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Temperature Variation in Transient State of a Thermal 
Insulator and the Time Fractional Diffusion Equation

Abstract
This work consists in studying the adequacy of the experimental results and the theoretical results obtained from the time fractional diffusion equation on the variation 
of the temperature, in transient regime, during the heating of a thermal insulator. called "thermisorel".
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Introduction 
In [1], a heat transfer study was performed on a sample of low density wood 
fiber board, called Thermisorel. This material is manufactured by STEICO 
Casteljaloux in France. Thermisorel is used in construction because they avoid 
heat loss in winter due to their low thermal conductivity, nearly 0.042 W m-1 
K-1. It also protects the building from heat in summer due to their capacity high 
thermal storage.

Details of the study are described in [1]. Only the data necessary for our 
problem mentioned above, which we will recall.

This work will be divided into three parts:

In section 2, we will perform a discretization of the time fractional diffusion 
equation. The third part consists in extracting all the data necessary to solve 
our problem. In particular the experimental results on the on the variation of the 
temperature, in transient mode, during the heating of this thermal insulator. In 
the next part, we will develop the fractional diffusion equation according to the 
data obtained in [1]. Then we will do its numerical resolution, in order to be able 
to compare the results with the experimental data.In this study we used a 22.2 
mm thick thermisorel board

Discretization of the fractional thermal 
diffusion equation
We will only consider the one-dimensional case, i.e. the temperature depends 
only on the real variable x and the time t. The time fractional thermal diffusion 
equation is written:
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where , of the  real variable t, t>0   [2,3]

- ‘a ’is the diffusivity coefficient

( , )T t x is the temperature corresponding to the variables t and x

( , )f t x  is the second member of equation (1) for the variables t and x

For our discretization:
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This relation is valid for 0i ≠

For the discretization of the Laplacian one will use the advanced decentered 
differentiation [4] and we have:

2
2 1

2 2

( , ) 2 ( , ) ( , )
( , ) ( , ) i j i j i j

x i j i j

T t x T t x T t x
T t x T t x

x h
+ +− +∂

∆ = =
∂

 (3)

Note:
For j = n-1 and j = n it is necessary to define 1( , )i nT t x + and 2( , )i nT t x +  to 
have  ( , )x i nT t x∆
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The  equation  (1) has become: 
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Brief Description and Results of the 
Experiment

Experimentation
As already mentioned above, that in [1], a study on the transient heat transfer 
on thermal insulation was made. During the experiment, we took a sample of 
thermisorel plate of thickness E = 22.2mm. The sample was placed between 
the two plates of a flowmeter and the following temperature specifications were 
used:

The temperature of one plate should be kept at 15.4 °C and the other plate 
should raise the temperature from 15.4 to 24.7° C.

The heat flux between the samples and each plate was measured. The same 
initial temperature was measured (approximately 15.4°C). The temperature 
rise took several minutes and measurements were taken every 10 second until 
steady state was reached.

The heat flux measurements were carried out by the CSTB (Scientific and 
Technical Center for Building) in Grenoble. For the results of this experiment 
see [1]

The macroscopic properties of the thermisorel
Several properties of this material are mentioned in [1]. In this paragraph, only 
the parameters necessary for the resolution of our problem we will recall:

- The density: 3170 .kg mρ −=  according to [1]

- Specific heat capacity: 11280 . .pC J kg K −=  (according to the measurement 
made by the CSBT)

- Thermal conductivity: 1 10.042 . .ck W m K− −=  (according to the 
manufacturer)

Thus the diffusivity coefficient is 7 2 11.93 10 .c

p

ka m s
Cρ

− −= = ×

Note:
According to [1], the heat transfer by convection and by radiation are negligible, 
so only the heat transfer by conduction is considered.

Experimental results obtained for the thermisorel
In [1], there are two results of the experiment which are given as a graphical 
representation. One represents the change in temperature and the other the 
flux, as a function of time, on both sides of the thermisorel sample.

From these graphs, we extracted the values ​​of the temperature and those of 
the flux as a function of time, until the steady state was reached, for the hot 
side. We have the following (Tables 1 and 2)

Numerical resolution of the time fractional thermal diffusion 
equation 
To study the temperature variation on the hot face of the thermisorel, it suffices 
to study an arbitrary point on this face. From this point, we will consider a 
straight line segment of length E = 22.2mm and which is perpendicular to 
the face. On which, we will define a time fractional thermal diffusion equation 
on segment, including the unknown is the temperature at time t at a point of 
abscissa x on this line segment, denoted T (t, x).

The equation of the problem 
From (1) the equation takes the form:

( , ) ( , ) ( , )c xD T t x a T t x R t xα − ∆ =    (5)

The radiation effect and the convection effect are negligible, but the existence of 
the heat source must be considered so we can assume that the corresponding 
equation is with second member:

For the initial conditions we have:
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Figure 1: Graphical representation of the temperature variation. If the time t 
varies between 0 and 1 and the position x between 0 and 2, when the order of 
the fractional derivative is 0.9.

Time in second Température in °C
0 15

10 15
20 15.67
30 16.34
40 17.34
50 17.5
60 18
70 19
80 20
90 21
100 22.34
110 23.67
120 24.33
130 24.66

Table 1: Table representation of the temperature variation of the hot face 
during the transient regime.

Time in second Flux in W .m-2

0 0
10 0
30 18.34
40 20
50 30
60 33.33
70 38.34
80 41 .67
90 46 .67
100 43.34
110 38.34
120 31.67
130 18 .37

Table 2: Representation in table form of the variation of the flux of the hot face 
during the transient regime.
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The transient regime lasts 130 seconds, then [ ]0,130t∈

The length of the line segment is 322.2 10E −= × meters, then [ ]0,x E∈

For all [ ]0,x E∈ ,  (0, ) 15T x =  ; for all [ ]0,130t∈ , ( , ) 15T t E =  ; 

(130,0) 24.66T =

For x E≥ , this is the ambient temperature so ( , ) ( , )T t x T t E=

The discretization gives us:
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table 2)
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As in the experiment, we will give the values ( ,0)T t ​​for  [ ]0,130t∈
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Relation (7) is the discretization corresponding to the time fractional thermal 
diffusion equation, in accordance with the hypothesis of the experiment.

Numerical resolution
According to the results obtained in the previous paragraph, our problem turns 
to finding values ​of 1 13( ( ,0))i iT t ≤ ≤ . This requires a system of 13 equations 

with 13 unknowns that we will build from (7), as follows:

We will write (7) for 1,....,13i = :
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From (8) We obtain a system of Thirteen equations with thirteen unknowns, 

whose unknowns are ( ,0)i iT T t= , 1 13i≤ ≤ ,  as following :

The first equation is:
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

Numerical resolution and results
With the hypotheses described previously, the method of Gauss and starting 
from the software MATLAB. We have the graph representing the experimental 
data and the theoretical results when α = 0.9. And according to the calculation 
under MATLAB, the difference between the values of the temperature resulting 
from the experimental method and the values obtained by simulation is 10.09% 
on average. This percentage is largely sufficient to confirm the adequacy of 
the experimental data with the theoretical values obtained, from the fractional 

Conclusion
From these results, we can say once again that we should not be content to 
use classical derivatives, in the studies of phenomena which require differential 
equations.

of temperature variations in transient regime of the hot face of the thermisorel 
as a function of time

diffusion equation with respect to time, when α = 0.9 (Figure 1&2).

Figure 2: Graphical representation of experimental data and theoretical values
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