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Introduction
In the past few decades, discharging thousands of organic, inorganic, 

and biological pollutants into environment has severely deteriorated 
water quality especially the heavy metals pollution which could be 
concentrated in organisms and, thus, harmful to most plants and 
animals not only at a high dose but also in relatively low concentration 
[1]. The continuous existence of heavy metal contaminant in the 
water environment, such as the high toxic arsenic and chromium, has 
been threaten seriously to water resource. Many studies have applied 
various methods such as ion exchange, solvent extraction, chemical 
precipitation and adsorption to reduce the concentration of these 
kinds of metal ions [2,3]. Among these methods, adsorption has been 
proved to be the most commonly used technique due to its simplicity 
of design, high efficiency, ease of operation and heavy metal adsorbents 
like polymeric hybrid sorbent, manganese oxide modified biochar and 
akaganeite nanoparticles have been well investigated [4-6]. Pacheco 
et al. [7] prepared alumina silica nanoparticles with hydroxyl, alkoxy, 
and oxy groups, which could remove cadmium efficiently by cationic 
exchange from wastewater samples. Banerjee and Chen [8] modified 
magnetic Fe3O4 nanoparticles with gum arabic which could adsorb 
copper metal ion rapidly from aqueous solution due to carboxylic 
groups of gum arabic, complexation of the amine group of gum arabic 
and surface hydroxyl groups of iron oxide.

In addition, many authors have used natural Akadama clay, 
modified chitosan and activated carbon for removal chromium [9-
11] and sorbents derived from iron and aluminium such as granular
ferric hydroxide, Fe-loaded sponge and gibbsite for arsenic reduction
[3,12-14]. Still, there are no low-cost and high effective methods and
materials, even based on adsorption methods, for arsenic and chromium 
treatment, which predominantly exist in the inorganic anion forms of
AsO2

-(III), AsO4
3-(V), and Cr2O7

2- (VI) [11,15]. Unfortunately, Cr (VI)
is about one hundred to five hundred times more toxic than Cr (III)
and toxicity of Cr (VI) can seriously destroy people’s health including
skin irritation, nausea, severe diarrhea, as well as lung, liver, and kidney 
damage because of its teratogenicity, mutagenicity, and carcinogenicity 
in biological systems [16,17]. Still, there are few researches had reported 
a cost-effective and eco-friendly material for lower of chromium and
arsenic which are main existed as the anion forms and, thus, more
difficult to be reduced [16,18]. Besides, the inorganic species arsenate

(As (V) at high redox potential value) and arsenite (As (III) at low 
redox potential value) were the predominant forms of as in aquatic 
environment. The trivalent Cr (III) and hexavalent forms Cr (VI) are 
the primarily form for chromium in natural water, which depends 
on the oxidative properties and pH level. Heavy metals, especially 
the chromium and arsenic, are more problematic and threatening 
to ecological environment and human beings because of their high 
toxicity, non-biodegradation and accumulation through food chain. 
Thus, the World Health Organization recommended the maximum 
permissible limit for arsenic is 10 µg L−1 while the maximum limit for 
chromium is 0.05 mg L−1 in drinking water [15,17,19].

As (III), that can take up 67-99% of total arsenic in groundwater, 
is more problematic than As (V) because As (III) is more toxic and 
difficult to remove from water [3,15]. Since arsenic and chromium 
are highly toxic and carcinogenic, the maximum permissible limit for 
arsenic is 10 µg/L in drinking water according to the World Health 
Organization and the maximum contaminant level of chromium (VI) 
is 50 µg/L for potable water according to the United States Environment 
Protection Agency, respectively [10,12]. Therefore, it is very imperative 
to consider innovative and effective treatment options to meet the 
stringent arsenic and chromium standard.

Herein, to enhance their sorption capacity, the manganese chloride 
and wheat straw, which was one of the most abundant straw resources 
in China [20], were explored to prepare a low cost but high efficiency 
material for heavy metal treatment and straw utilization. The specific 
objectives of this work were to: (1) prepare and characterize MnCl2 
impregnated biochar composites, (2) test its sorption capacities for As 
(III) and Cr (VI), and (3) investigate the possible mechanisms involved 
in the As (III) and Cr (VI) sorption.
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Abstract
Manganese impregnated biochar deriving from wheat straw were synthesized to treat heavy metal contamination. 

Nitrogen adsorption-desorption isotherms, scanning electron microscopy-energy dispersive X-Ray spectroscopy 
(SEM-EDS), and X-ray diffraction (XRD) were used to determine the characteristics of adsorbents. Batch adsorption 
experiments demonstrated a fit Langmuir model with the maximum adsorption capacity of 0.216 mmol g-1 for As (III) 
and a suitable Freundlich model for Cr (VI) respectively. Fourier transform infrared spectroscopy (FTIR) and X-ray 
photoelectron spectroscopy (XPS) were measured to explore probable adsorption mechanisms involving As and Cr 
adsorption, which indicated that the Lewis acid-base interactions play a more important role in arsenic adsorption while 
electrostatic interaction along with the reduction Cr (VI) to Cr (III) contribute primarily to chromium adsorption.
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Materials and Methods
Preparation of manganese activated carbon

Stock solutions of 0.2 M manganese chloride (Mn-solution) was 
prepared in a volumetric flask. 7.692 mmol L−1 sodium arsenite and 
3.401 mmol L−1 potassium dichromate were prepared and diluted to 
the required concentrations with 0.01 M NaCl. MnCl2.4H2O, sodium 
arsenite, potassium dichromate, sodium chloride and other reagents 
used in this work were all analytical grade.

Wheat straw was obtained from Wuxi city, Jiangsu province, 
China. Manganese activated carbon (MnBCs) were produced as follow: 
100 ml Mn-solution was mixed with wheat straw milled and sized to 
diameters <0.80 mm, stirred vigorously at 80°C for 3 h, sonicated for 1 
h and then dried at 105°C. The biochar precursors were continuously 
heated to a target temperature (300, 400, 500,600, 700 and 800°C) and 
finally maintained for 60 min in a furnace with the heating rate of 
10°C min-1 under 100 ml min-1 nitrogen flow. Activated carbons were 
labelled as MnBC300, MnBC400, MnBC500, MnBC600, MnBC700 
and MnBC800. The control biochar was also prepared by the same 
pyrolyzation process as manganese activated carbon under 500°C and 
labelled as CBC500.

Sorption experiments
Effect of pH on arsenic and chromium removal was investigated 

in a 100 ml digestion vessels containing 0.1 gram adsorbent and 50 
ml of 0.385 mmol L-1 sodium arsenite or 0.170 mmol L-1 potassium 
dichromate solution at room temperature. The pH level was adjusted at 
the range of 2-12 with hydrochloric acid and sodium hydroxide.

Adsorption isotherm experiments were conducted by mixing 0.1 g 
adsorbent with 50 ml sodium arsenite with the concentration ranging 
from 0.038-1.538 mmol L-1 or potassium dichromate solutions with the 
concentration ranging from 0.017-0.680 mmol L-1 under the optimum 
pH level in a vessel. All the vessels above were shaken at 150 rpm in 
the oscillator for 2 h and then placed in the water bath under constant 
temperature (25°C) for 24 h to reach equilibrium. Inductive coupled 
plasma emission spectrometry (ICP) and Inductive coupled plasma 
emission spectrometry- mass spectrum (ICP-MS) were used to detect 
the concentration of arsenic and chromium.

Characterization of adsorbents

N2 (0.162 nm2) adsorption-desorption experimental, scanning 
electron microscopy - energy spectrum analysis (SEM-EDS) and 
X-ray diffraction were used to detective the surface characteristic of 
materials. Fourier transform infrared spectroscopy (FTIR) and X-ray 
photoelectron spectroscopy (XPS) were measured to explore probable 
adsorption mechanisms involving as and Cr adsorption.

Results and Discussion
Characteristics of activated carbon

N2 adsorption-desorption isotherms: In order to investigate the 
porosity of the MnCl2 activated carbon, nitrogen adsorption, a standard 
procedure for determination of the porosity of porous adsorbents, 
was used for determining its surface area and porous structure [21]. 
Figure 1 shown a reversible Type II isotherm which obtained with a 
non-porous or macropore adsorbent and represented unrestricted 
monolayer-multilayer adsorption. A type II isotherm contained a Point 
B, the beginning of the almost linear middle section of the isotherm, 
indicating the end stage of monolayer coverage and the initiate of 
multilayer adsorption. The Point B was positioned very far forward on 
those line suggesting MnBCs possessed few tiny micropore structure. 

Surface area and pore volume: Most of the pore size distributions 
of the activated carbons are between 20 Å and 200 Å, which indicates 
that the carbons are mainly mesopore (Figure 2). Table 1 displayed the 
significant effect of carbonization temperature and manganese chloride 
on pore development and specific surface area. Specific surface area 
and pore volume increased with temperature escalating from 300 to 
500°C, decreased dramatically at 600°C and then enlarged again as 
temperature rising from 600 to 800°C. The average pore diameter 
showed the opposite changing rule as the surface area and pore volume. 
Unexpectedly, the average pore diameter under a high carbonization 
temperature displayed a different variation trend from former 
investigation: the pore diameter did not increased, they decreased 
instead. In general, pore size distribution of activated carbon is 
dependent on activation temperature, raw material and retention time. 
Increasing the carbonization temperature within a certain temperature 

Figure 1: N2 adsorption–desorption isotherms of various activated carbons.

Figure 2: Pore distribution of MnBCs.
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range increases the evolution of volatile matters from the precursor, 
making the benefit of pore development, and creating new pores. The 
pyrolyzation effect, when out of the range, will cause the collapse of 
micropore and wide a significant amount of micropore to mesopore, 
quality just drop [22,23]. The abnormal variation trend under high 
pyrolyzation temperature indicated that the activating agent must 
make a difference in biochars pore structure and specific surface area.

SEM-EDS and XRD: Surface morphology and the main element 
of the activated carbon were investigated by scanning electron 
microscope (SEM) and energy spectrum analysis (EDS). The pore 
structure was observed obviously for the MnBC300, MnBC400 and 
MnBC500. The surface of MnBC600, however, was smooth and 
evidently absence of porosity. The pore structure appeared again 
for MnBC700 and became distinctly for MnBC800 (Figure 3). EDS 
results shown that the MnBCs were mainly contained carbon, oxygen, 
manganese and chloride (EDS was unable to detect the hydrogen 
element) (Table 2). The amount of chloride atom was almost as twice 

as the manganese atom may indicating that a considerable number 
MnCl2, not the manganese oxide, still existed on the surface of those 
activated carbons. The X-ray diffraction could prove that hypothesis. 
The diffraction peaks were almost same for MnBC400, MnBC500, 
MnBC600, MnBC700 and MnBC800 (Figure 4). Diffraction peaks at 
2θ=15.729, 20.165 and 31.879 which were corresponding to 110, 020 
and 021 planes respectively, for MnCl2 (H2O)4 structure. The diffraction 
peaks for MnBC300 was obviously different from other MnBCs, which 
represented MnCl2 (H2O)2. It is known that melting point of MnCl2 was 
almost 650°C. Thus, we hypothesis that activating agent (melted liquid 
MnCl2) may inhibit the collapse of the micropore and even created new 
pore structure within the carbon matrix at 700 and 800°C.

Adsorption study

Effect of pH and sorbent dosage: MnBC500 was chosen for 
adsorption study because of its highest specific surface area and pore 
volume. Prior to sorption study, the manganese chloride modified 
carbon was washed thoroughly to get rid of manganese chloride. 
The effect of initial solution pH level for adsorption of arsenic and 
chromium were studied firstly. The raw biochar (CBC500) removed 
few chromium and negligible arsenic. The removal efficiency of arsenic 
for MnBC500 went up gradually and then decreased with increasing the 
initial solution pH level (Figure 5). The maximum adsorption ability of 
As (III) was obtained at pH 9.5, which was coincident with the first 
dissociation constant of H3AsO3 (pK1=9.23). Chromium adsorption 
was also affected dramatically by the initial solution pH value. Removal 
efficiency decreased with increasing initial pH value ranging from 2 to 12.

Adsorption isotherm: Three widely used isotherm models, namely 
the Langmuir, Freundlich isotherm and Temkin models, were applied 
to fitted adsorption experimental data [24]. The Langmuir model (i.e., 
L model) assumed the repulsive interaction was inexistent among 
adsorbate particles and adsorption heat was homogeneous; Freundlich 
model (i.e., F model) was based on a multilayer adsorption condition 
with an inhomogeneous distribution of adsorption heat; Temkin 
isotherm (i.e., T model) assumed that the heat of adsorption decreased 
linearly. These equations could be expressed in the following form:

0 0

1
= +e e

e

C C
q Q bQ

                   (1)

lnA ln= +e e
T T

RT RTq C
b b

                       (2)

lnA ln= +e e
T T

RT RTq C
b b

                     (3)

Where Ce (mmol L−1) was the equilibrium concentration, and qe 
(mmol g−1) was the amount of adsorption capacity at equilibrium, 
respectively. Q0 (mmol g−1) and b (L mmol−1) were Langmuir constants. 
Kf (mmol g−1) and n were Freundlich constants. A (L mmol−1) and bT (J 
mol−1) were Temkin constants. T was absolute temperature and R was 
universal gas constant 8.314 J mol−1 K−1. Results shown the L model was 
mostly suitable the equilibrium data of arsenic adsorption (r2

L> r2
T> 

r2
F) assuming a monolayer adsorption process for As (Figure 6). The 

maximum adsorption capacity was 0.216 mmol g-1 for As (III) which 
was more excellent than other commonly used adsorbents reported in 
the literature. A dimensionless equilibrium parameter (RL) can further 
analysis of the Langmuir equation. The lower RL value means the more 
favorable adsorption provided at the range between 0 and 1. The value of 
RL was 0.025-0.507 for MnBC500 in the C0 range of this study, implying 

Sample SBET (m2/g) SExternal (m2/g) Dp (nm) VTotal (cm3/g)
MnBC300 17.27 9.239 16.01 0.027
MnBC400 19.35 6.352 16.51 0.030
MnBC500 19.47 8.009 10.99 0.035
MnBC600 6.732 3.765 12.3 0.012
MnBC700 8.88 2.998 10.15 0.011
MnBC800 9.126 5.944 8.39 0.014

Table 1: Surface areas and pore volumes of activated carbons. 

MnBCs
C O N Cl Mn

Element (wt%)
MnBC300 43.64 14.02 1.68 23.88 16.78
MnBC400 46.5 7.6 0.82 23.01 22.07
MnBC500 51 5.54 0.31 21.59 21.56
MnBC600 44.6 4.72 0.62 24.47 25.59
MnBC700 53.85 5 0.53 19.9 20.72
MnBC800 45.42 6.22 0.88 23.4 24.08

Table 2: ED’s results of the main elements content of MnBCs.

Figure 3: SEM of MnBCs: a, MnBC300; b, MnBC400; c, MnBC500; d, MnBC600; 
e, MnBC700 and f, MnBC800.
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a favorable arsenic adsorption process. The Temkin plots also had good 
linearity indicating the strong chemical interaction between adsorbate 
and adsorbent. These results illustrated the homogenous distribution 
of active sites over sorbent surface. Generally, the Langmuir model was 
suitable for the uniformly distributed metal salts, namely, the active 
sorption site to some certain contaminants on the surface of activated 
carbon. The Freundlich model, however, best fitted to the chromium 
sorption data (r2

F>r2
L>r2

T) suggesting a multilayer sorption process for 
chromium. This result may also indicated that those active adsorption 
sites were inoperative to chromium. The maximum Cr (VI) adsorption 
capacity was detected as 0.442 mmol g-1 in our study (Table 3).

Adsorption mechanism

FTIR: FTIR spectra of CBC500, MnBC500, MnAsBC500 and 
MnCrBC500 were presented in Figure 4 to identify some important 
functional groups and the roles they played in adsorption process. The 
peaks at 3436, 2976, 1634, 1384, and 1045 cm-1 were related groups 
of biochar, which assigned in Table 4. The new peak at 617 cm-1 
demonstrated the Mn2+–O lattice vibration band [25]. The vibration on 
1634 cm-1 shift to 1604 cm-1 for MnBC500 suggesting the activation agent 
enhanced the formation of aromatic ring structure which possession 
the conjugated π bond decreasing the vibrational force constant of 
C=C. These aromatic compounds are easy to take place nucleophilic 
substitution and nucleophilic addition (Figure 7b). It was reported that 

Figure 4: XRD pattern of MnBCs.

Figure 5: The effect of pH value on arsenic and chromium adsorption.

Figure 6: Three adsorption isotherm modes for arsenic and chromium adsorption.
Figure 7: FTIR spectra for biochars: a, CBC500; b, MnBC500; c, MnCrBC500; 
d, MnAsBC500.
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the characteristic absorption bands of adsorbed arsenate was 650-950 
cm-1 for As-OH or As–O stretching vibration [26]. Peak at 793 cm-1 

represented a weak As -O bond suggesting As (III) surface complex 
was non-protonated [27,28] while peak at 876 cm-1 may implying the 
As-OH vibration. Only a new peak at 880 cm-1 was observed after Cr 
adsorption. However, this peak has no relation with Cr-O.

XPS investigation: XPS was used to further investigate the 
mechanism of arsenic sorption on the manganese modified biochars 
as well as chromium adsorption mechanism (Figure 8). A manganese 
peaks corresponding to Mn2p was found in the surface of Mn-
impregnated biochar both before and after as interaction. The binding 
energy 641.7 eV represented the existence of MnO structure while the 
binding energy 653.7 eV suggested a higher valency of manganese (III) 
[29,30]. The higher valency of manganese like Mn(IV) and Mn(III) had 
the ability to oxide As (III) to As (V) which was more easier to adsorbed 
by manganese oxide [31]. However, there was no obvious decrease 
of Mn (III) content or increase of Mn (II) after arsenic adsorption. 
Prominent peak corresponding to As3d was observed in the surface 
of MnAsBC500 and the binding energy was 48.75 suggesting As (III) 
oxidation was not happen. The former researches has demonstrated As 
(V) could be adsorbed through the electrostatic force as well as ligand 
exchange reactions while the As (III) adsorption was mainly involved 
ligand exchange reaction [13]. Thus, the main adsorption mechanism 
could be attributed to the ligand reaction between the manganese and 
arsenite. If we can control the oxygen content to form a high valency 

Figure 8: High-resolution XPS spectra for Mn2p, As3d and Cr2p regions of MnBC500, MnAsBC500 and MnCrBC500.

manganese oxide, the arsenic adsorption capacity may be further 
enhanced. Nevertheless, the definite structure of Mn-As complexes 
needs to be further studied. That is our ongoing research work. 

Meanwhile, during the chromium sorption process, the 72% of 
manganese (II) atoms are oxidized to Mn (III) and Mn (IV), which was 
illustrated in Figure 8. Consequently, the adsorbed Cr (VI) could be 
reduced to Cr (III) via reaction with the Mn (II) (Figure 8). This results 
suggested that chromium adsorption mechanism was related to the 
reduction Cr (VI) to Cr (III) along with the electrostatic phenomenon.

Conclusion
Based on experimental results, manganese chloride activated 

carbons derived from wheat straw were synthesized and shown high 
sorption ability to arsenic and chromium. Bach sorption experiments 
shown a fitted Langmuir model for arsenic adsorption while a suitable 
Freundlich model for chromium adsorption. Ligand exchange 
contributed mainly to arsenic removal while electrostatic phenomenon 
with the chromium reduction played an important role in chromium 
sorption. This work demonstrated that manganese modified biochar 
provides an innovative and effective way to utilize straw resources by 
preparing low-cost adsorbents for heavy metal pollutants treatment.
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Temperature
(K)

Langmuir parameters Thermodynamics
Q0

(mmol/g) b R2 ΔG°
(kJ mol−1)

ΔH°
(kJ mol−1)

ΔS°
(kJ mol−1)

283 0.183 10.75 0.992 -33.2
298 0.216 25.24 0.999 -35.13 0.15 9.55
318 0.268 28.22 0.999 -37.45

Table 3: Parameters of Langmuir isotherms and thermodynamics of As (III) 
adsorption.

Wave number (cm−1) Characteristic vibrations
3446 O-H stretching of H-bonded hydroxyl
2976 C-H stretching vibration
1634 C=C stretching of aromatic ring
1384 C-H bending of CH3 (symmetric) groups
1045 C-O stretching of C-OH groups

Table 4: Assignment of the main characteristic vibrations of biochar’s FT-IR 
spectrum.
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