated parameters using the expression in the Appendix.

The null hypothesis H0: ρ12=0 tested against the one-sided alternative 

H1: ρ12>0 is rejected as s2=4.48 (p-value=.034). The Wald one degree of 
freedom chi-square test w=(0.195/0.095)2=4.21, leading to the same 
conclusion as the score test. To test the null hypothesis (8) we use 
the statistic givenin (9). Direct computation shows that Q(0)=3.246, 
(p=0.197). Therefore, we conclude that there is no sufficient evidence 
to support the claim of gender differences in the distribution of 
hypertension basedon this data set. An equally important hypothesis to 
be tested is whether gender has influence on the dependence structure. 
That is we need to test whether within gender correlations are the same 
as across gender correlation. This hypothesis can be easily formulated as:

H0:ρb=ρs=ρ12. We may then formulate the simple 

contrast 12
ˆ ˆ ˆ ˆ2ρ ρ ρ= + −b sT . Under the null hypothesis, 

T is asymptotically unbiased, that is E(T)=0, and 

12 12 12) ) 2cov ( , ) ) 4cov ( , ) 4cov ( , )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆvar( ) var( var( 4var(ρ ρ ρ ρ ρ ρ ρ ρ ρ+ − −= + +b s b s b sT  .. 
Therefore, asymptotically 2ˆ ˆ/ var( )=G T T  has a chi-square distribution 
with one-degree of freedom. From the data, G=0.185, and a 
p-value=0.911. Therefore, based on this data we conclude that the 
correlations within gender are the same across genders.

Remarks
Originally the Miall and Oldham’s data are measured on the 

continuous scale. Under the assumption of multivariate normality 
Mian and Shoukri [24] used the MLE to produce the following 
estimates for the within gender and across gender correlations. We 
summarize the results in Table 7. For testing H0:ρb=ρs, a one degree of 
freedom chi-square test statistic is 61, with p-value<0.00001. Similar to 
the above approach, H0:ρ12=0 is rejected (p-value<0.00001). Similarly 
H0:ρb=ρs=ρ12 has a chi-square value=26.48, with p-value<0.00001.

It is clear that the dichotomization resulted in a reduction in 

Parameter Estimate ± SE
μb .294 ± 0.028
ρb .200 ± 0.077
μs .217 ± 0.026
ρs .274 ± 0.071
ρ12 .195 ± .095

Table 5: Estimates of the model of parameters ± standard error.

ˆbµ ˆsµ b̂ρ ŝρ 12ρ̂

ˆbµ
.8×10-3 -.15×10-3 .1×10-3 0 .19×10-3

ˆsµ
.7×10-3 0 .1×10-3 .13×10-3

b̂ρ
.6×10-2 .2×10-3 .83×10-3

ŝρ
.5×10-2 .88×10-3

12ρ̂
.90×10-2

Table 6: Variance-Covariance matrix of the estimates.

Parameter Systolic Diastolic
ρb 0.146 ± 0.073         0.163 ± .073
ρs 0.32 ± 0.069 0.248 ± .070
ρ12 0.178 ± 0.054 0.215± .052

Table 7: Estimates of Correlation parameters for original data.
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the efficiency of the maximum likelihood estimates of the sibling 
correlations, which would result in a substantial loss of power of 
detecting departure from the null hypotheses of interest. This issue 
has been a subject of discussion by many authors [25,26]. Loss of 
power and sensitivity to the choice of the cut-off point are the price 
to pay due to discretization. However, selecting a cut-off point is not 
a matter of concern to statisticians but is based on clinical expertise. 
For example, components of what is known as metabolic syndrome 
(obesity, triglyceride, high density lipoprotein, blood pressures level, 
and blood glucose levels) are all measured on the continuous scale. 
However, communicating the clinical diagnoses of the components 
of the syndrome are based on the cutoff points recommended by the 
WHO, or the International Diabetes Federation. In this paper weused 
the WHO definition of hypertension 130/80 when we dichotomized 
the blood pressures data.

Discussion
Estimation of measures of family resemblance is considered the 

first step prior to investigating whether the variation in the distribution 
of the trait of interest is may be attributed to genetic factors. Similarly, 
detection of gender differences may be important to identify sex-linked 
traits. Establishing a statistical significance may provide the quantitative 
bases to study the distribution of the traits at the molecular level. 
The major contribution of this paper is the application of likelihood 
methods to a constructed bivariate beta-binomial distribution. This has 
allowed us to establish a score test for the goodness of fit of the model. 
A second finding is that testing for gender differences in the sib-sib 
correlations can be established in a relatively simple way, e.g. without 
computing the more complicated likelihood ratio test. Our limited 
scale computations showed that we need to sample a large number 
of families to retain reasonable power for the test statistic. Moreover, 
we showed that the power of the test of significance for the interclass 
correlation is quite insensitive to variations in the sub-cluster sizes. The 
implication is that as long as we have a sufficient number of families 
in the sample, the actual sib-ship sizes become less important. The 
model (7) is quite flexible. For example it easily allows for inclusion 
of covariates measured at the sub-cluster level. This can be done by 
employing a suitable transformation on the response probabilities 
similar to the case of a non-linear mixed model for binary responses. 
One important assumption of the present model is that it assumes that 
the correlation parameters are constant in the sampled population. This 
assumption may not be tenable in cases where some siblings are reared 
together and some reared apart. It should also be noted that there is a 
large number of statistical models used to fit clustered binary data, to 
name but a few, the Generalized Estimating Equations (GEE) which 
is a semi parametric approach, and the General Linear Mixed Models 
(GLIMMIX). These models are geared towards estimation of the 
regression coefficients, treating the correlation structure as nuisance. 
The application of the GEE can be problematic for the analysis of 
family data. In fact Crowder [27] demonstrated that the parameters 
involved in working correlation matrix are subject to “uncertainty of 
definition which can lead to a breakdown of the asymptotic properties 
of the estimators”. On the other hand, the GLIMMIX does not readily 
produce estimates of correlations at each level of hierarchy. More 
seriously, there are some concerns regarding the approximation 
of the variance covariance matrix of the estimated parameters. In 
genetic epidemiology, clustering of traits is usually measured by a set 
of familial correlations, and such correlations become the population 
target parameters of interest. The model developed in this paper is 
constructed to address these issues. Finally, it should be noted however, 

that further research is needed to investigate the asymptotic properties 
of the test statistics that we developed when the sub-cluster sizes 
are much larger than the number of clusters, a problem of common 
occurrence in community-based studies.
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APPENDIX:  Elements of the variance-covariance matrix of the MLE ‘s of the parameters of the 

bivariate-beta binomial distribution.  

 

The following are the negative of the second partial derivatives of the log-likelihood function with 

respect to the five parameters: 
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When the matrix is partitioned: 
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Note that, since 𝜌𝜌𝑏𝑏 = 𝜃𝜃𝑏𝑏
1−𝜃𝜃𝑏𝑏

, the variance of 𝜌𝜌� is obtained by the delta method as 

var(𝜌𝜌�𝑏𝑏) = �1 − 𝜃𝜃�𝑏𝑏�
−2

var�𝜃𝜃�𝑏𝑏� 

where𝜃𝜃� is the MLE of 𝜃𝜃, and var�𝜃𝜃�� is the asymptotic variance of 𝜃𝜃� obtained from the 
inverted observation matrix. 
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