

TCP: Multifunctional Bone Regeneration Materials

Luis Herrera*

Department of Biomedical Ceramics Pacific Coast University of Science Valparaíso, Chile

Introduction

Bone tissue engineering offers a transformative approach for addressing bone defects and promoting regeneration, moving beyond the inherent limitations of autografts and allografts. The pursuit of effective biomaterials has led to extensive research into calcium phosphate-based materials, which are highly valued for their biocompatibility, osteoconductivity, and structural resemblance to natural bone. These materials serve as critical components in developing scaffolds and delivery systems designed to facilitate complex bone repair. Understanding the diverse applications and modifications of these materials is crucial for advancing clinical solutions.

To this end, one research explores porous biphasic calcium phosphate scaffolds, specifically those doped with magnesium and strontium, with the aim of enhancing bone regeneration [1].

The in vitro and in vivo studies conducted confirmed the significant potential of these scaffolds in promoting osteogenesis and their successful integration into existing bone tissue, suggesting a promising future for repairing complex bone defects [1].

Further exploration introduces tricalcium phosphate/alginate composite microspheres, carefully designed for the precise delivery of dual growth factors [2].

These particular microspheres demonstrated excellent potential for controlled release applications, which is essential for sustained therapeutic effects, and they significantly aid in overall bone regeneration, making them suitable for advanced tissue engineering strategies where precise control is paramount [2].

In a comprehensive overview, a review article covers the broad spectrum of injectable calcium phosphate cements, with a particular focus on those containing α -tricalcium phosphate, outlining their utility in both dental and orthopedic applications [3].

This review highlights their versatile use and the distinct advantages they offer in minimally invasive procedures, providing a valuable summary of recent advancements and future directions in the field [3].

Another significant contribution comes from research on 3D printed α -tricalcium phosphate scaffolds that cleverly incorporate zinc into their structure [4].

These innovative scaffolds significantly enhanced both osteogenesis, the formation of new bone, and angiogenesis, the development of new blood vessels, suggesting they could be a powerful tool for repairing challenging bone defects and actively promoting robust new bone formation [4].

One specific study evaluated the combination of α -tricalcium phosphate with hu-

man umbilical cord mesenchymal stem cells for repairing various bone defects [5].

This combination demonstrated a marked improvement in bone regeneration outcomes, thereby offering a promising and synergistic strategy for potential clinical applications in regenerative medicine [5].

Moving to infection control, this research shows a novel injectable calcium phosphate cement, distinguished by its inclusion of α -tricalcium phosphate and copper-doped mesoporous bioactive glass [6].

This unique material exhibits impressive antibacterial properties, crucial for preventing infection in surgical sites, alongside its inherent osteogenic capabilities, making it ideal for the challenging scenario of infected bone repair [6].

Let us break down another study: it focuses on an injectable calcium phosphate cement composed of α -tricalcium phosphate and strontium, specifically designed for the co-delivery of both basic Fibroblast Growth Factor (bFGF) and Bone Morphogenetic Protein-2 (BMP-2) [7].

This combined approach significantly enhances bone regeneration by providing crucial growth factors directly at the site of repair, representing a potent method for advanced tissue repair [7].

Further advancements are seen in a study exploring the biomimetic modification of α -tricalcium phosphate scaffolds using a blend of silk fibroin and collagen [8].

The combined materials in this approach significantly enhance bone regeneration, effectively demonstrating a viable pathway for developing advanced biomaterials that closely mimic natural tissue for skeletal repair [8].

This work focuses intently on the degradation characteristics and osteointegration performance of 3D-printed α -tricalcium phosphate scaffolds, assessing them with different pore sizes when implanted in rabbit cranial defects [9].

This line of inquiry provides crucial insights into optimizing scaffold design parameters, such as pore size, to achieve superior bone healing and integration outcomes [9].

Lastly, this article discusses how mesenchymal stem cell-loaded α -tricalcium phosphate significantly boosts bone tissue engineering efforts [10].

The proposed strategy proves highly effective by simultaneously promoting both osteogenesis and angiogenesis, two processes that are critically vital for successful bone repair and comprehensive regeneration, thus providing a holistic approach to complex tissue repair [10].

Description

The field of bone regeneration is experiencing rapid advancements through the innovative application of calcium phosphate-based biomaterials. These materials are fundamental to developing strategies for repairing bone defects and promoting tissue regrowth, often leveraging their inherent biocompatibility and osteoconductivity. A significant area of focus involves modifying these materials to enhance their therapeutic efficacy and functional integration.

One approach involves tailoring the composition of scaffolds. For example, porous biphasic calcium phosphate scaffolds have been developed with magnesium and strontium doping [1]. This modification aims to enhance bone regeneration, and both *in vitro* and *in vivo* studies have confirmed their capacity to promote osteogenesis and integrate well into bone tissue, positioning them as viable solutions for complex bone defect repair [1]. In a related vein, the design of tricalcium phosphate/alginate composite microspheres for delivering dual growth factors represents a sophisticated method for controlled release applications [2]. These microspheres demonstrate excellent potential in precisely regulating the release of therapeutic agents, significantly contributing to enhanced bone regeneration and supporting advanced tissue engineering strategies [2].

Injectable calcium phosphate cements, particularly those incorporating α -tricalcium phosphate, have also garnered considerable attention due to their versatility and minimally invasive application potential [3]. A comprehensive review highlights their widespread applicability in both dental and orthopedic contexts, emphasizing their advantages in simplifying surgical procedures and improving patient outcomes [3]. Building on this, novel injectable cements are being engineered with additional properties. One such innovation combines α -tricalcium phosphate with copper-doped mesoporous bioactive glass, exhibiting both impressive antibacterial characteristics and strong osteogenic capabilities, making it particularly useful for treating infected bone defects [6]. Another injectable calcium phosphate cement leverages α -tricalcium phosphate and strontium for the co-delivery of key growth factors like bFGF and BMP-2, a strategy proven to significantly enhance bone regeneration and tissue repair [7].

3D printing technologies are revolutionizing scaffold design, allowing for precise control over architecture and material incorporation. Research showcases 3D printed α -tricalcium phosphate scaffolds that integrate zinc, demonstrating a substantial boost in both osteogenesis and angiogenesis [4]. These findings suggest a powerful tool for repairing bone defects by not only stimulating new bone growth but also improving vascularization, which is critical for long-term scaffold viability and tissue integration [4]. Further studies explore the degradation and osteointegration characteristics of 3D-printed α -tricalcium phosphate scaffolds with varying pore sizes in rabbit cranial defects [9]. This line of inquiry provides crucial insights into optimizing scaffold design parameters, such as pore size, to achieve superior bone healing and integration outcomes [9].

Beyond material composition and fabrication methods, the integration of cellular components is proving highly effective. The combination of α -tricalcium phosphate with human umbilical cord mesenchymal stem cells has been evaluated for bone defect repair [5]. This synergistic approach has shown significant improvement in bone regeneration, offering a promising strategy for future clinical applications [5]. Similarly, mesenchymal stem cell-loaded α -tricalcium phosphate is highlighted for its ability to enhance bone tissue engineering by simultaneously promoting both osteogenesis and angiogenesis [10]. This dual action is vital for successful bone repair and regeneration, addressing multiple critical aspects of the healing process [10]. Additionally, biomimetic modification of α -tricalcium phosphate scaffolds with natural polymers like silk fibroin and collagen represents another advanced strategy [8]. These combined materials significantly enhance bone regeneration, paving the way for advanced biomaterials that closely mimic the natural extracellular matrix for skeletal repair [8].

Conclusion

Current research extensively explores calcium phosphate-based materials, especially α -tricalcium phosphate, for bone regeneration and defect repair. Various studies highlight the development of innovative scaffolds and cements with enhanced properties. For instance, porous biphasic calcium phosphate scaffolds, when doped with magnesium and strontium, demonstrate significant potential for promoting osteogenesis and integrating into bone tissue, crucial for complex defect repair. Similarly, tricalcium phosphate/alginate composite microspheres are designed for dual growth factor delivery, offering controlled release and aiding bone regeneration for advanced tissue engineering.

Injectable calcium phosphate cements containing α -tricalcium phosphate are gaining traction for both dental and orthopedic uses, valued for their versatility in minimally invasive procedures. Further innovations include 3D printed α -tricalcium phosphate scaffolds incorporating zinc, which notably enhance both new bone formation and blood vessel development. The combination of α -tricalcium phosphate with human umbilical cord mesenchymal stem cells also shows promise, significantly improving bone regeneration for clinical applications.

Beyond enhancing bone growth, materials are being engineered with additional functionalities. A novel injectable calcium phosphate cement featuring α -tricalcium phosphate and copper-doped mesoporous bioactive glass exhibits impressive antibacterial properties alongside its osteogenic capabilities, making it suitable for infected bone repair. Another cement, containing α -tricalcium phosphate and strontium, facilitates the co-delivery of bFGF and BMP-2 to significantly boost regeneration. Biomimetic modifications of α -tricalcium phosphate scaffolds with silk fibroin/collagen also improve bone regeneration. Research into 3D-printed α -tricalcium phosphate scaffolds with varied pore sizes provides key insights into optimizing designs for better healing and integration. Finally, mesenchymal stem cell-loaded α -tricalcium phosphate proves effective in bone tissue engineering by promoting both osteogenesis and angiogenesis, underscoring the multifunctional nature of these advanced biomaterials.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Peng Li, Jian Zhang, Xinyu Wu. "Porous Biphasic Calcium Phosphate Scaffolds with Magnesium and Strontium Doping for Bone Regeneration: *In Vitro* and *In Vivo* Studies." *Materials Science and Engineering: C* 137 (2022):112555.
2. Mengjia Du, Shuo Wang, Min Yang. "Design and characterization of tricalcium phosphate/alginate composite microspheres for dual growth factor delivery and bone regeneration." *Journal of Biomaterials Applications* 35 (2021):1373-1386.
3. Manli Li, Yongchun Wang, Mengyi Li. "Injectable calcium phosphate cements containing α -tricalcium phosphate for dental and orthopedic applications: A review." *Materials & Design* 226 (2023):111666.

4. Yuzhe Zhang, Hao Shen, Qing Zhang. "3D Printed β -Tricalcium Phosphate Scaffolds Incorporating Zinc for Enhanced Osteogenesis and Angiogenesis." *ACS Applied Materials & Interfaces* 12 (2020):54641-54655.
5. Guangfu Chen, Jianlong Yang, Jian Xu. "Evaluation of β -tricalcium phosphate with human umbilical cord mesenchymal stem cells for bone defect repair." *Journal of Orthopaedic Translation* 32 (2022):203-211.
6. Xin Li, Rui Deng, Yubo Fan. "Antibacterial and osteogenic properties of a novel injectable calcium phosphate cement containing β -tricalcium phosphate and copper-doped mesoporous bioactive glass." *Materials Science and Engineering: C* 123 (2021):112005.
7. Guang Yang, Jinli Qiao, Bin Yan. "Enhanced bone regeneration by co-delivery of bFGF and BMP-2 from a novel injectable calcium phosphate cement containing β -tricalcium phosphate and strontium." *Journal of Materials Science: Materials in Medicine* 31 (2020):99.
8. Yunfei Cai, Jiani Zhao, Xiaojing Li. "Biomimetic modification of β -tricalcium phosphate scaffolds with silk fibroin/collagen for enhanced bone regeneration." *Journal of Biomaterials Applications* 37 (2023):1238-1250.
9. Qingqing Li, Yanbing Ma, Min Hu. "Degradation and osteointegration of 3D-printed β -tricalcium phosphate scaffolds with different pore sizes in rabbit cranial defects." *Journal of Biomedical Materials Research Part A* 107 (2019):2147-2158.
10. Yichun Liu, Yuanyuan Zhu, Lingchuan Guo. "Mesenchymal Stem Cell-Loaded β -Tricalcium Phosphate Enhances Bone Tissue Engineering via Osteogenesis and Angiogenesis." *Regenerative Medicine* 17 (2022):383-393.

How to cite this article: Herrera, Luis. β -TCP: Multifunctional Bone Regeneration Materials. *Bioceram Dev Appl* 15 (2025):299.

***Address for Correspondence:** Luis, Herrera, Department of Biomedical Ceramics Pacific Coast University of Science Valparaíso, Chile, E-mail: l.herrera@pcus.cl

Copyright: © 2025 Herrera L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Jun-2025, Manuscript No. bda-25-175515; **Editor assigned:** 04-Jun-2025, PreQC No. P-175515; **Reviewed:** 18-Jun-2025, QC No. Q-175515; **Revised:** 23-Jun-2025, Manuscript No. R-175515; **Published:** 30-Jun-2025, DOI: 10.37421/2090-5025.2025.15.299
