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Cancer continues to be the second highest leading cause of 
morbidity and mortality throughout the world and is associated with 
highest economic burden. Overall, this is a matter of grave concern and 
calls for active research for development of effective and economical 
treatment strategies to extend the overall survival and improve the 
quality of life of cancer patients. Since tumor metastasis cause 80% of 
cancer patient death, metastasis management and control constitute 
the key requirement to treat cancer patients. 

Cancers are perhaps the most complicated diseases because of 
its genetic heterogeneity and complexity. Each cancer has a distinct 
type of genetic alteration, oncogenic signaling, metabolic features, 
and epigenetic changes which are responsible for tumorigenesis [1-
5]. Moreover, one sub-population of tumor cells may have a specific 
type of genetic feature and pathophysiology, which differ highly from 
other subsets within the same tumor and tumor type. More recently, 
obesity, diabetes, and hypercholesterolemia are being considered 
as important risk factors for cancer [6-9]. Emerging data also show 
the involvement of high-glucose and high-cholesterol in rewiring of 
metabolic programming which augments the process of tumorigenesis 
[10-14]. For example, enhanced level of low-density lipoprotein (LDL)- 
and high-density lipoprotein (HDL)-cholesterol was found in cancer 
patients [15]. However, the relationship between serum cholesterol and 
increased risk of cancer still remains obscure [9,16]. Therefore, instead 
of serum cholesterol, recent studies are focusing toward the key role 
of intracellular cholesterol in cancer progression and metastasis. For 
instance, accumulation of intracellular cholesterol was found to be more 
in tumor tissues [17-19]. Moreover, metastatic cancer cells contain a 
higher intracellular lipid droplets when compared to normal epithelial 
cells [20]. Experimental evidences also support the idea that the 
intracellular cholesterol positively influences proliferation, migration, 
and invasion of cancer cells [21,22]. This establishes a positive link 
between elevation of intracellular cholesterol and increased risk of 
tumorigenesis. But the mechanisms need to be elucidated. Elevated 
level of cholesterol-rich lipid rafts or microdomains which organize 
signaling molecule and transduce intracellular signaling within the 
cells, was found in the plasma membrane of cancer cells [23] and 
the depletion of cholesterol from these lipid rafts enhances apoptotic 
death of cancer cells and sensitivity to chemotherapy [24]. Literature 

also discusses the possibility that the lipid rafts containing high level of 
cholesterol and GPI-anchored alkaline phosphatase enzyme could be 
pinched out from the plasma membrane and may form matrix vesicles 
within cells [25]. These vesicles deposit calcium hydroxy appetite 
crystal in the extracellular surface, which results in microcalcification 
of breast cancer tissues [25,26]. Interestingly, microcalcification was 
also found in other cancers such as ovarian and prostate cancers. New 
emerging data show a positive association of microcalcification with 
the malignancy of cancer [27-29]. Thus, elevated level of cholesterol 
present in the microdomain may promote metastasis of cancers by 
increasing microcalcification. Recent report shows that 27-hydroxy 
cholesterol is synthesized from cholesterol within cancer cells, and it 
may increase breast cancer growth and metastasis, since 27-hydroxy 
cholesterol binds to estrogen receptor alpha to activate oncogenic 
estrogen signaling [30]. The expression of cytochrome p450 CYP27A1 
enzyme which converts cholesterol to 27-hydroxy cholesterol was 
shown to be more in epithelial breast tumors, and its expression is 
positively associated with the tumor grade [31]. These studies highlight 
the mechanism by which cholesterol may aggravate cancer growth and 
metastasis in case of breast cancer. However, this mechanism might 
not be operative to other cancer types or estrogen receptor negative 
tumor cells. Therefore, further research is required to establish the basic 
mechanism of cholesterol-mediated cancer growth and metastasis.

Statins are often prescribed to patients for lowering serum 
cholesterol level. Apart from cardio protective role, statin may 
prevent osteoporosis by increasing osteoblast differentiation and/
or by decreasing osteoclast activity [32,33]. Statins are known to 
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Abstract
Substantial data from cell culture and animal studies evidence the preventive effect of statins, cholesterol 

lowering-drugs, in regulation of cancer cell proliferation and metastasis. Various clinical studies also support this 
correlation between use of statin and the reduction of cancer incidence. However, in some cases, statins have failed 
to decrease the risk of cancer. Since, instead of serum cholesterol, intracellular cholesterol may play a crucial role 
in the regulation of tumorigenesis and metastasis. The mechanism by which cholesterol is stored within cancer 
cells may differ among cancer types and also in different individuals. This paper discusses the molecular detail to 
speculate the statin-sensitive cancer. It also highlights that statins may work better as anticancer therapy if it is used 
with the combination of a specific microRNA (miR).
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inhibit cholesterol biosynthesis by blocking the activity of 3-hydroxy 
3-methylglutaryl COA reductase (HMGCR), the rate limiting enzyme 
of mevalonate pathway [34]. Many investigators including us have 
established a preventive role of statins in cancer growth of many cancer 
types including breast, prostate, and ovarian cancers, evidenced by 
cell culture and animal model experiments [35-38]. We and others 
have also recently documented the preventive effect of statin in cancer 
metastasis, as demonstrated in breast cancer cells induced metastatic 
mice model [36,39]. Moreover, various clinical studies also support this 
correlation between use of statin and the reduction of cancer incidence 
[40-42]. A case-control study of half a million patients had displayed a 
48% reduction in renal cell carcinoma [43], and a significant reduction 
in hepatocellular and in esophageal cancer was observed [44,45] in case 
of the statin users. However, systematic review of randomized trials 
had failed to show cancer risk reduction after statin use and showed 
contradictory findings, with increased incidence for certain cancers and 
reduced incidence for other types [46,47]. A recent study shows that 
statin use in Danish cancer patients is associated with reduced cancer-
related mortality for 13 cancer types [48], but several investigators 
have raised their arguments against this report [49,50]. This poses a big 
challenge to the researchers and it has become imperative to identify 
the reasons behind the inconsistent results of statin treatment. 

The mechanism by which cholesterol is accumulated within tumor 
cells may vary among cancer types and also in different individuals of 
same cancer type. In general, acquisition of intracellular cholesterol is 
mainly carried out in three main ways [17,20]. Excessive accumulation 
of cholesterol within cells could be either due to increased LDL-
cholesterol internalization because of high expression of low density 
lipoprotein receptor (LDLR), and/or due to increased synthesis of 
cholesterol inside cancer cells because of high activity of HMGCR, 
and/or inhibition of cholesterol efflux due to deficiency or inactivation 
of ATP-binding cassette (ABC) transporter proteins such as ABCA1 
and ABCG1 [17,20]. For instance, abnormal expressions of LDLR and 
HMGCR have been found in many cancer types [17,18]. Moreover, 
reciprocal expressions of LDLR and HMGCR in cancer tissues have 
also been documented [22]. Thus, expression patterns of LDLR 
and HMGCR may vary between statin-sensitive cancers and statin-
insensitive cancers. Detailed molecular investigations of individual 
tumors could explain the reason for enrichment of intracellular 
cholesterol inside cancer cells. 

Therapeutic Aspects: Targeting Intracellular Cholesterol 
Accumulating evidences highlight that instead of statin alone, the 

combination of statin with other partner might serve a better function to 
prevent cancer growth and metastasis. Several investigators along with 
ours have shown that omega-3 fatty acids (docosahexaenoic acid; DHA 
and ecosapentaenoic acid; EPA), active components of fish oil, prevent 
cancer growth and metastasis, evidenced by cell culture and animal 
experiments [19,51-53]. Clinical studies also document the preventive 
role of omega-3 fatty acids in cancer risk [14]. Omega-3 fatty acids lower 
serum triacyl glycerol (TAG) which promotes tumorigenesis. Beside 
these, omega-3 fatty acids also prevent cholesterol synthesis in tumor 
cells [54]. Moreover, omega-3 fatty acids especially DHA disorganize 
the lipid rafts of plasma membrane by displacing cholesterol molecules, 
and dampen the microdomain mediated signaling, which may prevent 
cholesterol-assisted tumorigenesis [55,56]. This seems that the 
combined therapy of omega-3 fatty acid might increase the effectiveness 
of statin in preventing cholesterol-induced cancer progression and/or 
metastasis. 

In the last decade, many researchers have worked to establish the 
role of microRNA (miRNA) in cancer progression and metastasis [57]. 
Dysregulation of miRNAs not only affects various physiological functions 
but also promotes many pathological functions. In fact, some miRNAs 
[e.g., miR-122 (Clinicaltrials.gov number,  NCT01200420), miR-34 
(Clinicaltrials.gov number, NCT01829971)] are currently underway in 
clinical trials [58,59]. Thus, miRNA seems to be a promising therapy 
in near future. Recent evidences indicate the involvement of many 
miRNAs (e.g., miR-33a, miR-128, miR-145, miR-185, and miR-19b) 
in the regulation of cholesterol metabolism [60-63]. Moreover, forced 
expression of miR-33a in cell lines directly suppresses the expression of 
ABCA1, resulting in inhibition of cholesterol efflux, whereas antagomir 
of miR-33a (anti-miR, inhibitor) increases cholesterol efflux by 
increasing the expression of ABCA1. But the combination of statin with 
anti-miR-33a may not be good choice for cancer treatment, because 
statin treatment upregulates miR-33a expression, and moreover, miR-
33 inhibits cell proliferation and cell cycle progression by targeting 
CDK6 and cyclin D1 [60,64]. Similarly, overexpression of miR-128 
upregulates sterol-regulatory element-binding protein 2 (SREBP2) 
which transcriptionally increases expressions of HMGCR and LDLR, 
and inhibits expressions of transporter ABCA1 and ABCG1 [61]. 
These studies have shown an enhancement of LDLR by overexpressing 
of this miRNA whereas inconsistent results were found in case of 
HMGCR. It was demonstrated that miR-128 expression increases 
cellular cholesterol. Nevertheless, anti-miR-128 could not be used as an 
anticancer therapy, since overexpression of miR-128 have been shown 
to inhibit functional activity of tumor suppressor protein p53 [65]. 
However, forced expression of miR-185 and miR-372 inhibits SREBP1 
and SREBP2, and its downstream target HMGCR with concomitant 
decrease of proliferation, migration, and invasion of prostate cancer 
cells [62]. Recent findings also show that miR-19b inhibits transporter 
ABCA1 with a concomitant decrease of cholesterol efflux, and it 
also promotes tumor growth and metastasis by blocking p53 activity 
[63,66]. Altogether, these data herein, recapitulate that mimic of miR-
185, miR-372 and antagomir of miR-19b could be good candidates for 
cancer therapy. Thus, such combination of statin with either miR-185, 
or miR-372, or anti-miR-19b may be proposed for better therapy to 
prevent cancer growth and metastasis. 

In brief, this note just provides a concept, but extensive research is 
required to understand the molecular mechanism as to how cholesterol 
regulates cancer progression and metastasis, and to determine if these 
microRNAs and such combinations work better for anticancer therapy. 
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