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Background
The Moore-Penrose (M-P) generalized inverse matrix theory [1,2] 

provides a powerful tool to solve a liner equation system that cannot 
be solved by using the inverse of the coefficient matrix.  Although M-P 
matrix theory has been used to solve challenging problems in operations 
research, signal process, system controls and various other fields [3-7], 
to date this method has not been used in health and human behavior 
research. In this study, we report our work to solve a probability 
discrete event system-based modeling characterizing cigarette smoking 
behavior among an adolescent population in the United States. 

To extract and model the longitudinal properties of multi-stage 
behavioral system, such as cigarette smoking with cross-sectional 
survey data, Chen et al. [8-10] developed the probability discrete event 
systems(PDES) modeling approach. In this approach, the continuous 
development process of a behavior (such as, cigarette smoking, disease 
progression) is first conceptualized as a PDES with multiple states. 
These states describe the multiple stages of logic behavioral progression 
with the transition paths linking one state (stage) to another [8-10]. 
This model has been successfully used in describing the dynamics 
of cigarette smoking behavior [8,9] and the responses to smoking 
prevention intervention among adolescents in the United States [11]. 
Despite the success, the established PDES method has a limitation: 
the model cannot be determined without extra exogenous equations. 
Furthermore, such exogenous equations are often impractical to obtain 
and even if an equation is derived, the data supporting the construction 
of the equation may be error prone.

To overcome the limitation of the PDES modeling method, we 
proposed the use of M-P inverse matrix method that can solve the 
established PDES model without exogenous equation (s) to create a 
full-ranked coefficient matrix. The combined approach of the M-P 
inverse matrix theory with PDES (or "M-P Approach" for short) will 
increase the efficiency and utility of PDES modeling in investigating 
many dynamics of human behavior without fully observed data. To 
facilitate the use of the M-P Approach, an R program with examples 
and data are provided in Appendix A for interested readers to apply 
their own research data.  

A Review of the PDES for Smoking Behavior
To be self-contained, we make use of the notations in Lin and 

Chen [10] in this paper to describe the PDES model. According to Lin 
and Chen [10], in estimating the transitional probability with cross-
sectional survey data to model smoking multi-behavioral progression 
(Figure 1), five behavioral states are defined to construct a PDES: 
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Abstract
Moore-Penrose (M-P) generalized inverse matrix theory provides a powerful approach to solve an admissible 

linear-equation system when the inverse of the coefficient matrix does not exist. M-P matrix theory has been used 
in different areas to solve challenging research questions, including operations research, signal process, and system 
controls.  In this study, we report our work to systemize a probability discrete event systems (PDES) modeling in 
characterizing the progression of health risk behaviors. A novel PDES model was devised by Lin and Chen to extract 
and investigate longitudinal properties of smoking multi-stage behavioral progression with cross-sectional survey data. 
Despite its success, this PDES model requires extra exogenous equations for the model to be solvable and practically 
implementable. However, exogenous equations are often difficult if not impossible to obtain. Even if the additional 
exogenous equations are derived, the data used to generate the equations are often error-prone. By applying the M-P 
theory, our research demonstrates that Lin and Chen’s PDES model can be solved without using exogenous equations. 
For practical application, we demonstrate the M-P approach using the open-source R software with real data from 2000 
National Survey of Drug Use and Health. The removal of extra data facilitate researchers to use the novel PDES method 
in examining human behaviors, particularly, health related behaviors for disease prevention and health promotion. 
Successful application of the M-P matrix theory in solving the PDES model suggests potentials of this method in system 
modeling to solve challenge problems for other medical and health related research. 
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•	 NS – never-smoker, a person who has never smoked by the 
time of the survey.

•	 EX – experimenter, a person who smokes but not on a regular 
basis after initiation.

•	 SS – self stopper, an ex-experimenter who stopped smoking for 
at least 12 months.

•	 RS – regular smoker, a smoker who smokes on a daily or 
regular basis.

•	 QU – quitter, a regular smoker who stopped smoking for at 
least 12 months.

The smoking dynamics as shown in Figure 1 can be described using 
the PDES model:

0( , , , )δ= ∑G Q q 				                   (1)

where Q is the set of discrete states. In this smoking behavior model of 
Figure 1. Q={NS,EX,SS,RS,QU} Let ∑={σ1, σ2, ….., σ11} be the set of events. 
In Figure 1, ∑={σ1, σ2, ….., σ11}, where each  σi is an event describing the 
transition among the multiple smoking behaviors. For example σ2 is 
the event of starting smoking. δ: Q×∑→Q is the transitional function 
describing what event can occur at which state and the resulting new 
states. For example, in Figure 1, δ (NS, σ2)=EX.  q0 is the initial state. For 
the smoking behavior model in Figure 1, q0=NS. With slight abuse of 
notation, we also use q to denote the probability of the system being at 
state q and use σi to denote the probability of σ i  occurring. Therefore, 
NS also denotes the probability of being a never-smoker and σi also 
denotes the probability of starting smoking. If it is important to specify 
the age, then we will use a to denote age. For example, σ2(a) denotes the 
event or the probability of starting smoking at age a.

Based on the defined PDES model shown in Figure 1, the following 
equationset can be defined conceptually:

NS (a+1) = NS(a)-NS(a) σ2 (a)		                                                              (2) 

EX (a +1) = EX (a) + NS(a) 2σ  (a) + SS (a) 5σ  (a) − EX (a) 4σ  
(a) – EX(a) 7σ (a)                          			                 (3) 

SS (a +1) = SS(a)+ EX(a) σ4 (a)− SS (a)σ5(a)		                     (4)

RS (a +1) = RS(a)+ EX(a)σ7(a)+ QU (a) σ10(a) – RS(a) σ9 (a)        (5)

QU(a +1) = QU(a) + RS(a) σ9(a)− QU (a) σ10 (a)	                (6)

For example, Equation (2) states that the percentage of people who 
are never-smoker at age a+1 is equal to the percentage of people who 
are never-smoker at age a, subtracted from the percentage of people 
who are never-smoker at age a, times the percentage of never-smokers 
who start smoking at age a. Similar explanations can be done for 
the other equations. Furthermore, we have the following additional 
equations with respect to Figure 1.

σ1 (a) + σ2 (a)=1  				                  (7)

σ3 (a) + σ4 (a)+ σ7 (a)=1				                   (8)

σ5 (a) + σ6 (a)=1				                  (9)

σ8 (a) + σ9 (a)=1				               (10)

σ10 (a) + σ11 (a)=1          .	  			              (11)

The above 10 equations from Equation (2) to Equation (11) can be 
casted into the matrix format:

0 -NS(a) 0 0 0      0 0        0     0        0         0
0  NS(a) 0  -EX(a) SS(a) 0 -EX(a)  0    0         0             0
0 0 0 EX(a) SS(a) 0 0 0 0 0 0
0 0 0 0             0       0    EX(a)  0   -(RSa)

−

1

2

3

4

5

6

7

8

9

10

  (a)   0
0 0 0 0 0 0 0 0 RS(a)  (a) 0
1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0  0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0  1 1

σ
σ
σ
σ
σ
σ
σ
σ
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 
  

  (12)

Equation (12) is denoted by Aσ=b where A is the coefficient matrix, 
σ the bolded is the solution vector and vector b denotes the right-side 
of Equation (12). 

It can be shown that rank (A)=9. Therefore, among the 10 equations, 
only 9 are independent. However there are 11 transitional probabilities, 
σ1(a), σ2(a), ….., σ11(a)  to be estimated. Therefore the PDES equation 
set (12) cannot be solved uniquely as indicated in Lin and Chen [10]. 
This condition will restrict the application of this novel approach in 
research and practice.

To solve this challenge, Lin and Chen [10] sought to derive two 
more independent equations by squeezing the survey data to define 
two additional progression stages (1) SS , old self-stoppers (e.g., those 
who stopped smoking one year ago) and (2) QU  old quitters (e.g., those 
who quit smoking one year ago). With data for these two newly defined 
smokers, two more independent equations 6( 1) (a) ( )SS a SS as+ =  and 

11( 1) (a) ( )QC a QC as+ =  are derived to ensure the equation set (12) 
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Figure 1: Probabilistic discrete event system model of the smoking behavior. 
States are: NS-never smoker, EX-experimenter, SS-self stopper, RS-regular 
smoker, and QU-quitter. si 'σ are events and corresponding probabilities of 
transitions among states.
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has a definite solution. However, the introduction of the two types 
of smokers SS  and QC  may have also brought in more errors from 
the data because two newly defined smokers must be derived from 
recalled data one year longer than other data.  If this is the case, errors 
introduced through these two newly defined smokers will affect the 
estimated transitional probabilities that are related to self-stoppers and 
quitters, including σ3, σ4, σ5, σ6, σ10, and σ11 (Figure 1). When searching 
for methods that can help to solve Equation (12) without depending on 
the two additional equations, we found the generalized inverse matrix 
approach [1,12]. It is this "M-P Approach" that makes the impossible 
PDES work possible.

Generalized-inverse Matrix for PDES 
In matrix theory, the generalized-inverse of a matrix A with 

dimension m×n (i.e. m rows with m equations and n columns with n 
variables) is defined as: AA A A- =  where A-  is called the generalized-
inverse of A. The purpose of introducing a generalized-inverse for any 
matrix is to have a general solution A bs -= for any linear system Aσ=b 
(in corresponding to the PDES described in Equation 12) regardless of 
the existence of the inverse of coefficient matrix A. With this extension, 
if A is invertible, i.e. 1A-  exists, the linear system Aσ=b is equivalent to 
the classical solution 1A bs -=  as commonly known in any elementary 
linear algebra course. From the definition of the generalized inverse 
matrix, it can be seen that 1A A- -=  if A is a full-rank square matrix. 
In this case, rank (A)=m=n. Obviously as described earlier, the matrix 
A for the PDES system (e.g., Equation 12) is not a full-rank matrix (i.e. 
rank(A) is less than m, n), in another word, the system is complete but 
the observed data to support solving the system is incomplete. Therefore 
a system without fully observed data like the PDES model cannot be 
solved using the classic matrix approach.  With the introduction of the 
generalized-inverse matrix approach, we will show that for any matrix 
equation A bs= , including the PDES described in Equation 12: 

A bs -=  is a solution to Aσ=b.  

The general solution to the PDES matrix equation of Aσ=b can be 
expressed in ( )A b I A A zs - -= + -  where 1A-  is any fixed generalized-
inverse of A, while z represents an arbitrary vector. Therefore, the 
generalized-inverse 1A-  is not unique which is equivalent to say that 
the PDES equation system (12) cannot be solved uniquely as indicated 
in Lin and Chen [10]. To practically solve this challenge, Lin and Chen 
[10] sought to derive two exogenous equations in order to solve for 
11 parameters. However, the data used to construct those exogenous 
equations are hard to obtain and error-prone. Inspired by the general 
inverse matrix theory, particularly the work by Moore and Penrose, 
we introduced a mathematical approach to this problem: the M-P 
Approach. In his famous paper, Moore proposed three more conditions 
to the generalized-inverse A-  defined above. They are as follows:

AA A A- =
The original definition of generalized-inverse matrix is to allow 

any admissible linear system Aσ=b to be solved easily by matrix 
representation regardless of the existence of the inverse of coefficient 
matrix. Extending the classical inverse matrix definition, 1 1AA- =  with 
the identity matrix I, which is equivalent to 1 1( )AA A AA A IA A- -= = = , 

1AA-  is relaxed and no longer needs to be an identity matrix. With 
this extension, the only requirement is that 1AA-  will map all column 
vectors of A to the same column vectors, respectively.

This added condition makes A-  a generalized reflexive inverse of 
A. Similar to the original definition of a generalized-inverse matrix, 
this added condition is to guarantee that the classical inverse matrix 

definition of 1A A I- =  can still hold from this generalized-inverse so 
that 1 1 1A AA A- - -=  when the inverse exists. With this condition A A  
does not need to be an identity matrix, but to map all column vectors 
of A-  to the same column vectors, respectively. 

( ) 'AA AA- -=
The third condition addresses the transpose of AA- to be itself.  It 

indicates that AA-
is a Hermitian matrix. This is intuitively true that 

when A is invertible, 1AA AA I- -= =  and the transpose of identity 
matrixI is itself 

'( )A A A A- -=

The fourth condition is similar to the third condition. It indicates 
that A A-  is a Hermitian matrix with an intuitive explanation similar to 
the third condition.

Moore’s extended definition did not receive any attention in 
the mathematics field for twenty years until Penrose [2] proved the 
uniqueness of Moore's definition. Since Penrose's work, this definition 
has been named as Moore-Penrose generalized-inverse and is typically 
denoted as A+ . The Moore-Penrose generalized inverse has several 
mathematical properties, and the most relevant one to PDES is that 
the solution of A bs +=  is unique (Appendix B.1) as well as being the 
minimum-norm (i.e. minimum length) solute onto the PDES model 
among all the solutions in A bs -=  (Appendix B.2).  It provides a 
mathematical approach to overcome the challenge in solving a PDES 
model with a non-full rank coefficient matrix. 

Demonstration with the "MASS" Package in R
To demonstrate the M-P Approach in solving the PDES model, a 

linear equation system without full rank, we make use of the R library 
"MASS" [4]. This package includes a function named "ginv". It is 
devised specifically to calculate the Moore-Penrose generalized-inverse 
of a matrix. We used this function to calculate the Moore-Penrose 
generalized-inverse of the coefficient matrix A in the PDES smoking 
behavior model described in Equation (12). 

As shown in Lin and Chen, smoking data from 2000 National 
Survey on Drug Use and Health (NSDUH) were compiled for US 
adsolescentsand young adults aged 15 to 21 (Table 1). According to 
the PDES, the state probability for each of the seven types of defined 
smokers by single year of age was calculated with the NSDUH data 
(Table 1). The state probabilities were estimated as the percentages of 
subjects in various behavioral states. Since the five smoking stages (i.e. 
NS, EX, SS, RS, QU) were all defined on the current year, the sum of 
them were one (i.e. 100%). While SS  and QU  were defined as the 
participants who self-stopped smoking and quit one year before. 

With data for the first five types of smokers in Table 1, we estimated 
the transition probabilities with the M-P Approach. The results are 
presented in Table 2 (the R codes are included in Appendix A).

For validation and comparison purpose, we also computed the 
transitional probabilities using data for all seven types of smokers 
and the original PDES method by Lin and Chen  using  R (Codes 
are included also in Appendix A) [10]. The results from Table 3 were 
almost identical to those reported in the original study by Lin and Che

n. As we expected, by comparing the results in Table 2 with those 
in Table 3, for the five transitional probabilities (e.g., σ1, σ2, σ7,σ8,σ9) that 
are not directly affected by the two additionally defined stages SS  or 
old self-stoppers and QU  or old quitters, the results from the "M-P 
Approach" are almost identical to those from the original method. On 
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than nicotine dependence [13,21,22]. However, no clear age trend 
was observed in the same probability σ6 estimated using the original 
method by Lin and Chen. 

Evaluation of Intervention Impact for Smoking 
Behaviors 

As indicated in the previous section, the introduction of the "M-P 
Approach" will greatly facilitate the application of the PDES method 
in behavior research. In addition to characterizing smoking behavior, 
and to assessing effects from exposure to prevention programs, the 
PDES method can be used to predict changes in smoking behavior in 
the future, supporting public health planning and decision-making 
[8,9,11]. Next, we introduce the "M-P Approach" and the PDES model 
to evaluate the intervention impact for smoking behaviors. 

As seen from the PDES model, the multi-stage behavioral transitions 
provide information on the likelihood that a person will progress 
from never-smoking (NS) to start smoking (EX), further to regular 
smoking (RS); regular smokers can quit smoking (QU) and quitters 
may relapse and become regular smokers again. These transitional 
probabilities are influenced by the environment of the person is in. 
Various tobacco control programs, such as tobacco taxation, restriction 
of smoking in public places, restriction of tobacco sales to minors, 
school-based programs, and media campaign, are intended to change 
the environment and hence the transitional probabilities. Different 
tobacco control programs have different impacts on the transitional 
probabilities. For example, restriction of tobacco sales to minors and 
school-based programs has greater impact on )(2 aσ  than on other 
transitional probabilities. The goal of tobacco control programs is to 

the contrary, however, the other six estimated probabilities (σ3, σ4, σ5, 
σ6, σ10, σ11) differed between the two methods. For example, compared 
with the original estimates by Lin and Chen, σ10 (the transitional 
probability to relapse to smoke again) with the "M-P Approach" are 
higher and σ11 (the transitional probability of remaining as quitters) 
arelower; furthermore, these two probabilities show little variations 
across ages compared to the originally reported results.  

To the best of our understanding, the results from the "M-P 
Approach" are more valid for a number of reasons. (1) The M-P 
Approach did not use additional data from which more errors could 
be introduced.  (2) More importantly, the results from the M-P 
Approachscientifically make more sense than those estimated with 
the original method.  Using σ10 and σ11 as  examples, biologically, it 
has been documented that it is much harder for adolescent smokers 
who quit and remain as quitters than to relapse and smoke again [13-
15]. Consistent with this finding, the estimated σ10 (quitters relapse 
to regular smokers) was higher and σ11 (quitters remain as quitters) 
was lower with the new method than those with the original method. 
The results from the "M-P Approach" more accurately characterize 
these two steps of smoking behavior progression. Furthermore, the 
likelihood to relapse or to remain as quitter is largely determined by 
levels of addiction to nicotine, rather than chronological age [16-20]. 
Consistent with this evidence, the estimated σ10 and σ11 with the "M-P 
Approach" varied much less along with age than those estimated with 
the original method. Similar evidence, supporting a high validity of 
the "M-P Approach", is the difference in the estimated σ6 (self-stoppers 
remaining as self-stoppers) between the two methods. The probability 
estimated through the "M-P Approach" showed a declining trend 
with age, reflecting the dominant influence of peers and society rather 

Age NS EX SS RS QU SS QU

15 63.65 12.81 14.74 7.84 0.66 8.61 0.42
16 53.10 15.57 17.69 12.45 0.88 12.36 0.40
17 46.95 16.56 17.00 17.99 1.18 12.83 0.54
18 41.20 16.11 16.40 24.46 1.64 11.24 0.87
19 35.55 15.89 15.89 30.50 2.08 11.83 1.34
20 31.75 15.09 16.05 34.69 2.36 12.29 1.51
21 30.35 13.69 17.20 35.77 2.94 13.05 1.73

Table 1: Percentages of People in 2000 NSDUH Smoking Data.

Age σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11

15 0.83 0.17 0.10 0.52 0.26 0.74 0.38 0.93 0.07 0.54 0.46
16 0.88 0.12 0.22 0.40 0.40 0.60 0.38 0.94 0.06 0.53 0.47
17 0.88 0.12 0.20 0.38 0.41 0.59 0.42 0.94 0.06 0.53 0.47
18 0.86 0.14 0.21 0.39 0.41 0.59 0.40 0.95 0.05 0.53 0.47
19 0.89 0.11 0.28 0.43 0.43 0.57 0.28 0.95 0.05 0.53 0.47
20 0.96 0.04 0.37 0.52 0.42 0.58 0.11 0.95 0.05 0.53 0.47

Table 2: Transitional probabilities of the PDES smoking model from "M-P Approach".

Age σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11

15 0.83 0.17 0.21 0.42 0.16 0.84 0.38 0.94 0.06 0.39 0.61
16 0.88 0.12 0.36 0.27 0.27 0.73 0.38 0.95 0.05 0.39 0.61
17 0.88 0.12 0.28 0.31 0.34 0.66 0.41 0.96 0.04 0.26 0.74
18 0.86 0.14 0.35 0.25 0.28 0.72 0.40 0.97 0.03 0.18 0.82
19 0.89 0.11 0.48 0.24 0.23 0.77 0.28 0.97 0.03 0.27 0.73
20 0.96 0.04 0.62 0.28 0.19 0.81 0.11 0.97 0.03 0.27 0.73

Table 3: Replication of the transitional probabilities of the PDES smoking model derived with the original method by Lin and Chen and data from the 2000 NSDUH but 
computed using R.
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reduce smoking among adolescents and adults. In terms of PDES, the 
goal is to reduce the (state) probability RS. To qualitatively assess the 
impact of a tobacco control program to RS, this PDES can be employed 
for this purpose. We illustrate this evaluation of intervention impact 
both theoretically and numerically as follows. 

Suppose new intervention program is devised to reduce )(aiσ
to )(' aiσ . Corresponding to equations (2) to (6), the new transition 
matrix with the multi-stage vector (NS, EX, RS, SS, QU) can be denoted 
by: .  

'
2

2 4 7 5

7 8 10

4 5

9 10

1 ( ) 0 0 0 0
' ( ) 1 ' ( ) ' ( ) 0 ' ( ) 0

'( ) 0 ' ( ) ' ( ) 0 ' ( )
0 ' ( ) 0 1 ' ( ) 0
0 0 ' ( ) 0 1 ' ( )

a
a a a a

a a a a
a a

a a

σ
σ σ σ σ

σ σ σ
σ σ

σ σ

 −
 

− − 
 Π =
 

− 
 − 

	             (13)

Let the multi-stage transitional probabilities at ages a and a+1 
under the new transitional probabilities )(' aΠ  be denoted by

'( ) '( 1)
'( ) '( 1)
'( ) '( 1)'( ) '( 1)
'( ) '( 1)
'( ) '( 1)

NS a NS a
EX a EX a
RS a RS aQ a Q a
SS a SS a

QU a QU a

+   
   +   
   += + =
   

+   
   +   

			 

respectively. Therefore, the future smoking behavior distribution at 
different ages can be calculated as follows:

'( 1) '( ) '( )
'( 2) '( 1) '( ) '( )

'( ) '( 1)... '( 1) '( ) '( )

Q a a Q a
Q a a a Q a

Q a k a k a a Q a

+ = Π
 + = Π + Π


 + = Π + − Π + Π



		                 (14)

Let's use the original 2000 NSDUH Smoking Data in Table 1 and 
the estimated transitional probabilities from "M-P Approach" in Table 
2 to illustrate the program impact. Suppose a tobacco intervention 
program is designed to decrease the probability of 2σ  (i.e. "Never-
Smoking (NS)" to "Experimenter (EX)") by 20%. This 20% reduction 
would change the estimated probabilities in Table 2 for 2σ  from 
(16.6%, 11.6%, 12.3%, 13.8%, 10.7%, 4.4%) to (13.3%, 9.3%, 9.8%, 
11.0%, 8.6%, 3.5%) for age of 15, 16, 17, 18, 19 and 20, respectively. 
With this 20% reduction from the intervention program, the smoking 
multi-behavioral distribution can be calculated using equation (14) as 
seen in Table 4 as follows:

Table 4 can be compared to Table 1 to investigate the percent 
changes of the smoking population for each smoking behavior under 
different age. For example, we can investigate the absolute change of 
the smoking population using the differences between the values from 
Table 4 to Table 1 as well as the relative change (Table 5) using these 
differences rescaled to the values in Table 1. For example, with this 

20% reduction, the smoking "experimenter (EX)" population would be 
changed from (15.57%, 16.56%, 16.11%, 15.89%, 15.09%, 13.69%) to 
(11.70%, 12.65%, 12.54%, 12.64%, 12.13%, 10.96%) for age 16, 17, 18, 
19, 20 and 21, respectively. This is accountable for a (24.8%, 23.6%, 
22.2%, 20.4%, 19.6%, 20.0%) relative reduction in the population of 
"Experimenter (EX)" as seen in Table 5 (in column "EX"). Furthermore, 
with this 20% reduction, the "never-smoker (NS)" population would 
increase by about 4% to 17%, the "self-stopper (SS)" by 6.5% for age 16, 
but will dramatically increase to 113% for age 21, the "quitter (QU)" 
from early age of 16 by 58% to 6.3% for age 21 as seen in Table 5. It 
is also interesting to see from Table 5 that the "regular smoker (RS)" 
dropped by 31% for age 17 by more than 60% for ages 19, 20 and 21. 

Discussion and Conclusions 
The Moore-Penrose generalized-inverse matrix theory has 

significant applications in many fields, including multivariate analysis, 
operations research, neural network analysis, pattern recognition, 
system control, and graphics processing [3-7]. To the best of our 
knowledge, this is the first time this "M-P Approach" is used in solving a 
PDES model to describe smoking behavior progression in an adolescent 
population. Our study fills a methodology gap in PDES modeling. After 
an introduction to the "M-P Approach", we illustrate its application 
with the same data reported in the original study using the R software 
[10]. Results from the analysis using the "M-P Approach", although 
using less data, better reflect the dynamics of smoking behavior change 
in adolescents than do the results from the original analysis.

Findings of this study provide evidence that the "M-P Approach" 
can be used to solve a PDES model constructed to characterize complex 
health behaviors with cross-sectional data even if the coefficient matrix 
has no full rank.  Behavioral modeling, like in many other systems 
research fields, has frequently been challenged because of the lack of 
“fully” observed data to quantitatively characterize a system, even when 
the system is constructed based on scientific theory or data.  Successful 
application of the "M-P Approach" in solving the PDES model for 
smoking behavior will greatly facilitate system modeling of various 
other human behaviors with or without fully observed data.

According to the "M-P Approach", as long as a model is “true” 
(e.g., as long as it has a solution), it should be solvable even with partial 
observations. In our study, since the PDES smoking model has been 
proved to be true through previous analysis, the "M-P Approach" 
works.  This success is not by chance. Similar to a system with extra 
observed data (e.g., multiple regression with the number of equations 
greater than the number of unknowns) that can be solved using 
the "M-P Approach" (e.g., the least square approach is in theory a 
"M-PApproach"), a system with the number of unknowns greater than 
the number of independent equations (e.g., partially observed data) 
can also be solved based on the minimum-norm approach with M-P 
inverse matrix.

Age NS EX SS RS QU
15 63.65 12.81 14.74 7.84 0.66
16 55.21 11.70 18.85 12.55 1.39
17 50.10 12.65 22.81 12.33 1.82
18 45.17 12.54 27.68 12.12 2.20
19 40.19 12.64 32.40 11.97 2.49
20 36.75 12.13 35.80 12.38 2.63
21 35.45 10.96 36.64 13.53 3.12

Table 4:  Smoking behavior if 20% reduction of )(2 aσ  from an intervention tobacco 
control program.

Age NS EX SS RS QU
16 4.0 -24.8 6.5 0.8 57.8
17 6.7 -23.6 34.2 -31.5 53.9
18 9.6 -22.2 68.8 -50.5 34.0
19 13.1 -20.4 103.9 -60.8 19.8
20 15.8 -19.6 123.1 -64.3 11.6
21 16.8 -20.0 113.0 -62.2 6.3

Table 5: Relative change (in %) of multi-behavioral smoking population with 20% 
reduction of )(2 aσ  from an intervention tobacco control program.
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Despite a successful application of the M-P approach in solving 
a PDES model, more research is needed to investigate more specific 
conditions in which the application of the "M-P Approach" is indicated 
to solve complex modeling questions with a linearequation system but 
without a full-rank coefficient matrix. We are initializing a systematic 
simulation study to validate this new approach.

Acknowledgement 

This research is supported in part by National Science Fundation(Award #: 
ECS-0624828, PI: Lin), National Institute of Health (Award #: 1R01DA022730-
01A2, PI: ChenX) and the Eunice Kennedy Shriver National Institute of Child Health 
and Human Development (NICHD, R01HD075635, PIs: ChenX and Chen D). We 
appreciate the reviewer's comments which substantially improved this manuscript.

References

1. Moore EH, Barnard RW (1935) General analysis Parts I, Philadelphia: The
American Philosophical Society.

2. Penrose RA (1955) generalized inverse for matrices Procedings of the
Cambridge Philosophical Society 51: 406-413.

3. Campbell SL, Meyer CD (1979) Generalized inverses of linear transformations. 
London: Pitman

4. VenablesWN, Ripley BD (2002) Modern Applied Statistics with S, (4thedn)
Springer New York.

5. Ying Z, Jia SH (2009) Moore-Penrose generalized inverse matrix and solution
of linear equation group. Mathematics in practice and theory 39: 239-244.

6. Nashed MZ (1976) Generalized inverses and applications. New York,
Academic press.

7. Cline RE (1979) Elements of the theory of generalized inverses for matrices.
Modules and monographis in undergraduate mathematics and its application
project.

8. Chen X, Lin F (2012) Estimating transitional probabibilities with cross-sectional 
data to assess smoking behavior progression: A validation analysis. J
Biometrics and Biostatistics.

9. Chen X, Lin F, Zhang X (2010) Validity of PDES Method in Extracting
Longitudinal Information from Cross-Sectional Data: An Example of Adolescent 
Smoking Progression. American Journal of Epidemiology.

10.	Lin F, Chen X (2010) Estimation of Transitional Probabilities of Discrete Event
Systems from Cross-Sectional Survey and its Application in Tobacco Control.
Inf Sci (Ny) 180: 432-440.

11. Chen X (2012) Exposure to school and community based prevention programs 
and reductions in cigarette smoking among adolescents in the United States,
2000-08. Evaluation and Program Planning 35: 321-328.

12.	Penrose R (1955) A generalized inverse for matrices. Proceedings of the
Cambridge Philosophical Society 51: 406-413.

13.	Turner LR, Veldhuis CB, Mermelstein R (2005) Adolescent smoking: Are
infrequent and occasional smokers ready to quit? Substance Use and Misuse
40: 1127-1137.

14.	Kralikova E (2013) Czech adolescent smokers: unhappy to smoke but unable
to quit. International Journal of Tuberculosis and Lung Disease 17: 842-846.

15.	Reddy SR, Burns JJ, Perkins KC (2003) Tapering: An alternative for adolescent 
smokers unwilling or unable to quit.

16.	Panlilio LV (2012) Novel use of a lipid-lowering fibrate medication to prevent 
nicotine reward and relapse: preclinical findings. Neuropsychopharmacology 
37: 1838-1847.

17.	Carmody TP (1992) Preventing relapse in the treatment of nicotine addiction:
current issues and future directions. J Psychoactive Drugs 24: 131-158.

18.	Drenan RM, Lester HA (2012) Insights into the neurobiology of the nicotinic
cholinergic system and nicotine addiction from mice expressing nicotinic
receptors harboring gain-of-function mutations. Pharmacol Rev 64: 869-879.

19.	Govind AP, Vezina P, Green WN (2009) Nicotine-induced upregulation of
nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. 
Biochem Pharmacol 78: 756-765.

20.	DeBiasi M, Salas R (2008) Influence of neuronal nicotinic receptors over 
nicotine addiction and withdrawal. Exp Biol Med (Maywood): 917-929.

21.	Lim MK (2012) Role of quit supporters and other factors associated with
smoking abstinence in adolescent smokers: a prospective study on Quitline
users in the Republic of Korea. Addict Behav 37: 342-345.

22.	Castrucci BC, Gerlach KK (2005) The association between adolescent smokers' 
desire and intentions to quit smoking and their views of parents' attitudes and
opinions about smoking. Matern Child Health J 9: 377-384.

http://philpapers.org/rec/MOOGA
http://philpapers.org/rec/MOOGA
file:///E:/Journals/JPMM/JPMMVolume.4/JPMM-Volume-4.1/JPMM-4.1_AI/ournals.cambridge.org/action/displayAbstract?fromPage=online&aid=2043984&fileId=S0305004100030401
file:///E:/Journals/JPMM/JPMMVolume.4/JPMM-Volume-4.1/JPMM-4.1_AI/ournals.cambridge.org/action/displayAbstract?fromPage=online&aid=2043984&fileId=S0305004100030401
http://scholar.google.co.in/scholar?hl=en&q=Generalized+inverses+of+linear+transformations&btnG=
http://scholar.google.co.in/scholar?hl=en&q=Generalized+inverses+of+linear+transformations&btnG=
http://books.google.co.in/books?hl=en&lr=&id=CzwmBQAAQBAJ&oi=fnd&pg=PR11&dq=Modern+Applied+Statistics+with+S&ots=Z1h4h7poRy&sig=153F8SGLT_ylgOB8I1gT-66c8iQ#v=onepage&q&f=false
http://books.google.co.in/books?hl=en&lr=&id=CzwmBQAAQBAJ&oi=fnd&pg=PR11&dq=Modern+Applied+Statistics+with+S&ots=Z1h4h7poRy&sig=153F8SGLT_ylgOB8I1gT-66c8iQ#v=onepage&q&f=false
http://books.google.co.in/books?hl=en&lr=&id=ksfNBQAAQBAJ&oi=fnd&pg=PP1&dq=Generalized+inverses+and+applications&ots=K6iRR9c95V&sig=8QqmavxV6nUrjC98gb0WgI1Ukb4#v=onepage&q=Generalized inverses and applications&f=false
http://books.google.co.in/books?hl=en&lr=&id=ksfNBQAAQBAJ&oi=fnd&pg=PP1&dq=Generalized+inverses+and+applications&ots=K6iRR9c95V&sig=8QqmavxV6nUrjC98gb0WgI1Ukb4#v=onepage&q=Generalized inverses and applications&f=false
http://link.springer.com/book/10.1007/978-1-4684-6717-8
http://link.springer.com/book/10.1007/978-1-4684-6717-8
http://link.springer.com/book/10.1007/978-1-4684-6717-8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178951/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178951/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178951/
http://www.sciencedirect.com/science/article/pii/S0020025509004228
http://www.sciencedirect.com/science/article/pii/S0020025509004228
http://www.sciencedirect.com/science/article/pii/S0020025509004228
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2043984&fileId=S0305004100030401
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2043984&fileId=S0305004100030401
http://informahealthcare.com/doi/abs/10.1081/ja-200042268
http://informahealthcare.com/doi/abs/10.1081/ja-200042268
http://informahealthcare.com/doi/abs/10.1081/ja-200042268
http://www.ingentaconnect.com/content/iuatld/ijtld/2013/00000017/00000006/art00025
http://www.ingentaconnect.com/content/iuatld/ijtld/2013/00000017/00000006/art00025
http://www.nature.com/npp/journal/v37/n8/abs/npp201231a.html
http://www.nature.com/npp/journal/v37/n8/abs/npp201231a.html
http://www.nature.com/npp/journal/v37/n8/abs/npp201231a.html
http://www.tandfonline.com/doi/abs/10.1080/02791072.1992.10471634
http://www.tandfonline.com/doi/abs/10.1080/02791072.1992.10471634
http://pharmrev.aspetjournals.org/content/64/4/869.short
http://pharmrev.aspetjournals.org/content/64/4/869.short
http://pharmrev.aspetjournals.org/content/64/4/869.short
http://www.sciencedirect.com/science/article/pii/S0006295209004778
http://www.sciencedirect.com/science/article/pii/S0006295209004778
http://www.sciencedirect.com/science/article/pii/S0006295209004778
http://ebm.sagepub.com/content/233/8/917.short
http://ebm.sagepub.com/content/233/8/917.short
http://www.sciencedirect.com/science/article/pii/S0306460311003698
http://www.sciencedirect.com/science/article/pii/S0306460311003698
http://www.sciencedirect.com/science/article/pii/S0306460311003698
http://link.springer.com/article/10.1007/s10995-005-0016-4
http://link.springer.com/article/10.1007/s10995-005-0016-4
http://link.springer.com/article/10.1007/s10995-005-0016-4

	Title
	Corresponding author
	Abstract 
	Keywords
	Background 
	A Review of the PDES for Smoking Behavior 
	Generalized-inverse Matrix for PDES  
	Demonstration with the MASS Package in R 
	Evaluation of Intervention Impact for Smoking Behaviors  
	Discussion and Conclusions  
	Acknowledgement  
	Figure 1
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	References 

