Synthesis of Novel Pyrimido Oxazine and their Derivatives

Sirsat Shivraj B*, Jadhav Anilkumar G, Kale Prashant S and Jadhav Madhav S
P.G. Research Centre, Department of Chemistry, Yeshwant Mahavidyalaya, Nanded, India

*Corresponding author: Sirsat Shivraj B, P.G. Research Centre, Department of Chemistry, Yeshwant Mahavidyalaya, Nanded, India, Tel: 02462254487; E-mail: sbs.igm@gmail.com

Received: May 20, 2019; Accepted: July 27, 2019; Published: August 05, 2019

Abstract

In present report novel oxazine were prepared from starting materials chalcone and urea (1). The resulting compound 6-(4-chlorophenyl)-4-phenyl-6H-1,3-Oxazin-2-amine(2) was further reacted with ethyl 2-cyano-3,3-bis (methylthio) acrylate in the presence of catalytic amount of potassium carbonate in DMF under reflux condition that offered novel 2-(4-chlorophenyl)-8-(methylthio)-6-oxo-4-phenyl-4,6,9,9a-tetrahydropyrimido[2,1-b][1,3]oxazine-7-carbonitrile (3). The synthesized compounds were characterized by spectral methods. The compound (3) possesses replaceable methylthio (-SCH$_3$) group at 8 position. The compound (3) react with various nucelophiles like substituted aromatic amines, aromatic phenols, hetryl amines and active methylene compounds to give 2-(4-chlorophenyl)-8-(substituted)-6-oxo-4-phenyl-4,6,9,9a-tetrahydropyrimido[2,1-b][1,3] oxazine-7-carbonitrile in good yields.

Keywords: Claisen-Schmidt condensation; Michael addition reaction; 2-Cyano-3, 3-bis (methylthio) acrylate; Urea

Introduction

Synthesis of compounds containing nitrogen from readily available starting materials in a cost and time effective manner has received significant attention by virtue of their presence in numerous biologically important compounds [1-4]. Oxazine and their derivatives are heterocyclic compounds containing one nitrogen and one oxygen [12]. Oxazine heterocycles have special interest because they constitute an important class of natural and non-natural products and show useful biological activities [13]. The 1,4-oxazine scaffold is a structural subunit of many naturally occurring and synthetic bioactive compounds and have diverse biological activities such as antiulcer [14], antihypertensive [15], antifungal [16], anticancer [17] and anti-thrombotic compound [18]. In the view of this observation and extension of earlier work, we have synthesized 2-(4-chlorophenyl)-8-(methylthio)-6-oxo-4-chlorophenyl-6H-1,3-oxazine-7-carbonitrile by using 6-(4-chlorophenyl)-4-phenyl-6H-1,3-Oxazin-2-amine [13,19] and 3-(4-chlorophenyl)-1-phenyl propen-2-one (chalcone) [20,21].

Materials and Methods

Melting points were determined in open capillary tubes and are uncorrected. The silica gel F$_{254}$ plates were used for thin layer chromatography (TLC); the spots were examined under UV light and then developed in an iodine vapor. Column chromatography was performed with silica gel (BDH 100-200 mesh). Solvents were purified according to standard procedures. The spectra were recorded as follows: IR, KBr pellets, a Perkin-Elmer RXI FT-IR spectrophotometer; 1H NMR, CDCl$_3$, 200 MHz, a Varian Gemini 200 instrument. Elemental analysis was performed on a Heraeus CHN-O rapid analyzer.

Methods of preparation of compound (3)

2-(4-chlorophenyl)-8-(methylthio)-6-oxo-4-phenyl-4, 6, 9 a tetrahydropyrimido-[2,1-b][1,3] oxazine-7-carbonitrile

Step-I: A solution of KOH 50% is added to an equimolar solution of acetophenone (0.01 moles) and 4-chlorobenzaldehyde (0.01 moles) in...
ethanol 95%; the addition is performed under energetic stirring at room temperature. The reaction is left under stirring for one night and then diluted with water and acidified; the precipitate is separated by filtration and dried under vacuum. They are crystallized by ethanol compound.

Step-II: A mixture of chalcone i.e., 3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (2.42 gm, 0.01 moles) and urea (0.60 gm, 0.01 moles) was dissolved in ethanolic potassium hydroxide solution (10 ml) was heated for 4 hrs, then it was poured into cold ice water obtain 6-(4-chlorophenyl)-4-phenyl-6H-1, 3-Oxazin-2-amine (2).

Step-III: A mixture of 6-(4-chlorophenyl)-4-phenyl-6H-1, 3-Oxazin-2-amine (2) and ethyl 2-Cyano-3, 3-bis (methylthio) acrylate (0.60 gm, 0.01 moles) was added in DMF (10 ml) and stirred for 4 to 6 hrs. After cooling, they were filtered, washed with water and acidified. The precipitate was washed with water and recrystallized using ethyl alcohol.

Methods of preparation of derivatives (3A-6B)

A mixture of (3) (1 mmol) and independently, various substituted aromatic amines, aromatic phenols, heteryl amines and active aromatic amines, aromatic phenols, heteryl amines and active methylene compounds (1 mmol) in DMF (10 ml) and anhydrous potassium carbonate (10 mg) was refluxed for 4 hrs. The reaction mixture was cooled to room temperature and poured into ice cold water. The separated solid product was filtered, washed with water and recrystallized using ethyl alcohol.

2-(4-chlorophenyl)-8-(methylthio)-6-oxo-4-phenyl-4, 6, 9 a-tetrahydro-pyrimido-[2, 1-b][1, 3] oxazine-7-carbontilne (3a)

IR: (cm\(^{-1}\)) 3330, 2120, 1650, 748; 'H NMR: \(\delta\) 6.99 (s, 5H, Ar-H), 5.01 (s, 1H =CH), 6.62 (s, 1H CH), 5.46 (s, 1H CH), 7.10(s, 5H Ar-H), 7.22 (dd, 2H Ar-H), 7.25 (dd, 2H Ar-H) ESI-MS: m/z (M\(^{+}\)) 409 (M+2) 411. Anal. Calc. for C\(_{26}\)H\(_{26}\)ClN\(_{3}\)O\(_{3}\): C, 61.53; H, 3.93; Cl, 8.65; N, 10.25; O, 7.81; S, 7.83; Found: C, 61.43; H, 3.95; Cl, 8.60; N, 10.35; O, 7.82; S, 7.85. Mol. Formula: C\(_{26}\)H\(_{26}\)ClN\(_{3}\)O\(_{3}\). Mol. Wt: 409.

8-(4-bromophenyl)amino-2-(4-chlorophenyl)-6-oxo-4 phenyl-4, 6, 9 a tetrahydro-pyrimido-[2, 1-b][1, 3] oxazine-7-carboxilic acid (4a)

IR: (cm\(^{-1}\)) 3330, 2120, 1650, 748; 'H NMR: \(\delta\) 5.09 (s, 1H N-H), 4.15 (1H H-N), 5.42 (s, 1H =CH), 6.69 (s, 1H CH), 5.52 (s, 1H CH), 7.20(s, 5H Ar-H), 7.32 (dd, 2H Ar-H), 7.35 (dd, 2H Ar-H), 7.02 (s 5H Ar-H). ESI-MS: m/z (M\(^{+}\)) 454 (M+2) 456. Anal. Calc. for C\(_{26}\)H\(_{26}\)BrClN\(_{3}\)O\(_{3}\): C, 68.65; H, 4.21; Cl, 7.79; N, 12.32; O, 7.03. Found: C, 68.68; H, 4.19; Cl, 7.78; N, 12.33; O, 7.02. Mol. Formula: C\(_{26}\)H\(_{26}\)BrClN\(_{3}\)O\(_{3}\). Mol. Wt: 545.

2-(4-chlorophenyl)-6-oxo-4-phenyl-phenylamine (4)-6, 9, 9 a tetrahydro-pyrimido-[2, 1-b][1, 3] oxazine-7-carboxilic acid (4b)

IR: (cm\(^{-1}\)) 3330, 2120, 1650, 748; 'H NMR: \(\delta\) 5.13 (s, 1H N-H), 4.15 (1H H-N), 5.41 (s, 1H =CH), 6.69 (s, 1H CH), 5.52 (s, 1H CH), 7.20(s, 5H Ar-H), 7.31 (dd, 2H Ar-H), 7.34 (dd, 2H Ar-H), 7.02 (s 5H Ar-H). ESI-MS: m/z (M\(^{+}\)) 432 (M+2) 434. Anal. Calc. for C\(_{26}\)H\(_{26}\)BrClN\(_{3}\)O\(_{3}\): C, 68.65; H, 4.21; Cl, 7.79; N, 12.32; O, 7.03. Found: C, 68.68; H, 4.19; Cl, 7.78; N, 12.33; O, 7.02. Mol. Formula: C\(_{26}\)H\(_{26}\)BrClN\(_{3}\)O\(_{3}\). Mol. Wt: 532.

2-(4-chlorophenyl)-8-(4-nitrophenyl)amino-2-(4-chlorophenyl)-6-oxo-4-phenyl-4, 6, 9 a tetrahydro-pyrimido-[2, 1-b][1, 3] oxazine-7-carboxilic acid (4c)

IR: (cm\(^{-1}\)) 3330, 2120, 1650, 748; 'H NMR: \(\delta\) 5.08 (s, 1H N-H), 4.13 (1H H-N), 5.41 (s, 1H =CH), 6.69 (s, 1H CH), 5.52 (s, 1H CH), 7.20(s, 5H Ar-H), 7.31 (dd, 2H Ar-H), 7.34 (dd, 2H Ar-H), 7.02 (s 5H Ar-H). ESI-MS: m/z (M\(^{+}\)) 532 (M+2) 534. Anal. Calc. for C\(_{26}\)H\(_{26}\)BrClN\(_{3}\)O\(_{3}\): C, 70.14; H, 4.21; Cl, 8.66; N, 10.50; O, 8.99. Found: C, 69.74; H, 3.84; Br, 14.96; Cl, 6.60; N, 10.47; O, 6.01. Mol. Formula: C\(_{26}\)H\(_{26}\)BrClN\(_{3}\)O\(_{3}\). Mol. Wt: 760.
2-(2-(4-chlorophenyl)-7-cyano-6-oxo-4-phenyl-4,6,9,9a-tetrahydroPyrimido[2,1-b][1,3]oxazin-8-yl) malononitrile. (6a)

IR: (cm⁻¹) 3330, 2210, 1650, 2950, 748; ¹H NMR: 5.13 (s, 1H N-H), 5.52 (s, 1H =CH), 6.71 (s, 1H CH), 5.53 (s, 1H CH), 7.21 (s, 5H Ar-H), 7.30 (dd, 2H Ar-H), 7.41 (dd, 2H Ar-H), 4.14 (s, 1H act-CH). ESI-MS: m/z (M⁺) 427 (M+2) 429. Anal. Calcd for C₂₃H₁₄ClN₅O₂: C, 64.57; H, 3.30; Cl, 8.29; N, 16.37; O, 7.48. Found: C, 64.62; H, 3.28; Cl, 8.27; N, 16.34; O, 7.49. Mol. Formula: C₂₃H₁₄ClN₅O₂. Mol. Wt: 427.

ethyl2-(2-(4-chlorophenyl)-7-cyano-6-oxo-4-phenyl-4,6,9,9a-tetrahydroPyrimido[2,1-b][1,3]oxazin-8-yl)-2-cyanoacetate. (6b)

IR: (cm⁻¹) 3330, 2210, 1650, 1710, 748; ¹H NMR: 5.10 (s, 1H N-H), 5.53 (s, 1H =CH), 6.68 (s, 1H CH), 5.49 (s, 1H CH), 7.18 (s, 5H Ar-H), 7.27 (dd, 2H Ar-H), 7.38 (dd, 2H Ar-H), 3.95 (s, 1H act-CH), 4.18 (q 2H), 1.19 (t 3H). ESI-MS: m/z (M⁺) 474 (M+2) 476. Anal. Calcd for C₂₅H₁₉ClN₄O₄: C, 64.80; H, 3.85; Cl, 7.97; N, 12.59; O, 10.79. Found: C, 64.82; H, 3.83; Cl, 7.96; N, 12.57; O, 10.82. Mol. Formula: C₂₅H₁₉ClN₄O₄. Mol. Wt: 474 (Figure 2).

Figure 2: 2-(4-chlorophenyl)-8-(substituted)-6-oxo-4-phenyl-4,6,9,9a-tetrahydropyrimido[2,1-b][1,3]oxazine-7-carbonitrile. (Derivatives [3A-6B]).

Discussion and Conclusion

A new different 2-(4-chlorophenyl)-8-(methylthio)-6-oxo-4-phenyl-4,6,9,9a-tetrahydropyrimido[2,1-b][1,3]oxazine-7-carbonitrile are synthesized by using simple and efficient chemistry and this synthesized compounds possesses methylthio group at 8-position which is best leaving group therefore synthesized compound act as an electrophilic species and reacting with various nucleophiles. In compound (3) cyano and thiomethyl groups are at adjacent position it also undergoes cyclization to give polycyclic heterocyclic compound.

Acknowledgements

The authors are grateful to Dr. G.N. Shinde, Principal, Yeshwant Mahavidyalaya, Nanded, for providing laboratory facilities & Vishnu Chemicals Ltd., Hyderabad for providing spectral data.

References

