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Introduction 

In the Nineties, observations about the role of RANTES and other 
chemokines in HIV infection were reported [1]; almost at the same 
time, CCR5-Delta32, a rare mutation in the corresponding chemokine 
receptor, was found to confer resistance [2-6]. Both findings pointed 
out the key role of CCR5, the major HIV coreceptor, in establishment 
and in maintenance of HIV infection.

Since that evidence, CCR5 has become an important potential 
preventive and therapeutic target for blocking HIV-1 entry in vivo; its 
interest was reinforced by the common observation that homozygous 
Delta32 carriers show normal inflammatory and immune reactions. 
CCR5 was associated with inflammation in several conditions, such 
as age-related degenerative diseases, rheumatoid arthritis and cancer; 
the absence of CCR5 expression was not definitely associated with any 
medical dysfunction, hence not excluding the feasibility of anti-CCR5 
interventions [7,8]. Consequently, a growing number of strategies 
aimed at preventing CCR5 function in HIV entry and spread have been 
designed and tested.

Anti-CCR5 strategies include small molecule drugs, such as 
maraviroc, ex vivo gene targeting introducing Delta32-like mutations in 
CD4+T lymphocytes and/or in hematopoietic stem cells, administration 
of chemokine analogues able to block the coreceptor inside cells and 
prevent its surface signalling, the generation of antibodies aimed at 
downregulating CCR5 receptors from target cells.

All of these antiviral strategies showed their efficacy and safety 
in preclinical assays; maraviroc is in clinical therapy since 2007; 
gene targeting has been already tested in some patients undergoing 
Hematopoietic Stem Cells (HSC) transplantation; intra- and 
extracellular immunization have been successfully tested in animal 
models.

This review will not consider development of drug inhibitors 
and chemokine analogues; it will focus genetic and immune-based 
techniques aimed at reducing or preventing CCR5 expression on target 
cells, i.e. CCR5 gene targeting and anti-CCR5 immunization strategies.

Gene Targeting
Since 1996, clinical observations showed that individuals carrying 

an homozygous mutations impairing CCR5 expression were highly 
resistant to HIV infection [2,3,6]. As summarized in Table 1, the status 
of heterozygous Delta32 carrier does not confer full protection from 
HIV infection but has been associated with slower progression; in 
fact, heterozygous Delta32 mutation was frequently observed in Long 

Term Non Progressor subjects (LTNP) [9-11]. Delta32 mutation, which 
causes the premature truncation of CCR5 molecule and prevents its 
surface expression, was not found to cause any immune dysfunction 
in homozygous subjects; however, it has been associated with increased 
susceptibility to West Nile virus or to tick-borne encephalitis [12,13].

Conversely, CXCR4 molecule, the second HIV coreceptor, is 
involved in hematopoiesis and neurogenesis, therefore its function is 
not dispensable and its mutations similar to Delta32 cannot be observed 
in vivo [14].Other genetic polymorphisms have been associated with 
HIV protection, as those involving SDF-1alpha (a CXCR4 ligand), 
RANTES (a CCR5 ligand) or CCR2 (a chemokine receptor sharing 
high homology to CCR5) [15,16].

However, human CD4+T lymphocytes where CCR5 and CXCR4 
were inactivated by intrakine expression, did show normal proliferation 
and response to antigens, mitogens, cytokines and other chemokines 
[17]. These findings seem confirmed by a recent study, showed that 
conditional CXCR4 knock out in T cells was not lethal in mice, allowing 
the study of CXCR4 involvement in arthritis [18].

Transplantation with CCR5 Delta32/Delta32 hematopoietic cells 
was first performed in an HIV-infected patient with acute myeloid 
leukemia; once recovered, the patient remained free from viremia 
for 20 months without receiving antiretroviral therapy (ART) [19]. 
Subsequently, CCR5- CD4+ donor cells were found in submucosal 
gastrointestinal (GI) and in glial brain biopsies some months after 
transplantation, showing that these cells have slowly colonized host 
tissues, and suggesting that their expansion could have reduced viral 
reservoirs [20]. Immune analysis of circulating lymphocytes showed 
that host memory CD4+ T lymphocytes have been replaced by resistant 
donor cells, therefore subtracting an important pool of virus targets. 
Most importantly, CCR5 ablation has not induced virus switch either 
in CXCR4 dependent (so called X4 viruses) or in dual tropic (so called 
R5-X4 viruses). As a confirm, the patient interrupted ART without 
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incurring viral rebound and antiviral antibodies vanished over time, 
suggesting that HIV was no longer expressed [20]. After six years of 
HIV remission, the “Berlin patient” is considered the first (and unique) 
case of successful HIV cure since now, even if minimal HIV expression 
could be still present, at levels beyond limits of detection achieved by 
present technology [21]. Other HIV-positive patients underwent HSC 
transplantation to treat leukemia or lymphoma, but HIV rebound 
was observed after transplant and ART and immunosuppressive 
therapy were required to control viral load and Graft-versus-Host 
(GVH) disease; most of these patients died after transplant [22]. The 
mechanisms involved in HIV eradication in “Berlin patient” only are 
not yet fully understood. This patient underwent severe particular 
transplant conditions different from those ones applied to the other 
patients who died, suggesting that total body irradiation or the 
engraftment with Delta32 cells from a CCR5 donor might have been 
critical differential aspects in the case of the Berlin patient [22].

Transplantation with Delta32 homozygous HSC associated with 
ART is considered a promising way to restore immune system with 
cells resistant to HIV infection and to reduce HIV reservoir cells 
[23]. However, this approach presents several limitations, such as 
the shortage of Delta32 homozygous donors [24], the requirement of 
severe cytoreductive treatments before and of immunosuppressive and 
antiviral therapies after the procedure and the consequent economic 
burden, all of whom make this practice uniquely applicable to HIV 
patients with haematologic tumors in Western countries [22,25].

Other strategies focused CCR5 Delta32 homozygosis by means 
of gene disruption, antisense RNAs, intracellular expression of 
chemokines or antibodies (Table 1).

Engraftment of T cells is fater, and CD4+ cells proliferate rapidly 
ex vivo and in vivo; HSC grow slower and require more extensive 
cytoreductive conditioning to achieve an initial advantage over host 
T-cells, but can differentiate to all cell lineages. Due to their fast growth 
once engrafted, HSCs are more prone to degenerate in tumors than

T-cells, due to the possible off-target, mutagenetic or trans-activating
effects [26]. On the other hand, CCR5 gene knock out (KO) could have 
a protective role towards donor cells activation and dissemination,
since T-cell migration towards inflammatory loci depends on CCR5
receptors [31]; especially CCR5 density on cell surface was observed to
increase T-cell migration in Graft-versus-Host disease (GVHD) [28].

Gene Knock out
Transient expression of specific endonucleases under the control of 

adeno- or lentiviral vectors was aimed at introducing CCR5 mutations 
and at preventing its transcription or translation in CD4+ lymphocytes 
[22,25]. Different semisynthetic nucleases have been build, which 
put together a DNA binding domain, such as Zinc Fingers (ZF), and 
an endonuclease function (N), usually provided by Fok I restriction 
enzyme (Table 1).

Zinc Finger Nucleases (ZFNs) take advantage of the most versatile 
and most used DNA binding proteins, have been used in many cell 
types and also tested in ex vivo human trials [29]. Other DNA binding 
proteins, such as the Transcription Activator-Like Effectors (TALEs), 
large proteins of vegetal origin, have already been assayed in vitro, 
showing a comparable efficiency to ZFNs; no infusion assays, even 
in humanized mice, have still tested the safety of this approach [30]. 
Another promising method to be exploited in gene editing is the 
CRISPR/Cas9 (clustered regularly interspaced palindromic repeats 
sequences) system, which usually serves to bacteria to inactivate 
plasmid and phage DNA and to elude host innate immunity by inducing 
multiple nicks under thecontrol of a guide RNA [25]. CRISPR/Cas9 has 
been successfully used to target human cells and disrupt CCR5 gene, 
but off-targeting remains a major limit to be overcome [31,32].

In order to obtain a double strand DNA break and to increase target 
specificity, a ZF and a nuclease domain work on each DNA strand, and 
the whole ZFN protein is a dimer. DNA recognition ensured by a ZF 
domain usually spans 9-18 bp [25]. DNA breaks undergo cell repair 

Anti-CCR5 gene targeting Ref Evidence Benefits Limits

Natural Delta32
homozygosis [2-6]

Spontaneous mutation occurring
in 4-18% of European and
Askenazi Jews people.
Not found in Asian and Pacific
indigens.

Lack of CCR5 surface
expression.
No signs of immune alterations.
Resistance to R5 HIV infection.

No resistance to X4 or dual R5/X4
strains.
High sensitivity to West Nile virus
and tick-borne encephalitis.

Transplantation of CCR5-/-
cells (HST or T
lymphocytes)

[19,20,29]

Clinical infusion of modified
cells in patients undergoing
cytoreductive treatment.

Resistance to HIV infection.
Long-term cell survival
GI mucosal colonization.
Brain colonization
Reduction of HIV reservoirs ?
Heritable DNA modification.
Definitive cell cure .

Off-target genotoxicity (e.g. CCR2).
Oncogenesis.
CXCR4 is required for HSC 
maturation in bone marrow.
Multiple treatment cycles ?
Selection of resistant strains.
Mucosal efficacy?

CCR5 and/or CXCR4 KO
by Zn-finger Nucleases in
T cells

[29]
Ex vivo transient expression of
viral vectors carrying ZFNs

Resistance to HIV infection.
Mucosal protection?
Reduction of HIV reservoirs ?
Definitive cell cure ? Off-target toxicity

Insertional mutagenesis?
Lentivirus-induced activation or
mobilization of endogenous LTR?
Unknown long-term safety issues.

CCR5 KO
by TALENs or CRISPRs in T cells

Preclinical study in mice
receiving ex vivo modified T
cells

Lower off-target activity than
ZFNs.

Double CCR5+CXCR4
KO
by ZFNs in T cells

Ex vivo trial Total resistance to HIV
infection.

Ribozymes In vitro
Ex vivo trial Preventing CCR5 expression. Lentivirus-induced activation or

mobilization of endogenous LTR?
Intrabodies-mediated
CCR5 intracellular
retention

Ex vivo assay Preventing CCR5 expression.
Resistance to R5-HIV infection.

Excess of intracellular protein
entrapment

Table 1: Anti-CCR5 gene/expression targeting.
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systems, which are often prone to introduce mutations and deletions 
and therefore lead to reduced or blocked gene expression in a high 
proportion of treated cells. Even the induction of a single CCR5-
Delta32 hit can be helpful in gene editing procedures, since increases 
the proportion of CCR5-homozygous cell population generated by 
ZFN expression; in fact, therapeutic success depends on the proportion 
of cells carrying biallelic CCR5 disruption [29]. On the other hand, 
the strong DNA affinity or the prolonged expressions of ZFNs within 
target cells have been associated with off-target effects, i.e. mutagenesis 
or disruption of undesired or unspecific cellular genes. Due to its 
homology to CCR5, the CCR2 gene, coding for the chemokine receptor 
binding the Monocyte Chemo attracting Protein-1 (MCP-1), is one of 
the most frequent off-targets of ZFN [30,33].

Finally, the complete CCR5 inactivation should prevent virus switch 
to X4 or dual-tropic viruses in the early phase of HIV infection, but if 
the CCR5 inactivation happens later during HIV infection, a double 
CCR5-CXCR4 targeting should be performed. Double CCR5-CXCR4 
gene disruption has been performed in human cell lines coinfected with 
two adenoviral vectors carrying the two specific ZFNs. Coinfection with 
an R5 and a X4 HIV strains enriched the in vitro population of resistant 
T cells from 9% to 99%, confirming their resistance. Similar results were 
observed in CD4+ T primary cells, which were infused in humanized 
mice and challenged with infectious R5 and X4 tropic viruses. Up to 
10% of resistant human cells were found in mice spleens; proportion 
of cells carrying CCR5 and CXCR4 gene inactivation reached 69% 
and 73%, respectively; these encouraging results need to be further 
confirmed before applying to human therapy [34].

Antisense RNA

To shut down CCR5 expression, several RNA-based strategies have 
been assayed for more than ten years (Table 1). Different approaches 
were shown effective to reduce CCR5 expression, working through 
RNA silencing (siRNA), antisense RNAs targeting different viral and 
cellular genes or ribozymes with catalytic activity [35-40].

Differently from gene editing strategies, RNA silencing or antisense 
shut-down require the continuous expression of therapeutic RNA; 
suitable viral vectors should work ex vivo or possibly in vivo, therefore 
bypassing requirements of cell culture, autologous cells cytoreduction 
and reinfusionof treated cells.

Adenoviruses and pseudotyped lentivirus vectors have been 
successfully used to transduce siRNA-coding sequences within cells; 
while the former vectors remain as episomes and can be lost after 
some cell cycles, the latter ones can make genes stably integrated in 
chromosomes, but with a higher risk of mutagenesis. Conditional 
replication of lentivirus vectors could hypothetically result beneficial, 
because could contribute to spread therapeutic genes to cells already 
carrying HIV proviruses, but the risk of insertional mutagenesis and 
reactivation of endogenous retroviruses cannot be excluded [41]. 
Similarly to what observed with gene editing, off-targeting activity and 
over-expression of antisense RNA may result toxic [38]; in addition, 
undesired activation of innate immunity, driven by double stranded 
RNA (dsRNA) via Toll-like receptors, could be observed [46,43].

Silencing RNA (siRNA) is an innate cellular mechanism to regulate 
gene expression that takes advantage of short antisense RNA (about 20 
bp) complementary to a specific mRNA and commits it to degradation. 
ShRNA are short hairpin RNA, precursor of siRNA, which are processed 
by Dicer endonuclease to become guide RNA and address the silencing 
complex (RISC) to the targetmRNA [44]. Partial or complete CCR5 
shut-down in T cells has been achieved with various viral vectors, 

ranging from SV40 to lentiviruses, under the control of promoters with 
different strength [36,38,39,45]. Rhesus CD34+ cells, i.e. precursor 
of T-cells, monocytes and macrophage lineages, transduced with a 
lentivirus vector carrying an H1-promoter controlled shRNA, showed 
a 3-10-fold reduction in CCR5 surface expression and partial resistance 
to SIVmac challenge; once infused in macaques, reconstituted T 
lymphocytes population without signs of toxicity [37]. Another study 
assessed the stable expression of a shRNA in macrophages derived 
from fetal liver CD34+ cells; CCR5 downregulation was over 90% in 
differentiate macrophages, conferring viral protection without apparent 
signs of toxicity [46].

The transduction of an antisense RNA complementary to CCR5 
sequence reduced receptor surface expression by 98% and blocked R5 
HIV strain infectivity more than 50% [47].

Ribozymes are catalytic RNA molecules able to cut target mRNA in 
one or more fragments (Table1); different CCR5 ribozymes have been 
designed and successfully tested in human cells [48].Stable expression 
of a multimeric hammerhead in human T cells decreased receptor 
expression and nearly abolished infectivity of a R5 HIV strain, without 
affecting X4-mediated infection [49]. Another ribozyme, transduced 
in CD34+ cells by a retroviral vector, did not affect cell differentiation 
in T cells lineages and macrophages cultured in a mouse model of 
thymic differentiation [35]. Anti CCR5 ribozymes were also included 
in multitarget vectors; similarly to ART combinations, lentiviral vectors 
carrying different blocking agents should prevent the development of 
resistance to genetic therapies.

A triple combination of HIV tat and rev decoys and an anti-CCR5 
ribozyme was tested in CD34+ cells; expression of therapeutic genes 
in differentiated monocytes reduced HIV R5 infectivity following an 
additive mode, the triple combination being the most effective among 
the combinations assayed [50].

Intracellular Chemokines and Antibodies

The increased expression of RANTES, MIP-1α and MIP-1β 
chemokines, and the consequent internalization of CCR5 receptor, 
have been considered natural protective factors in HIV infection [4,5]. 
Therefore, chemokine analogues appeared promising drug candidates 
to confer mucosal protection from HIV entry, with lower risks of 
inducing drug resistance [51].

A tricky way to achieve inhibition of CCR5 expression has been 
accomplished through expression of intracellular CCR5 ligands, such 
as modified chemokines and antibodies (Table 1).

Genes coding for CCR5 and CXCR4 ligands, i.e. RANTES and SDF-
1α, were modified to be targeted within endoplasmic reticulum (ER). 
Both molecules worked as molecular decoys and effectively prevented 
both receptors from surface exposure; once transduced in human T-cell 
lines and in Peripheral Blood Mononuclear Cells (PBMCs), singularly 
or in pair, conferred the expected resistance to R5 and/or X4 HIV 
strains upon challenges [13,52,53].

Similar results were confirmed by a recent study, where intracellular 
RANTES genes, controlled by EF1-alpha promoter, were efficiently 
transduced in human cells by a lentiviral vector after CD3 and CD28 
antibody stimulation [54]. Intrakine expression reduced, but not 
completely removed, CCR5 molecules from cell surface; expression 
levels of other surface receptors, such as CCR1 and CCR3, which 
usually bind RANTES, was found reduced by effect of the intrakine. 
Interestingly, real-time PCR analysis revealed a low copy number of 
proviral DNA in transduced cell cultures; differently from control cells, 
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where viral DNA increased over time, treated lymphocytes maintained 
a constant amount of viral DNA over three weeks [54].

Moreover, different genetic association between Long Term Non 
Progressor status and copy number variation of CCL3L1 gene encoding 
for MIP-1α have been published in the last few years [55-56] and in 
particular some isoforms of MIP-1α has shown to be very potent 
agonists of CCR5 [57-58].

The use of intracellular antibodies rather than chemokines could 
prevent undesired interactions withredundant CCR receptors (Table 
1).ST6, a Fab fragment from a mAb recognizing a unique sequence in 
CCR5 N-terminus, was engineered to become a single chain antibody 
(scFv) endowed with an ER retention peptide. Intracellular expression 
of scFv completely blocked surface labelling of CCR5 molecule in 
cytofluorimetric assays both in human and in rhesus cells, while 
CXCR4 expression was unaffected. Modified cells became resistant 
to R5 HIV challenge and to R5-mediated cell-cell fusion, showing 
the effective removal of surface CCR5 [59]. A subsequent study 
showed that modified primary T cells carrying CCR5 intrabody were 
protected from HIV transmission, once interacting with activated, 
antigen-presenting, dendritic cells pulsed with R5 HIV. Transduced 
CD34+ human cells, infused in NOD/SCID (nonobese diabetic/severe 
combined immunodeficiency) mice, differentiated in CD4+ and CD8+ 
cell lineages, showing stable intrabody expression and retaining HIV 
resistance [60]. Finally, anti-CCR5, single chain antibodies were also 
used to specifically target viral pseudotyped lentiviral vectors to CCR5-
expressing cells [61].

Similarly to ART, combined gene targeting interventions should 
be required to achieve complete virus suppression [48]; however, 
the induction of virus resistance and the survival of long-lasting cell 
sanctuaries cannot be fully excluded[27,30].

Immunization studies
All attempts to block CCR5 molecule through host immune 

responses have to cope with two major factors: the highly flexible, poor 
immunogenic structure of the antigen and the need to elicit host auto-
immunity and to break immune tolerance towards a self antigen.

Moreover, anti-CCR5, as all antibodies, could exert antiviral activity 
through many different mechanisms, including binding competition, 
steric hindrance, receptor internalization, block of virus transcytosis 
across epithelial cell layers, complement fixation or Antibody-
Dependent T-cell-Mediated Cytotoxicity (ADCC) [62,63]. No present 
studies have either defined what is the most effective way in which anti-
CCR5 antibodies exert anti-HIV activity or what is the CCR5 domain 

to be preferred to induce the most effective antibodies.

CCR5 molecule is a G-protein coupled receptor (GPCR), with a 
typical structure made of seven transmembrane domains; N-terminus 
and three extracellular loops (ECL1, 2 and 3), are the immunogenic 
regions and account for about a fourth of its whole sequence (90 out 
of 352 aminoacids). The two longer domains, the N-terminus and 
the second extracellular loop (ECL2), are involved in HIV binding 
(chemokines only bind ECL2 domain), and host the immunodominant 
epitopes recognized by the majority of monoclonal antibodies [64-66].
Chemokines binding to CCR5 determines receptor internalization as 
well as T-cell and macrophage chemotaxis; chemokine analogue drugs 
suitable to antiviral therapy should not induce pro-inflammatory, 
adverse effects [55].

Monoclonal antibodies to N-terminus and ECL2 compete with 
HIV for binding (ECL2, but not N-terminus, antibodies prevent 
chemokine binding); some of them may induce receptor internalization. 
Monoclonal antibodies have been evaluated in several studies [67]; in 
humanized form, some have been also tested in clinical trials of passive 
immunization [68-71]. Anti-CCR5 recombinant antibodies have also 
been isolated by phage libraries, an approach aimed at increasing the 
chances to obtain highly active, specific antibodies to the expected 
target [72,73]. Single chain antibodies to CCR5, selected from a phage 
library displaying cyclic constrained peptides, were found to block 
specific receptor, but not CXCR4 [74].

The ECL1 domain does not bind HIV; its engagement by natural 
anti-CCR5 antibodies induces a long-lasting receptor internalization, 
mediated by clathrin-coated pits [75].

Natural anti-CCR5 antibodies were found in various groups of 
individuals belonging to different ethnic groups, such as the Delta32 
homozygous carriers, exposed to CCR5 through sexual intercourse 
with CCR5+ partners; haemophilic patients, repeatedly exposed to 
alloantigens found in blood transfusions; HIV-exposed but uninfected 
sexual partners of HIV-positive patients (ESN or EU or MEU); HIV-
positive patients and especially LTNP subjects, who control the disease 
for years in absence of ART [75-84]. Strikingly, natural antibodies to 
CCR5, either IgG and IgA, have been detected in serum as well as in 
other biological fluids, such as saliva, milk, semen and cervicovaginal 
secretions, where they are likely to exert direct antiviral activity by 
inducing receptor internalization or by inhibiting mucosal transcytosis 
of virus particles (i.e. their transfer across cell membranes of mucosal 
epithelia) (Table 2). Differently from natural antibodies to ECL1, 
monoclonal antibodies (mAbs), such as 2D7 (ECL2), do not block HIV 
transcytosis [78,80-84,86].

Anti-CCR5
antibody Ref Study Immunogen/

Vector
Adjuvant//Route/
Schedule Biological features Limits

Natural ECL1
Abs [75,80,83,84,86] ESN and LTNP

sera. Natural Ags?

Low dose Ags
presented by
mucosal route?

Inhibition of MIP-1beta chemotaxis.
Binding to native CCR5 on PBMC.
CCR5 internalization.
Block of HIV transcytosis .
Block of R5-HIV isolates from A, B, 
C, E clades

Natural, uncommon.

Natural
Nt/ECL2 Abs [76-78,85]

Healthy donors
Delta32+ ESN
Delta32+
CCR5-
HIV+ patients

Natural Ags? Allo Ags exposure?

Competition for chemokine binding.
Binding to native CCR5 on 
transfected or PBMC.
Block of R5-HIV laboratory and 
primary isolates.

Natural response observed 
in healthy HIVexposed or in 
chronic HIV pz.
Not all Abs internalize CCR5

Anti-CCR5
humanized
mAbs

[68-71]
Passive
immunization
clinical trial

PRO140
HGS001

IV infusion in
HIV-positive
patients

Well-tollerated, no toxicity.
IM infusion.
Immune responses to
therapeutic Abs.

Table 2: Anti-CCR5 immune responses in humans (naturally occurring or upon passive immunization).
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The maintenance of a proper antigen presentation made difficult 
to reproduce natural anti-CCR5 responses upon immunization; due to 
their flexibility, N-terminus and CCR5 loops require a conformed status 
to retain proper immunogenicity [87]. Table 3 summarizes significant 
preclinical immunizations performed in rodents. Not surprisingly, first 
immunization experiments failed in achieving the expected responses, 
probably due to the epitope presentation in form of conjugated, flexible 
peptides. Specific, albeit scarce, antibodies obtained from peptide 
immunizations were nevertheless able to bind CCR5 molecule and to 
block in vitro infection of R5 HIV strains [88,89].Further experiments 
assayed immunogens endowed with a determined three-dimension 
conformation: immunization with a cyclic peptide from ECL2 
(R168-T177) induced specific antisera in macaques; antibodies bound 
human and macaque CCR5+ cells and inhibited infection of A and C 
clades primary R5 HIV and SHIV isolates in vitro [90].

As shown in Table 3, other immunizations took advantage of the 
Flock House capsid protein (FHV), a conformation-constrained vector, 
to elicit antibodies to ECL1 (Y89-W102). Systemic and mucosal murine 
immunization elicited IgG and IgA antibodies in serum and in vaginal 
fluids. Such antibodies recognized and downregulated CCR5 from 
human and murine cells, inhibited MIP-1β induced chemotaxis and 
blocked clade B R5 virus infection in vitro. Similarly to ESN individuals, 
CD4+ PBMCs from serum and vaginal washes of immunized mice 
showed lower amounts of endogenous CCR5 receptors [87].

Aminoacid substitutions introduced in ECL1 peptides displayed in 
the same carrier were found to increase antibody affinity compared to the 
wild-type peptide (ECL1, A95-A96 vs. wild type D95-F96); according 
with NMR analysis, substitutions increase peptide stabilization, 
enhancing its propensity to assume an helical conformation, therefore 
confirming the elevated flexibility of native ECL1 domain [91].

In order to increase immunogenicity, vaccine strategies also 
addressed the construction of high density peptide arrays displayed 
on Virus Like Particle (VLPs) (Table 3), inspired by the fact that viral 

envelopes crowded with protein spikes are highly immunogenic and 
could induce neutralizing responses more easily [92]. As a confirm, 
such VLPs, based on MS2 bacteriophage backbone, were found to 
enhance immunogenicity of gp120-V3 and ECL2 peptides [93]. Other 
bacteriophage-based VLPs, carrying CCR5 peptides, achieved strong 
systemic and local responses, once administered through airways in a 
preclinical test in rats [94].

A key aspect in CCR5-targeting immunization is the ability to 
induce mucosal responses, because HIV entry takes place in mucosal 
districts almost in all cases [95]. Mucosal districts offer both humoral 
and physical barriers to infection, due to antiviral factors, such as 
RANTES and defensins, to IgG and IgA, and to morphological features 
of epithelia [96,97]. Strikingly, X4 viruses were found to be restricted in 
transcytosis and in mucosal infection as well [98-100].

Natural HIV-blocking IgA in mucosal secretions, described 
in ESN, was already supposed to confer natural resistance to HIV 
[80,82,101,102]. Anti-viral IgA were found to prevent infection 
in animal challenges and in human trials by exerting a number of 
antibody-mediated activities, in addition to neutralization of CD4+ cell 
infection. Most surprisingly, mucosal antiviral activities took place even 
in the absence of detectable systemic neutralizing responses [103-105].

Immunization by mucosal route (intranasal DNA prima followed 
by peptide booster) elicited specific IgG and IgA in sera and in mucosal 
secretions (intestinal, vaginal and lung) to gp120-V3 loop, gp41-
ELDKWAS epitope and CCR5-ECL2 (R168–S185) peptides [101]. In 
the same study, long-term IgG and IgA blocking antibodies were still 
observed 12 months after boosting, suggesting that intranasal DNA 
priming followed by one peptide/L3 adjuvant booster immunization 
could induce long-lasting immunogenicity to conformational epitopes 
[101]. As described in Table3, immunization with a conformation-
constrained ECL1 peptide by IM or IN route elicited IgG andespecially 
IgA antibodies in serum and in vaginal fluids; besides other anti-CCR5 
effects, such antibodies caused a marked downregulation of the receptor 

Anti-CCR5
antibody Ref Study Immunogen/Vector Adjuvant/Route/ Schedule Biological features Limits

Nt and ECL2
Abs [101] Preclinical, mice

ECL2 (aa 168–182)
peptide emulsified in
mono-oleate/fatty acid
(L3) adjuvant

IN DNA priming
and booster IM
immunization

Serum and mucosal IgG and IgA 
(intestinal, vaginal and lung).
Long-lasting IgG and IgA 
(12 months from boosting).
IN DNA prime+peptide booster 
induced HIVblocking antibodies and B 
memory cells.

Human/simian CCR5
sequences.
Not conformed peptide.

ECL1 Abs [87] Preclinical, mice ECL1 conformed in
FHV capsid protein

Freund’s adjuvant
by IM and IN
administration

IgG and IgA.
Long lasting CCR5 downregulation on 
PBMC and mucosal fluids.
Transcytosis inhibition.

Human ECL1 sequence.

Nt Abs [89] Preclinical,
rabbits

Nt (M1-S7)
conjugated with KHL.

Fusion with a Tspecific
peptide
from Tetanus
toxoid

Binding to N-term and
full CCR5.
HIV block in macrophages
in vitro.

Not conformed, human Nt
sequences.
Low proportion of CCR5-
specific antibodies

Nt-and ECL2-
CCR5 [94] Preclinical, rats Nt, cyclic ECL2 and

Nt+cyclic ECL2

Phage Qbeta-based
VLPs by IM or
aerosol route

Strong IgG and IgA in serum
Aerosol boost induced
mucosal IgA

Macaque CCR5
sequences.

CCR5 Abs [106] Preclinical, mice

Homologous, Nt,
ECL1, ECL2
sequences conformed
in FHV capsid
protein.

Alum best adjuvant
than Freund’s,
RIBI, Montanide.
IM priming +
mucosal IN
boosting best
schedule among 13
protocols
compared.

Murine CCR5 sequences.
Full tolerance break.
Serum and mucosal IgG and IgA.
Long lasting CCR5 downregulation in 
PBMC
and mucosal fluids.
Mucosal IgA priming.
Transcytosis inhibition. No signs of 
autoimmunity.

Low IgA recovery from
mucosal fluids.

Table 3: Preclinical anti-CCR5 immunization studies in rodents.
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from CD4+ PBMCs, especially observed in cells isolated from vaginal 
fluids of mice vaccinated by mucosal route [87].

A recent preclinical study performed in mice have systematically 
addressed all aspects of anti-CCR5 immunization, including the use of 
adjuvants, in order to define the optimal schedule to elicit strong and 
long-lasting systemic and especially mucosal responses [106]. Three 
different immunogens, i.e. N-terminus, ECL1 and ECL2, expressed in 
the context of FHV capsid protein, were administered in 13 different 
protocols of immunization, comparing different combination of 
systemic and mucosal routes and four adjuvants (Table 3). Systemic IM 
priming and IN mucosal boosting with Aluminium adjuvant resulted 
the best combination and elicited high-titer specific antibodies. Not 
surprisingly, analysis of Peyer’s patches revealed consistent priming in 
a high proportion of cells, showing an activated B phenotype and high-
levels of IgA, representing up one-third of HIV-blocking antibodies.

ECL1 and ECL2 gave rise to stronger responses than N-terminus, 
achieving almost total CCR5 downregulation, sustained write block 
of HIV infection and nearly complete block of transcytosis. Most 
importantly, histopathological analysis found mild to moderate signs 
of chronic inflammation in some tissues, consistent with the activity 
of Aluminium adjuvant, but no signs of autoimmunity were observed 
[106].

In vivo immunization&challenge studies

Results from immunization and challenge studies led to evaluate 
in vivo efficacy and safety, since CCR5 immune targeting raised 
concerns about the feasibility of a breakage in immune tolerance and 
the consequent risk of autoimmunity [107].

As summarized in Table 4, elicited anti-CCR5 antibodies were 
found to block HIV and SHIV infection in vitro, therefore showing that 
immune tolerance to a self antigen was broken; no immunized animal 
escaped infection, but reduced viral load and control of viremia in 
respect tounvaccinated control animals support the role of CCR5 auto-
antibodies in controlling the infection [108-110].

Striking results come from a recent in vivo study, which confirms 
protective role of anti-CCR5 antibodies in vivo and suggests that this 
vaccination could really confer long-lasting in vivo protection (Table 

Anti-CCR5
Vaccine Ref Study Immunogen/Vector Adjuvant//Route/

Schedule Biological features Limits

CCR5 auto-
Abs [108]

Preclinical,
macaques
SHIV challenge

High density Nt
peptides conjugated to
VLPs from BPV-L1
protein.
Homologous, non
conformed macCCR5
sequences were used.

9 IM inocula with
TiterMax Gold
adjuvant

Binding to native macCCR5
in vitro SHIV block.
Reduced viral loads and time to 
clearance upon IV infection with a 
weakly pathogenic SHIV.
SHIV clearance correlated with anti-
CCR5 antibody titer and avidity.

Abs titers were found to
decline over time but responded 
to subsequent boosts.
No vaccinated macaque
escaped challenge, albeit
most of them controlled it.

CCR5 Abs [110]
Preclinical,
macaques
SHIV challenge

Cyclic ECL2
(Arg168-Tyr177+CyscDDR5)
conjugated to
MAP poly-lysin resin

Immunizations in
Complete (IP, 0,
1wk) and
Incomplete (SC, 6
wk) Freund’s

Binding to human and
macaque PBMCs.
In vitro block of laboratory
and primary isolates.
Reduction of viral load upon challenge.

Infection was partly
controlled but not
prevented.

CCR5 Abs [111]

Preclinical,
macaques
Vaginal SIV
challenges

Nt and cyclic ECL2
peptides in
bacteriophage Qss
VLPs
Homologous
macCCR5 sequences
were used.
.

4 IM priming
(Freund’s)
+ 3 vaginal
boosting

Viremia peak 30-fold lower
Undetectable SIV in 3/12 animals since 
6 wk p.i. for more than a year in serum,
lymph nodes and colon biopsies.
Viral control due to humoral
but no to cell-mediated
immunity.

Vaginal secretions could
not be examined.
IgA were not evaluated.
High dose challenges
could have even masked
the real extent of
protection

Table 4: Preclinical, anti-CCR5 immunization studies with virus challenges.

4).A bacteriophage Qss VLP-based vaccine, presenting N-terminus 
and cyclic ECL2 peptides, was assayed in macaques before vaginal 
challenge with SIVmac251 [107]. Four vaccine doses were administered 
by intramuscular (IM) only or by intravaginal (IV) +IM routes.

After high-dose challenge, vaccinated animals showed 30-fold 
lower peaks and viremia than controls; in three out of twelve treated 
animals (25%), one from IM and two from IM+IV groups, SIV nucleic 
acids become undetectable since six weeks p.i., not only in serum 
but also in lymph nodes and colon biopsies. Unfortunately, vaginal 
secretions could not be examined and so IgA levels were not evaluated. 
In vivo depletion of CD8+ T cells after one year p.i. failed to induce viral 
rebound, suggesting that protection did not depend on cytotoxic cells 
but mostly relied on humoral immunity; when anti-CCR5 antibodies 
titer was vanished, i.e. more than one year after immunization, the three 
animals could become infected upon a new vaginal or intravenous 
high-dose challenge [111]. High-dose challenge was intended to clearly 
transmit infection in all controls and treated animals; however, high-
dose challenge is far from usual conditions of HIV transmission and 
could bring to underestimate the actual level of protection [103].

Conclusions
Responses from fresh studies confirm the important role of CCR5 

molecule in HIV infection and maintenance, and get to consider its 
targeting is an attainable therapeutic goal. HIV story tells that many 
approaches and different therapeutic tools have been helpful to 
transform the acute infection in a chronic condition, with the aim at 
full virus eradication. On one hand, CCR5 and possibly CXCR4 gene 
ablation seem to promise the definitive eradication of HIV infection, 
albeit at heavy and costly conditions; similar efforts can be uniquely 
afforded by few chronic patients who cannot be longer treated with 
drugs or who need anticancer, life-saving interventions.

On the other hand, CCR5 immune targeting could offer effective 
and long-lasting preventive immunity, with low healthcare and 
individual burden. Both genetic and immune strategies offer specific 
rationale to fight HIV and find application in precise contexts; both of 
these could bring further development and offer new insight towards 
between the and control write HIV, although a CCR5 vaccine-based 
approach to induce CCR5 antibodies in groups at risk of contracting 
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HIV infection could be a more feasible and safe therapeutic goal than 
gene therapy, considering the HIV epidemiology and the difficulty of 
implementing CCR5 gene therapy in individuals residing in developing 
countries, of HIV infection.
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