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Introduction
The intratumoral heterogeneity of cancer cells presents a major 

challenge to the development of effective cancer therapies. However, 
a growing body of evidence suggests that tumors may be driven by 
a small population of transformed stem-like cells with the ability to 
undergo both self-renewal and differentiation into the diverse cancer 
cell population that constitutes the bulk of the tumor [1-4]. In 1997, 
Bonnet and Dick identified a single cell isolated from a bulk cancer 
cell population capable of initiating cancers that recapitulated the 
cellular heterogeneity of the parent pathology when transferred into 
an immune compromised animal model [5]. In their work, the authors 
demonstrated that acute myelogenous leukemias (AML) could be 
initiated in NOD/SCID mice through the transplantation of a rare 
(<0.2% of whole cell population) CD34+/CD38- cell from human 
donors. Only cells displaying these markers were capable of engrafting 
and generating the cellular diversity evident in human AML.  In 
2003, Al-Hajj et al. demonstrated this cellular hierarchy extended to 
solid tumors by showing that a diverse set of human breast cancer 
specimens could be fractionated by surface markers and that only cells 
displaying the CD44hi/CD24low/Lin- antigen profile could form tumors 
in immune compromised mice [6]. Moreover, these cells displayed 
self-renewal and multi-lineage differentiation abilities in long-term 
in vitro cultures [6]. Since these seminal publications, cells displaying 
similar capabilities have been isolated from a range of human tumors 
including: brain, colon, head and neck, lung, melanoma, pancreatic, 
prostate and kidney [3,7-14].

Current research suggests these so-called cancer stem cells 
(CSCs) or tumor initiating cells (TICs) survive standard chemo and 
radiotherapies and persist following treatment [15,16]. As these cells 
are both invasive and highly tumorigenic it has been hypothesized 
that the inability to efficiently eliminate CSCs during conventional 
therapy may result in disease relapse and formation of metastases. 
New treatment modalities in the form of molecularly-directed 
nanomedicines (purpose-built constructs having principal dimensions 
of 1-100 nm) with the potential to deliver therapeutic payloads directly 
to CSCs are currently being described in the primary research literature 

[17,18]. Table 1 (Included as supplementary data) summarizes many 
of these nanomaterials and discusses their significance in greater 
detail. With several nanomedicines entering early stage clinical 
trials, it is anticipated that their ability to selectively target and kill 
the cellular drivers of tumor progression will fundamentally alter the 
clinical management of cancer. Accordingly, this review highlights 
recent advances in the area of nanomedicine with a specific focus on 
nanoparticle-mediated therapeutic delivery to CSCs and the response 
of those cells to such treatments. 

Review of Literature
Nanoparticle platforms for CSC-targeted drug delivery

Nanoscale drug delivery technologies offer fundamental 
advantages over contemporary small molecule pharmaceuticals used 
in clinical practice. These advantages include increased bioavailibity, 
extended drug half-life and reduced off-target toxicities [17]. 
Furthermore, the new generation of therapeutic nanoparticles is 
inherently multifunctional: combining active drug compounds with 
selective targeting moieties and, in many cases, imaging agents that 
permit localization by standard x-ray, magnetic resonance (MR) or 
positron emission tomography (PET) technologies. These so called 
“theranostic” constructs offer the promise of diminished drug toxicity, 
enhanced tumor selectivity and improved disease response [18].

Chemotherapeutic resistance is a trait common to many CSCs and 
is mediated by diverse cellular processes such enhanced DNA damage 
repair or rapid drug efflux [19]. Nanoparticles (NPs) can sequester 
chemotherapeutic agents at a high concentration and release them 
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Abstract
Emerging evidence suggests that multiple tumor types are sustained by a small population of transformed stem-

like cells that have the ability to both self-renew and give rise to non-tumorigenic daughter cells that constitute the 
bulk of a tumor. These cells, which generally constitute a minority of the overall cancer cell population, are highly 
resistant to conventional therapies and persist following treatment, leading to disease relapse and the formation 
of distant metastases. Therapies that disrupt the maintenance and survival of cancer stem cells are the subject 
of active current investigation. This review discusses recent approaches to the application of nanomedicine to the 
targeting and elimination of cancer stem cells. Specifically, recent publications in the areas of nanoparticle-enabled 
drug and nucleic acid delivery and photothermal therapy are addressed.
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within the cancer cell following uptake by CSCs, potentially overcoming 
such resistance mechanisms.  The addition of targeting ligands to the 
surface of NPs may increase both target selectivity and internalization. 
Recently, several groups have explored the application of such NP drug 
delivery platforms for the selective treatment of CSCs. 

In a study by Lim et al., researchers investigated the efficacy of a 
proprietary polymer-encapsulated curcumin NP formulation (termed 
NanoCurc™) for the treatment of brain tumor stem cells [20]. The 
NP formulation greatly increased the bioavailability of curcumin, 
and following treatment of four distinct brain cancer cell lines with 
NanoCurc™ increased rates of cell cycle arrest, apoptosis, and dose-
dependent decreases in growth and clonogenicity were observed. 
Critically, this treatment correlated with a >50% decrease in the 
CD133+ stem cell population in two of the cell lines tested, suggesting 
that this therapy may have activity in the CSC fraction of some brain 
tumors [20]. 

Recent work by Mamaeva and coauthors describes the use of 
folate-conjugated mesoporous silica nanoparticles for the in vivo 
disruption of Notch signaling by the gamma secretase inhibitor 
DAPT [N-(N-((3,5-Difluorophenacetyl))-L-alanyl)-S-phenylglycerin 
t-butyl ester] [21]. Notch, like Wnt/β-Catenin, Hedgehog and other 
key developmental signaling pathways, has been implicated in the 
maintenance of the CSC pool of many tumors [22], and therapies that 
attenuate these pathways are being investigated for the treatment of 
several malignancies [23,24]. Initial studies characterizing the effects 
of the nanoparticles in breast cancer cell cultures demonstrated folate 
receptor mediated uptake (with high-expressing cell lines exhibiting 
greater uptake relative to low-expressers) along with dose-dependent 
inhibition of Notch intracellular domain (NICD)cleavage, a standard 
metric of Notch pathway activation [21]. Encouragingly, peritumoral 
injection of mesoporous NPs in tumor-bearing mice lead to significant 
tumor growth suppression, whereas free drug exhibited little effect. 
Moreover, it was shown that drug potency was maintained with oral 
dosing of the construct; an important consideration for future clinical 
translation.

Wang et al. described the use of a novel anti-CD44 antibody 
conjugated liposome to target an aggressive hepatocellular CSC with 
enhanced tumorigenicity and metastatic potential that over expressed 
both CD44 and CD90 [25]. The targeted liposomes were loaded with 
doxorubicin and then injected intravenously into tumor-bearing mice, 
resulting in a seven-fold higher drug accumulation in tumors relative 
to free drug, which corresponded with decreased tumor volume. 
Encouragingly, this effect was seen in the absence of significant 
changes in mouse body mass. Treatment with free drug produced 
similar decreases in tumor burden but with an attendant >30% loss of 
body mass in exposed animals. Alternatively, the authors were able to 
simultaneously perform tumor imaging and use gene therapy to treat 
the cancer by using the targeted liposome to deliver a triple fusion 
plasmid, consisting of gene expression cassettes for red fluorescence 
protein (RFP), renilla luciferase (Rluc), and a truncated herpes simplex 
virus thymidine kinase (HSV- TTK) gene. Treatment of tumor-bearing 
mice with the combination of HSV-TTK liposome and ganciclovir 
(a cytotoxic thymidine kinase substrate) caused a robust increase in 
tumor-localized apoptosis with minimal impact on normal tissues. The 
application of NPs for gene therapy will be discussed in more detail 
below.

Nanoparticle-enabled nucleic acid delivery vectors targeting 
CSCs

Nucleic acid-based therapies (such as RNAi) have long offered the 

promise of a molecularly-tailored intervention for cancer treatment, 
through the knockdown of vital oncogenes or disruption of tumor-
essential signaling networks. Despite the theoretical potential, the 
clinical introduction of these therapies has been slowed by their 
unfavorable native pharmacokinetics and poor tumor uptake in vivo. 
The incorporation of therapeutic nucleic acids into NP delivery vectors 
is one approach being investigated to overcome these limitations. 

Work by Liu et al. describes a method to overcome chemotherapy 
resistance in colon cancer stem cells through the siRNA-mediated 
knockdown of the drug efflux protein multidrug resistance 1 (MDR1), 
which often is over-expressed in CSCs [26]. Utilizing a moderate-
throughput approach, the authors generated libraries of lipid 
nanocarriers composed of varying ratios of cationic polyethylenimine 
(PEI1200), polyethylene glycol (PEG) and a biodegradable lipid 
crosslinker. Electrostatic complexes formed by mixing siRNA with 
these particles with a charge ratio of 1:16 were screened for knockdown 
efficiency, and optimized nanocarrier formulations achieved >90% 
silencing. Treatment of colon cancer stem cells with lipid nanocarriers 
containing MDR1-directed siRNA led to efficient MDR1 knockdown 
and sensitized the cells to subsequent paclitaxel treatment [26].

MicroRNAs (miRs) have garnered interest for their ability to 
coordinately regulate multiple intracellular signaling networks 
simultaneously [27]. Two recent publications explore the efficacy 
of NP-delivered, tumor-suppressive miRs for the treatment of head 
and neck and pancreatic cancers and their constituent stem cells.  In 
one, Piao et al. used a cationic lipid nanoparticle delivery system to 
express pre-miR 107 in target cells [28]. Mir-107 is a known tumor-
suppressive miR capable of regulating key proliferation and survival 
genes such as protein kinase Cε (PKCε), cyclin-dependent kinase 6 
(CDK6) and hypoxia-inducible factor 1-β (HIF1-β).  Treatment of a 
model of head and neck squamous cell carcinoma (HNSCC) with this 
NP led to a reduction of cellular clonogenicity, invasion and migration 
[28]. Moreover, therapeutic expression of pre-miR-107 resulted in a 
significant down-regulation of stem cell transcription factors Nanog, 
Oct3/4 and Sox2 along with diminished tumor sphere forming 
efficiency in these same cell lines, suggesting an inhibitory effect on 
resident CSCs. Accordingly, systemic delivery of NP-encapsulated pre-
miR-107 retarded tumor growth and significantly increased survival in 
HNSCC tumor-bearing mice [28].

In the second study, Pramanik et al. employed a similar cationic 
liposomal delivery system to investigate the therapeutic utility of 
forced re-expression of tumor-suppressive miRs 34a and 143/14 for 
the treatment of pancreatic cancer [29]. Similar to miR-107, these 
miRs are frequently down regulated during carcinogenesis [30,31]. 
Intravenous administration of miR-34a or 143/145-complexed 
liposomes in mice produced increased intratumoral apoptosis and 
growth delays in pancreatic cancer xenografts and orthotopic tumor 
models. Furthermore, miR-34a re-expression caused significant down-
regulation of pancreatic CSC markers aldehyde dehydrogenase 1 
(ALDH1) and CD44, suggesting that miR-34a therapy may be effective 
for the treatment of both stem and non-stem pancreatic tumor cells 
[32].

Nanoparticle-mediated hyperthermia for CSCs

Heat-based therapies, which involve elevating specific regions 
of the body to temperatures in excess of 43°C (hyperthermia) or 
55°C (thermal ablation), are established therapeutic options for the 
treatment of refractory tumors and metastases. Raising the temperature 
of a tumor into a supra physiologic range enhances chemotherapeutic 
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uptake and tumor oxygenation (a positive modifier of response to 
radiotherapy), as well as exerting direct cytotoxic effects [33]. While 
disease responses to hyperthermal therapies have been widely observed, 
their clinical implementation has been limited due to the nonspecific 
heating of normal tissues and consequent treatment-limiting toxicities. 
Recent evidence also suggests that CSCs are resistant to many standard 
thermal therapies. However, developmental advances in biocompatible 
near-infrared and radio frequency (RF) energy absorbing nanoparticles 
offer the possibility of generating tumor-specific thermal therapy 
in a minimally-invasive manner. In this application, nanoparticles 
are localized to the target lesion either by direct injection or through 
intravenous administration followed by either passive or targeting 
moiety-assisted accumulation at the tumor site. The tumor is then 
irradiated with either NIR or RF energy to stimulate the nanoparticles 
and locally generate heat within the tumor, leading to cancer cell 
death.  

This technique was first described by Hirsch et al. using gold-
coated, silica core nanoshells [34]. Similar findings have since been 
reported with the use of graphene [35], single [36] and multiwalled 
[37,38] carbon nanotubes and gold nanorods [39]. In recent work, 
Burke and co-authors directly investigated the response of breast 
cancer stem cells (BCSCs) to both conventional and nanoparticle-
mediated hyperthermia (NMH) to determine the relative efficacy 
of each approach for the treatment of these cells [40]. They reported 
that BCSCs were significantly more resistant to the cytotoxic effects 
of conventional hyperthermia as compared to non-stem breast 
cancer cells and that this resistance was mediated, in part, by high 
basal expression levels of heat shock protein 90 (HSP 90). Treatment 
of a mixed population of stem and non-stem breast cancer cells with 
conventional hyperthermia led to a significant enrichment of BCSCs in 
the surviving fraction of cells.  In contrast, the researchers were able to 
abrogate the resistance to hyperthermia observed in BCSCs following 
conventional treatment through the use of NMH [40]. It this study, 
the researchers were able to generate precise temperature increases 
in target cells and tissues by exposing the cells to polyethylene glycol 
coated multiwalled carbon nanotubes that were then heated using a 
low power, 1064nm NIR laser. Treatment of the BCSCs with this form 
of NMH resulted in robust cell death that was proportional to laser 
exposure time. NMH treatments, but not conventional hyperthermia, 
led to rapid membrane permeabilization and necrotic death in treated 
cells, and were equivalently effective at treating both cancer stem cells 
and non-stem cancer cells. Encouragingly, use of NMH in mice bearing 
BCSC-driven tumors lead to complete tumor regression and 100% 
survival, whereas control groups exhibited >80% mortality at identical 
time points. Based on these findings, NMH may represent a rapid, 
minimally invasive approach for the simultaneous elimination of stem 
and non-stem cellular components of tumors [40].

NMH can also sensitize CSCs to other treatments such as ionizing 
radiation exposure. This type of bipartite therapeutic approach was 
investigated by Atkinson et al. [41]. The authors used gold nanoshells 
in combination with NIR laser irradiation to generate mild (≈42°C) 
hyperthermia in target cells and tumors and investigated the combined 
effects of focal hyperthermia and ionizing radiation treatment. Using 
two independent animal models of breast cancer they confirmed that 
the stem cell fraction of the tumors (identified by CD29+/CD24+/
Lin- antigen profiles or ALDH1 enzymatic activity) was resistant 
to radiation monotherapy and became enriched in the population 
of tumor cells surviving treatment, as had been previously shown 
[42]. They went on to show that this effect could be prevented by the 
addition of hyperthermia immediately following radiotherapy, which 

led to a >50% reduction in the size of the CSC fraction. Moreover, cells 
from tumors treated with the combined therapy displayed reduced 
tumorigenicity and gave rise to less aggressive, more differentiated 
tumors (when formed) following transplantation into new hosts. These 
results suggested that the combination therapy durably altered the 
native behavior of the CSC fraction and may represent a promising 
approach for the treatment of CSC-harboring breast tumors. Human 
clinical trials using these particles under the trade name Aurolase® are 
currently underway.

Finally, a recent report describes a novel extension of the NMH 
technique to target invasive CSCs in systemic blood circulation. In 
a proof-of-principle study, Galanzha et al. demonstrated the use of 
photoacoustic (PA)/photothermal (PT) in vivo flow cytometry for the 
detection and elimination of circulating cancer stem cells [43]. The 
authors conjugated NIR-absorbing gold plated single-walled carbon 
nanotubes (GNTs) and spherical magnetic nanoparticles (MNPs) 
to folate or anti-human CD44 antibodies, and used these particles to 
selectively label circulating human breast cancer stem cells (which 
over express CD44 [6]) with nanoparticles (NPs). Cells with bound 
nanoparticles could then be specifically identified by detection of 
photoacoustic waves generated by the nanoparticle-labeled cells 
following excitation using a low powered laser [44,45]. Using this 
method, the authors demonstrated that rare CD44+ circulating cancer 
stem cells could be detected in the vasculature of nude mice which bore 
human breast cancer xenografts. The authors suggested that these cells 
could be ablated by photothermal effect following extended irradiance 
with NIR. As circulating CSCs are thought to be the primary drivers of 
metastatic spread, this technology offers a method by which these cells 
may be purged from the vasculature of cancer patients to reduce the 
incidence of metastatic disease.

Conclusions
Cancer stem cells offer an attractive target for therapeutic 

intervention because therapies that ablate this critical tumor 
constituency offer the promise of durable disease remission and long-
term survival of cancer patients. This review discussed three promising 
nanomedical approaches for the selective treatment of both tumors and 
their resident CSC populations. Each approach leverages the emergent 
properties of distinct nano-scale material formulations to enhance both 
tumor and CSC-specific drug accumulation and therapeutic effect. 

It is encouraging to note that despite a challenging regulatory 
environment, several nanomedical technologies (including the 
Aurolase® nanoshell technology discussed above) are already 
undergoing clinical trials. While future advancements will be necessary 
to safely transition the investigational nanoparticles detailed in this 
review into the clinic, the lessons learned by pioneering treatments like 
Aurolase® will inform the rational design and development of future 
nanomedicines for targeted cancer therapy.
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