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Abstract

The mammalian (mechanistic) target of rapamycin (mTOR) is a serine/threonine kinase that plays a key role
in cell growth and proliferation and is regarded as an attractive therapeutic target for cancer therapy. Preclinical
investigations have suggested that mTOR complex 1 (mMTORC1) and mTORC2 are frequently activated in epithelial
ovarian cancer, especially in clear cell carcinoma of the ovary. In mouse models of ovarian cancer, mTORC1
inhibitors have demonstrated promising antitumor activity against ovarian cancer both in the setting of monotherapy
and when used in combination with cytotoxic agents. Based on these promising preclinical findings, mTORC1
inhibitors are currently being evaluated in phase I/1l trials involving ovarian cancer patients. In an effort to overcome
resistance to mTORC1 inhibitors, novel mTOR kinase inhibitors (TORKInib) that inhibit both mTORC1 and mTORC2
have recently been developed. In this report, we review the scientific rationale and evidence for the potential clinical
benefits provided by mTOR inhibitors in patients with epithelial ovarian cancer.
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Deleted on Chromosome 10

Introduction

Despite recent advances in surgery and chemotherapy, ovarian
cancer patients are still at signiﬁcant risk of recurrence, and recurrent
disease can not be cured with current standard treatments. Thus, there
is an urgent need to develop novel treatments based on the distinct
molecular background of ovarian cancer.

The mammalian (mechanistic) target of rapamycin (mTOR)
is a serine/threonine kinase that plays a key role in cell growth and
proliferation [1,2]. In cells, mTOR acts as the catalytic subunit of two
functionally distinct complexes, mTOR complex 1 (mTORCI1) and
mTOR complex 2 (mTORC2). Since the mTOR signaling pathway is
hyperactivated in a wide range of tumor types including ovarian cancer,
it is expected that mTOR inhibitors would exhibit broad therapeutic
activity [1,2].

Rapamycin, a natural product isolated from the bacterium
Streptomyces hygroscopicus, acts as an allosteric inhibitor of mTORCI.
Through the specific inhibition of mTORCI activity, rapamycin and
its derivatives (rapalogs) display multifunctional biological activity
profiles; i.e., they downregulate angiogenesis and cell proliferation,
growth, survival, motility, and differentiation [1,2].

mTOR kinase inhibitors (TORKinibs) are newly developed ATP-
competitive inhibitors of mTOR that can inhibit both mTORC1 and
mTORC2. TORKinibs have been shown to inhibit mTOR signaling
more strongly than rapamycin by suppressing both mTORCI and
mTORC2, attenuating protein synthesis, and inducing cell cycle arrest
and/or apoptosis in cancer cells [3].

On the basis of promising preclinical data, these mTOR inhibitors
are currently being evaluated in phase I/II trials in patients with ovarian
cancer. This article highlights the scientific rationale for mTOR-

targeting therapies against ovarian cancer treatment and summarizes
the available preclinical and clinical findings.

mTOR: Structure and Function

mTORCI1 is composed of six proteins: mTOR, raptor (regulatory-
associated protein of mTOR), mLST8/GBL (mammalian LST8/G-
protein B- subunit like protein), PRAS40 (proline-rich AKT substrate
of 40 kDa), and DEPTOR (DEP domain-containing mTOR-interacting
protein).Inresponsetoextracellularsignals, PI3K (phosphatidylinositol-
3-kinase) phosphorylates PIP2 (phosphatidylinositol 4,5-bisphosphate)
to generate PIP3 (phosphatidylinositol (3,4,5)-triphosphate), leading
to the recruitment of AKT to the plasma membrane, where it is
phosphorylated and activated (Figure 1). Activated AKT can directly
activate mTORCI by phosphorylating mTOR at Ser 2448, and can
indirectly activate mTORC1 by phosphorylating TSC2 (tuberous
sclerosis complex 2, also called tuberin). The phosphorylation of TSC2
by AKT leads to the inhibition of the function of the TSC1/TSC2
complex. When TSC1/TSC2 is active, TSC2 stimulates the conversion
of Rheb (Ras homolog enriched in brain)-GTP to Rheb-GDP, which
inactivates mTORCI. When TSC2 is phosphorylated and inactivated
by AKT, Rheb-GTP stimulates the activity of mTORCI. Therefore,
genetic alterations involving this signaling pathway lead to increased
activation of mTORCI1 [1,2].

Once activated, mTORCI phosphorylates the translation-
regulating factors S6K-1 (ribosomal S6 kinase-1) and 4EBP-1 (eukaryote
translation initiation factor 4E binding protein-1). The activation of
S6K-1 leads to the translation of mRNA encoding ribosomal proteins,
elongation factors, and other proteins required for transition from the
GI1 phase to the S phase of the cell cycle [1,2]. The phosphorylation of

*Corresponding author: Seiji Mabuchi, M.D., Ph.D., Department of Obstetrics
and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka,
Suita, Osaka 565-0871, Japan, Tel: +81-6-6879-3354; Fax: +81-6-6879-3359;
E-mail: smabuchi@gyne.med.osaka-u.ac.jp

Received April 18, 2014; Accepted June 19, 2014; Published June 23, 2014

Citation: Mabuchi S, Sasano T, Kawano M (2014) Targeting mTOR Complexes in
Ovarian Cancer. J Cancer Sci Ther 6: 211-216. doi:10.4172/1948-5956.1000274

Copyright: © 2014 Mabuchi S, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

J Cancer Sci Ther
ISSN:1948-5956 JCST, an open access journal

Patients with Ovarian Cancer

Novel Targeted Therapies for

Volume 6(7) 211-216 (2014) - 211



Citation: Mabuchi S, Sasano T, Kawano M (2014) Targeting mTOR Complexes in Ovarian Cancer. J Cancer Sci Ther 6: 211-216. doi:10.4172/1948-

5956.1000274

D —

RTKs

RS- — ——

[Protein translation ]—-[ Cell growth, survival, angiogenesis ]

Figure 1: Schematic representation of the mTOR signaling pathway.

4EBP-1 also enhances the translation of mRNA encoding cyclin DI,
c-Myc, and hypoxia-inducible factor-1a (HIF-1a), leading to cell cycle
progression or angiogenesis [1,2].

The other mTOR complex, mTORC2, consists of six proteins:
mTOR, rictor (rapamycin-insensitive companion of mTOR), mSIN1
(mammalian SAPK interacting protein), protor (protein observed with
rictor), mLST8/GPL, and DEPTOR [1]. The precise mechanism by
which mTORC?2 is activated remains unclear. However, a recent report
suggested that PI3K is required to activate mTORC2 [4]. Activated
mTORC2, in which mTOR is phosphorylated at Ser 2481 [5], in turn
phosphorylates AGC kinases, such as AKT, serum and glucocorticoid-
regulated kinases (SGK), and protein kinase C-a (PKC-a), and controls
cell growth by regulating lipogenesis, glucose metabolism, the actin
cytoskeleton, and apoptosis [6].

mTORCI1 Inhibitors

Rapamycin (sirolimus), a potent inhibitor of mTORCI1, was
isolated in 1975 from the bacterium Streptomyces hygroscopicus [7].
Rapamycin inhibits mTORCI by first binding to the intracellular
protein FK506 binding protein 12 (FKBP12). The resultant rapamycin-
FKBP12 complex then binds to the FKBPI12-rapamycin-binding
domain (FRB) of mTORCI and inhibits the serine/threonine kinase
activity of mTORC1 via an allosteric mechanism. In contrast to
mTORC]I, the rapamycin-FKBP12 complex cannot interact with the
FRB domain of mMTORC2, and thus, mTORC?2 is generally resistant to
rapamycin treatment [1].

As rapamycin exhibits very poor solubility in water, which limits its
clinical use, several soluble ester analogs of rapamycin (rapalogs) have
been developed [2]. Currently, these analogs include temsirolimus,
everolimus, and ridaforolimus. Temsirolimus and everolimus are
formulated for i.v. administration and oral administration, respectively.

Ridaforolimus was initially developed as an i.v. formulation, but an oral
formulation was subsequently developed [8].

mTORCI1 in Ovarian Cancer: Preclinical Findings
mTORCI activation in ovarian cancer

It has previously been reported that somatic mutations in PTEN,
PIK3CA, PIK3R1, and AKTI are observed in 9.8% [9], 12% [10], 3.8%
[11], and 2% [12] of ovarian cancers, respectively. Moreover, recent
studies of The Cancer Genome Atlas (TCGA) have identified mTOR
mutations in 1.9% of ovarian cancers [13]. Any one of these genetic
changes can lead to increased activation of mTORCI signaling in
ovarian cancer.

Altomare et al. were the first to demonstrate that mTORCI1
activation is common in human ovarian cancer. In the article, it was
reported that mTORCI was activated in 55% (17 of 31) of epithelial
ovarian cancers [14]. Subsequently, Mabuchi et al. examined 98
primary ovarian cancers [52 clear cell carcinomas (CCC) and 46 serous
adenocarcinomas (SAC)] using tissue microarrays and reported that
mTORCI is more frequently activated in CCC than SAC (86.6% vs
50%) [15]]. The frequent mTORCI activation observed in CCC can be
explained, at least in part, by the fact that PIK3CA-activating mutations
occur more frequently in CCC than in other histological subtypes of
epithelial ovarian cancer [16].

Therapeutic potential of mTORCI inhibitors in ovarian
cancer

In the setting of monotherapy, treatment with mTORCI1
inhibitors effectively attenuated cell proliferation, tumor growth,
and angiogenesis in ovarian cancer both in vitro and in vivo [17,18].
mTORC1 inhibitors have also been successfully combined with
chemotherapeutic agents including cisplatin [18], paclitaxel [19],
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carboplatin [20], and trabectedin [21]. Furthermore, mTORCI1
inhibitors have shown promising activity when used in combination
with biological agents including bevacizumab [22], mitogen-activated
protein kinase kinase (MEK) inhibitors [23], or epidermal growth
factor receptor (EGFR) inhibitors [24]. These findings indicate that
combining mTORCI inhibition with the use of cytotoxic or biological
agents could be a potentially effective treatment for ovarian cancer.
Moreover, given their significant anti-proliferative and anti-angiogenic
effects mTORCI inhibitors might be useful as a maintenance therapy
for preventing or delaying the development of recurrent disease after
front-line chemotherapy.

Importantly, the growth-inhibiting effect of everolimus was
marked in cells that exhibited high AKT/mTORCI activity, whereas
it was minimal in cells displaying low AKT/mTORCI activity [17,18].
These results indicate that ovarian cancer cells with elevated AKT/
mTORCI activity are more susceptible to mTORCI inhibitors than
cells displaying low AKT/mTORCI activity. Thus, patients with CCC
might be most responsive to mTORCI1-targeting therapy.

Clinical trials of mMTORCI inhibitors

On the basis of promising preclinical findings, temsirolimus,
everolimus, and ridaforolimus are currently being tested in phase I/II
clinical trials involving ovarian cancer patients, either as single agents
or in combination with cytotoxic or biological agents (Table 1). Of

these, the only study that has published results is the GOG phase II trial
of temsirolimus (GOG 170-I). In this trial, temsirolimus monotherapy
was evaluated in patients with persistent or recurrent epithelial ovarian
or primary peritoneal malignancies [25]. Of the 60 enrolled patients,
54 were eligible for evaluation. Of these, 9.3% experienced a partial
response, and 24.1% achieved progression-free survival (PFS) periods
of >6 months, which was just below the threshold used to determine
inclusion in phase III studies [25]. In this study, the patients with
ovarian tumors that exhibited mTORCI activity achieved a higher
response rate than those whose tumors did not display mTORC1
activity although the difference was not statistically significant (PFS
>6 months, 30.3% vs 11.8%; response rate: 11.8% vs 5.9%).

The clinical activity of mTORCI is currently being evaluated in
patients with ovarian CCC, a chemoresistant histological subtype
characterized by frequent hyperactivation of mTORCI. The
Gynecologic Oncology Group (GOG) is currently conducting a phase
II trial (protocol GOGO0268) of combination treatment involving
temsirolimus combined with carboplatin and paclitaxel followed by
temsirolimus consolidation therapy as a first-line therapy in patients
with stage III-IV CCC of the ovary [26]. In addition, the Japanese
Gynecologic Oncology Group (JGOG) has just initiated a phase II trial
examining the utility of everolimus monotherapy as a treatment for
recurrent CCC of the ovary (protocol JGOG3012).

Studies ' Target Condition Interventions Phase
Temsirolimus
NCT00926107 Ovarian cancer Recurrent Temsirolimus Phase Il
Ovarian cancer
NCT00429793 Fallopian tube cancer Recurrent Temsirolimus Phase I
Primary peritoneal cancer
NCT01196429 Clear cell ovarian cancer First-line thera Temsirolimus plus carboplatin/paclitaxel flowed by Phase II
GOG0268 (Stage llI-1V) Py temsirolimus consolidation
NCT01460979 Ovarian cancer Recurrent Temsirolimus Phase Il
Endometrial cancer
NCT01010126 Solid tumors Advanced or recurrent Temsirolimus plus bevacizumab Phase Il
Ovarian cancer
NCT00982631 Breast cancer Advanced or recurrent Temsirolimus plus PLD Phase |
Endometrial cancer
NCT00408655 Solid tumors Advanced Temsirolimus plus carboplatin/paclitaxel Phase |
NCT00523432 Gynecologic malignancies Recurrent Temsirolimus plus topotecan Phase |
NCT00703170 Solid tumors Recurrent Temsirolimus plus PLD Phase |
NCT01155258 Solid tumors Advanced Temsirolimus plus vinorelbine ditartrate Phase |
NCT00703625 Solid tumors Recurrent Temsirolimus plus docetaxel Phase |
NCT01065662 Gynecologic malignancies Recurrent Temsirolimus plus cediranib Phase |
Everolimus
NCT01149434 Solid tumors Advanced J-101vs Phase I/l
JI-101 plus everolimus
Ovarian cancer
NCT01031381 Fallopian tube cancer Recurrent Everolimus plus bevacizumab Phase Il
Primary peritoneal cancer
Ovarian cancer Bevacizumab vs
NCT00886691 Fallopian Tube Cancer Recurrent . . Phase Il
. . bevacizumab plus everolimus
Primary Peritoneal Cancer
JGOG3021 2 Clear cell ovarian cancer Recurrent Everolimus Phase Il
Ridaforolimus
NCT01256268 Ovanan_ cancer Recurrent or advanced Ridaforolimus plus carboplatin/paclitaxel Phase |
Endometrial cancer
NCTO01295632 Solid tumors Advanced Ridaforolimus Phase |

'ClinicalTrials.gov identifier.
2This study will be initiated from July 2014.

PLD; pegylated liposomal doxorubicin hydrochloride, GOG; Gynecologic Oncology Group, JGOG; Japanese Gynecologic Oncology Group.

Table 1: Summary of mMTORCH1 inhibitors in clinical trials.
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Common Toxicities Associated with mTORC1

Inhibitors

mTORCI inhibitors are generally well tolerated, with their most
common side effects including stomatitis, rash, fatigue, hyperglycemia,
hyperlipidemia, hypercholesterolemia, and myelosuppression. Most of
these side effects are mild and can be resolved by dose interruption or
reduction. However, whilst symptomatic non-infectious pneumonitis
is a relatively uncommon class effect of mTOR inhibitors it can be
life-threatening. In a phase III clinical trial of temsirolimus involving
renal cell carcinoma patients, asthenia, rash, and anemia were found
to be the most common side effects, with incidences of 51, 47, and
45%, respectively [27]. In addition, a significant percentage of the
patients presented with metabolic disturbances such as hyperlipidemia
(27%), hyperglycemia (26%), or hypercholesterolemia (24%).
Respiratory symptoms such as coughing and dyspnea were reported in
approximately a quarter of the patients (26 and 28%, respectively) and
stomatitis was observed in about 20%.

Mechanism Responsible for Resistance to mTORCI1
Inhibitors

The major limitation affecting mTORCI1-targeting therapy is that
drug resistance can develop, which often results in disease relapse.
The mechanisms responsible for acquired resistance to mTORCI1
inhibitors might involve the loss of the negative feedback loops that
are normally induced when mTORCI is active (Figure 2). Regarding
these negative feedback loops, the first involves mTORC2-independent
IRS1-dependent AKT activation in response to mTORCI inhibition
[28], the second involves mTORC2-mediated AKT activation in
response to treatment with mTORCI inhibitors [3], and the third
involves mTORCI inhibition-mediated mitogen-activated protein
kinase (MAPK) activation [29]. Thus, novel inhibitors that target both
mTORC1 and mTORC2 or the use of a combination of mTORCI1-
targeting agents and MAPK inhibitors might have the potential to
overcome resistance to mTORC1 inhibitors. However, it remains

Normal condition
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unknown whether these mechanisms are cell type-specific and whether
the abovementioned preclinical findings are of clinical relevance to
ovarian cancer.

Molecular Biomarkers that could be used during
mTORCI-Tageted Therapy

There is an urgent need for efficient biomarkers to make it possible
to precisely predict which patients will benefit from mTORCI-targeting
therapies, and hence, to ensure that patients who will not benefit from
such treatments can avoid unnecessary toxicities. Moreover, the
identification of surrogate markers that are useful for monitoring the
activity of mTORCI inhibitors is also necessary. Previous preclinical
and clinical investigations have suggested that cells carrying PIK3CA
mutations [30], hyper activation of AKT/mTORCI signaling, and the
overexpression of cyclin D1 are particularly sensitive to mTORCI1
inhibitors [31]. Moreover, the overexpression of Bcl-2 [32] and KRAS
mutations might also serve as predictors of resistance to mTORCI1
inhibitors [33]. However, the clinical utility of these candidate
biomarkers needs to be validated in patients with ovarian cancer.

mTORC2 in Ovarian Cancer

A recent report suggested that rictor, an essential component of
mTORC2, is frequently expressed in ovarian cancer [3]. Moreover,
mTORC2 was found to be more frequently activated in CCC than
in SAC (71.2% versus 45.7%, respectively). Thus, strategies aimed
at inhibiting the activity of mTORC2 might play important roles as
treatments for ovarian cancer, especially ovarian CCC [3].

Recently, mTOR kinase inhibitors (TORKinibs), which can
inhibit both mTORCI1 and mTORC2 complexes, have been developed
[34]. TORKinibs have been shown to inhibit mTOR signaling by
suppressing both mTORCI1 and mTORC2, attenuate protein synthesis,
and induce cell cycle arrest and/or apoptosis more strongly than
mTORCI inhibitors in cancer cells [3,35]. However, as TORKinibs are
ATP-competitive kinase inhibitors issues with their selectivity and off-
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Figure 2: The mechanisms responsible for resistance to mTORC1 inhibitors.
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target effects are inevitable, and thus, they might be associated with
more severe toxicities than mTORCI inhibitors. The clinical activity
and toxicities of TORKinibs are currently being examined in phase I/II
clinical trials involving patients with solid malignancies [36].

Conclusions and Future Directions

mTOR complexes are frequently activated in epithelial ovarian
cancer, especially in CCC of the ovary. On the basis of promising
preclinical findings, mTORCI inhibitors are currently being evaluated
as treatments for ovarian cancer, either alone or in combination with
chemotherapeutic agents. Considering the mechanism responsible for
resistance to mTORCI inhibitors, greater success might also be possible
with novel molecules that target both mTORC1 and mTORC2. Given
the potential toxicity of mTOR-targeting agents, it is more important
than ever to identify biomarkers that can be used to predict which
patients will benefit from such agents. Overcoming these challenges
will aid the development of optimal personalized mTOR-targeting
therapies for ovarian cancer.
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