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Introduction
Recently, engineered nanoparticles (NPs) have received 

enormous attention owing to their potential commercial and 
industrial applications in many sectors, such as cosmetics, textiles, 
pharmaceutical, catalysts and electronics [1,2]. But meanwhile, the 
release of NPs into the environment will very likely happen along with 
their large-scale manufacture and wide use, which will subsequently 
impose risks for ecosystems and human health [3]. It is thus important 
to evaluate the environmental and health risks of NPs before their mass 
production. Since the toxicological testing’s of NPs are expensive and 
time-consuming, researchers are developing theoretical models to 
evaluate and predict the behavior and risks of NPs in environmental 
systems [4-6]. 

Previous studies have shown that the aggregation of NPs plays 
an important role in their environmental risks by influencing 
their transport, fate, bioavailability and biological effects [7-11]. 
Understanding the fundamental principles underlying the aggregation 
process of NPs and quantitatively describing this process are essential 
prerequisites for characterizing the environmental behavior of NPs and 
further quantifying the risk. The aggregation of NPs is fundamentally 
governed by the interfacial force between interacting particles, 
which includes several either attractive or repulsive forces. When 
the attractive force is greater than the repulsive force, NPs approach 
each other and aggregate; otherwise, NPs stay stable. The famous 
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory has been widely 
used to characterize the interfacial force between particles [12,13]. 
According to it, the vander Waals (vdW) force and electrostatic (EL) 
force compose the interfacial force. The DLVO theory achieved great 
success in explaining the stability of colloids in salt solutions. But for 
NP aggregation, many studies have found that a discrepancy exists 
between DLVO predictions and experimental observations [14]. This 
problem might be overcome by taking non-DLVO forces into account, 
such as the polar Lewis acid/base (AB) force [15] and steric force [16]. 
Here the AB force is the sum of the hydrophobic interaction force, 
hydrogen-bonding force and hydration force [15-17]. The precise 
theoretical analysis of NP interaction and quantitative description of 

NP aggregation can be obtained by incorporating those non-DLVO 
forces into the DLVO theory, which is known as the extended DLVO 
(EDLVO or XDLVO) theory [15]. 

On the basis of EDLVO theory, our previous studies have 
addressed the effects of ionic strength and natural organic matter on 
NP aggregation with modeling approaches [5,18]. It is well known 
that temperature also greatly influences the aggregation of NPs. 
Understanding the temperature effect is important for environmental 
and health risk assessments of NPs, as both natural water and human 
body fluids can be at temperatures that are remarkably different from 
the typically used room temperature. For example, river waters in 
some cold areas may be only 4°C, whereas the temperature of blood 
in the human body is as high as 37°C. NPs in these solutions would 
undergo different aggregation processes. The temperature effect, 
however, has not gained much attention in NP aggregation studies. In 
this study, we investigated the temperature effect on the aggregation 
of NPs in KCl and CaCl2 solutions using time-resolved dynamic light 
scattering (TR-DLS). We selected CeO2 NP as a model NP owing to 
its extensive commercial applications [19-21]. It has been listed as a 
priority nanomaterial for immediate testing by the Organization for 
Economic Co-operation and Development (OECD) [22]. We used 
the EDLVO theory to interpret the fundamentals of the temperature 
effect on NP aggregation. Furthermore, a kinetic model developed 
on the basis of EDLVO theory and von Smoluchowski’s population 
balance equation was used to predict the aggregation kinetics of CeO2 
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NPs, which were then compared with experimental observations. Our 
aim was to fundamentally understand the temperature effect on NP 
aggregation and theoretically predict the aggregation kinetics of NPs 
under different temperature, which were anticipated to benefit the 
predictive modeling research of environmental behavior and toxicity 
assessment of NPs. 

Materials and Methods
Materials

CeO2 NPs with a nominal diameter of 25 nm were purchased from 
Sigma-Aldrich. The atomic composition of the sample was verified using 
X-ray diffraction (data not shown). The pH of the stock suspension was 
measured to be 4.5 by pH meter (Accumet model 15, Fisher Scientific 
Co., USA). KCl and CaCl2 stock solutions were prepared using ACS 
reagent-grade chemicals (Fisher Scientific Co., USA) and were filtered 
through 0.02 µm filters (VWR International, USA) before use. 

Characterization of CeO2 NPs

The morphology and primary particle size of CeO2 NPs were 
determined using transmission electron microscopy (TEM). 5 μL 
of CeO2 NP suspensions were deposited on a copper grid (400 mesh 
size) coated with carbon film (Ted Pella, Redding, CA, USA). A Philips 
EM420 TEM was employed to acquire images. Particle size distribution 
(PSD) was obtained with DLS on a Zetasizer Nano ZS instrument 
(Malvern Instruments). Briefly, 1.5 mL of 10 mg/L CeO2 NP suspension 
was injected into a clean cuvette; the DLS instrument was then operated 
with a scattering angle of 173° from the incident laser beam, and the 
autocorrelation function automatically accumulated at least 10 runs for 
each sample. The electrophoretic motilities’ (EPMs) of 10 mg/L CeO2 
NPs were measured for a range of K+ and Ca2+ concentrations under 
different temperatures using the Zetasizer Nano ZS instrument. At 
least four parallel measurements were made for each condition. The 
measurement began immediately after the desired conditions were 
achieved to minimize the interference of aggregation.

Aggregation kinetics

The aggregation kinetics experiments were carried out at pH 5.7, 
at which the CeO2 NPs are stable for at least 24 h. The pH values of the 
CeO2 NP, KCl and CaCl2 solutions were pre-adjusted to 5.7 to ensure 
that each measurement could start immediately after addition of K+ 
and Ca2+. For the aggregation experiment, the sample holder of the Zeta 
sizer Nano ZS instrument was preheated or precooled to the desired 
temperature. A premeasured amount of KCl or CaCl2 was added to 1 
mL of CeO2 NP suspension in a cuvette. The NP suspension was then 
shaken slightly and placed in the sample holder. 

Modeling the aggregation kinetics

According to the EDLVO theory, the total interfacial force between 
two metal oxide NPs is comprised of the vdW force, EL force and AB 
force [15]. The total interfacial energy (VT) between NPs is computed 
by assuming that each force acts individually and is thus additive: 
VT=VvdW+VEL+VAB. 

The vdW attractive energy (VvdW)between two identical spherical 
particles, which considers the retardation effect, can be computed 
using Equation (1) [23]: 
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where AH is the Hamaker constant, which is 5.57×10-20 J for CeO2 in 

water [24]. r is the particle radius. h is the separation distance between 
the interacting surfaces. λc is the “characteristic wavelength” of the 
interaction, which is often assumed to be 100 nm [25]. 

The EL repulsive energy (VEL) between two identical spheres of 
radii r in 1-1 electrolyte solutions (e.g., KCl) is given by Equation (2a-
c). In 2-1 electrolyte solutions (e.g., CaCl2), Equation (2a) and (2b) are 
replaced by Equation (2d) and (2e), respectively [26-28]: 
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where n is the concentration of electrolytes; kB is the Boltzmann 
constant; T is absolute temperature; zi is the valency of the ith ion; e 
is unit charge; ψSi is the surface potential of the interacting particles 
in an aqueous medium, which can be calculated from the EPMs of 
NPs (UE) (Figure 1), the solution viscosity (µ) and permittivity (ε.ε0) 
of water by the Smoluchowski Equation: ψSi=(UE .µ)/(εε0) [27]; ε0 is the 
vacuum permittivity; ε is the relative permittivity of water; κ-1

 is the 
Debye length; NA is Avogadro’s number; and I is the ionic strength (M), 
I=0.5·Σcizi

2, where ci is the molar concentration of the ith ion.

Finally, the AB energy (VAB) between two identical spheres is 
expressed by Equation (3):
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where λ is the correlation length or decay length of the molecules of the 
liquid medium, which is estimated to be 1 nm for pure water [29], and 
∆Gh0

AB is the polar or AB free interaction energy between particles at 
the distance h0 [30], which is the minimum equilibrium distance due to 
Born repulsion, 0.157 nm [29].
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Figure 1: Characterizations of CeO2 NPs. (a) TEM image of CeO2 NPs. 
The inset is the particle size distribution of 10 mg/L CeO2 NPs. The narrow 
particle size distribution and small PDI value imply that the NPs are relatively 
monodispersed. (b) Zeta potentials of CeO2 NPs under different temperatures 
in KCl and CaCl2 solutions.
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was calculated by normalizing the initial slopes of aggregation kinetics 
curves with the slopes obtained in the diffusion-limited aggregation 
regime (Figure 3). The critical coagulation concentration (CCC) 
for CeO2 NPs in KCl was ca. 100, 40 and 10 mM at 4, 25 and 37°C, 
respectively. In CaCl2, CCCs were ca. 10, 10 and 2 mM at 4, 25 and 
37°C, respectively. The substantially lower CCCs for CeO2 NPs in Ca2+ 
solutions than those in K+ solutions is because divalent ions more 
effectively screen the surface charge of NPs and subsequently enhance 
the aggregation. Higher temperature leads to a smaller CCC and thus 
promotes NP aggregation. 

Higher temperature promotes NP aggregation for two reasons. 
First, the solution viscosity µ was smaller at higher temperature; 
according to Equation (4), the particle aggregation was thus enhanced. 
Second, the interaction energy between NPs also changes as the 
temperature increases. The total interfacial energy VT can be calculated 
using Equation (1)-(3). Parameters involved in these equations could 
be either measured or computed. Surface potentials (ψS) of CeO2 NPs 
under different temperatures were calculated from the EPMs with the 
Smoluchowski equation [27]. The other major parameters are listed in 
table S1. 

The interaction energies for CeO2 NPs under different temperatures 
were computed and are presented in figure 2, which shows that the 
interaction energy between NPs is lower at a higher temperature in both 
KCl and CaCl2 solutions. The energy barrier reflects the aggregation 
tendency. The energy barrier diminished as the temperature increased. 
When the temperature increased from 4 to 37°C, the magnitude of 
the energy barrier decreased from 11 to 4 kBT and from 7 to 1 kBT 
in 0.01 M of KCl and 0.002 M CaCl2, respectively. This suggests that 
NPs more easily overcome the energy barrier and aggregate at high 
temperatures. Moreover, according to Equation (1)-(3), the EL force is 
the only force that is influenced by the change in temperature (Figure 
S4). Parameters in Equation (3), such as the surface potential of NPs, 

 Upon computing the total interaction energy (VT), the aggregation 
kinetics of CeO2 NPs can be obtained by Equation (4), which was 
developed on the basis of the EDLVO theory and von Smoluchowski’s 
population balance equation [31]:
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Where rt is the particle radius at time t, a is the primary particle radius, 
n0 is the initial number concentration of primary particles, µ is the 
solution viscosity, and dF is the fractal dimension of aggregates. W is 
the stability ratio, which can be expressed by Equation (5) [32, 33]: 
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where u is the normalized surface-to-surface separation distance (h) 
between two particles (u=h/a) and VA(u) is the attractive energy. Here, 
vdW energy is the only contributing term to VA(u) and thus VA=VvdW. 
λ(u) is the correction factor for the diffusion coefficient, which is 
related to the separation distance by Equation (6) [34]: 
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The number concentration of CeO2 NPs is determined from the 
mass concentration. The lattice parameter (al) of CeO2 unit cells is 
5.4087 Å [35], and each unit cell contains four Ce atoms and eight O 
atoms. The number of Ce atoms (N) per CeO2 NP with radius r can be 
calculated by N=16π (r/al)

 3/3. The mass of a single CeO2 NP is then 
obtained, and the number concentration of NPs can be computed.

Results and Discussion
Characterization of CeO2 NPs 

A TEM image of CeO2 NPs is presented in figure 1. The NPs have 
a relatively uniform size distribution. The inset in figure 1 shows the 
PSD diagram of CeO2 NPs, which was measured by DLS. Consistent 
with previous studies, the DLS-measured NP size is larger than that 
determined by TEM [36,37]. This is probably owing to particle 
aggregation and the water layer surrounding the NP surface. The 
polydispersivity index (PDI) is quite small (∼0.1), indicating that 
CeO2 NPs are relatively monodispersed in solution. Figure 2 shows the 
zeta potentials of CeO2 NPs under different temperatures in KCl and 
CaCl2 solutions. The CeO2 NPs are positively charged under all tested 
conditions. The divalent ion (Ca2+) is more effective than the monovalent 
ion (K+) in screening the surface charge of NPs. As ionic strength 
increased, the zeta potential became smaller due to the compression of 
the electrical double layer surrounding the NP. The temperature effect 
is apparent; as the temperature increased, the zeta potential became 
less positive, which was consistent with previous studies [38,39]. The 
reason could be that increasing temperature favors proton desorption 
from the particle surface [38]. At higher temperature, the lower zeta 
potential of CeO2 NPs implies that the electrostatic repulsion force 
between particles is weaker, and this probably promotes the particle 
aggregation. 

Effect of temperature on the aggregation of CeO2 NPs in KCl 
and CaCl2 

The representative aggregation kinetics profile of CeO2 NPs in 
KCl and CaCl2 solutions under different temperatures were presented 
in figure 2. As the temperature increased, the NP aggregation became 
faster. The attachment efficiency (α), or inverse stability ratio (1/W), 
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Figure 3:  Representative profiles of each energy term in 0.01 M KCl. (a) and 
0.002 M CaCl2 (b) at 4°C. 
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solution permittivity and Debye length, are affected by temperature. 
The temperature has no impact on vdW and AB forces. 

For a better understanding of the contribution of each energy term 
to the total interaction, the representative energy profiles are presented 
in figure 3 and figure S5 in the supporting information. Apparently, the 
AB repulsion energy contributes more relative to EL repulsion energy. 
This indicates that, compared with EDLVO theory, the conventional 
DLVO theory, which considers only EL and vdW energy, provides a 
less accurate description of the interfacial energy between CeO2 NPs. 

Modeling the aggregation kinetics of CeO2 NPs

Equation (4) was used to model the aggregation kinetics of CeO2 
NPs. The initial number concentration of CeO2 NPs is approximately 
2.35×1015 particles/m3 in all aggregation experiments. The fractal 
dimension dF was reported to be ca. 1.8 [40-43]. The total interaction 
energy VT was computed according to Equation (1)-(3). The attractive 
energy, VA, equals the vdW energy (VvdW). The AB free interaction energy 
between particles at the distance h0, ∆Gh0

AB, was consistent with our 
previous studies. Other parameters are listed in table S1. The modeling 
results were further compared with experimental observations, and 
representative comparisons are presented in figure 4 and figure S6 in 
the supporting information. At all temperatures, model predictions 
agreed well with experimental data. Some minor discrepancies between 
model predictions and experimental observations may be attributed to 
deviations in the surface potential of NPs and the size distribution of 
particles.

Conclusion
In conclusion, this work investigated the temperature effect on 

the aggregation of CeO2 NPs with both experimental and modeling 
approaches. As the temperature increased from 4°C to 37°C, the CCCs 
for CeO2 NPs decreased from ca. 100 to 10 mM in KCl and from ca. 10 to 
2 mM in CaCl2. The promotive effect of temperature on NP aggregation 
is ascribed to the smaller solution viscosity and lower interfacial energy 
barrier at higher temperature. For instance, the energy barrier height 
decreased from 11 to 4 kBT in 0.01 M KCl and from 7 to 1 kBT in 
0.002 M CaCl2, which resulted from the smaller repulsive EL energy 
at a higher temperature. The aggregation model based on the EDLVO 
theory gave fairly good predictions of NP aggregation under different 
temperatures. To the best of our knowledge, this is the first study to 
research the temperature effect on NP aggregation with modeling 
approaches, which is expected to benefit the theoretical predictions of 
the environmental behavior and biological effects of NPs and to further 
contribute to the environmental and health risk assessment of NPs.
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Figure 4: Comparison of the simulated and experimental time evolution of 
the hydrodynamic radii of CeO2 NPs in 0.01 M KCl. (a) and 0.002 M CaCl2 
(b) solutions. The solid, dotted and dashed lines are model simulations 
corresponding to the conditions of 4, 25 and 37°C, respectively.
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