
Volume 3 • Issue 2 • 1000121

Open AccessReview Article

Dossis, Adv Robot Autom 2013, 3:2
DOI: 10.4172/2168-9695.1000121

Keywords: Microelectronics design; High level synthesis; Formal
languages; Electronic design automation; Scheduling; Compilers; RDF;
Formal methods; Logic programming; Custom microarchitecture

Introduction
Digital microelectronics found in embedded, high-performance

and portable computing systems have highly complex components,
design hierarchy and interconnections. During the last couple of
decades, commercial and academic organisations have invested in
HLS and optimisation techniques, so as to achieve design automation,
quality of implementations and short specification-to-product times
[1,2]. However, existing HLS tools are not widely accepted by the
engineering community because of their poor results, especially for
large applications with complex module and control-flow hierarchy.
Very often, the programming style of the source code has a severe
impact on the quality of the synthesized implementation. For large-
scale applications, the complexity of the synthesis transformations
(front-end compilation, algorithmic transformations, optimizing
scheduling, allocation and binding), increases exponentially, with a
linear increase of the design size [3].

Existing HLS tools impose proprietary extensions or restrictions
(e.g. exclusion of while loops) on the programming model of the
specifications that they accept as input, and various heuristics on the
HLS transformations that they utilize (e.g. guards, speculation, loop
shifting, trailblazing). Most of them are suitable for linear, dataflow
dominated (e.g. stream-based) designs, such as pipelined DSP, image
processing and video/sound streaming.

The contribution of this work is an integrated HLS toolset which
utilises intelligent and formal techniques so as to apply the source-
to-implementation optimizing transformations, thus, the produced
hardware implementations are correct-by-construction. Therefore,
the design needs verification only at the top behavioral level, without
spending days or even weeks, on lengthy RTL or annotated gate
simulations. Moreover, various custom options can be applied by the
user on the automatic HLS transformation, such as the type of the
micro-architecture, the generated HDL code as well as the inclusion
of custom (e.g. arithmetic) logic functions throughout the HLS
compilation.

The author has designed and developed an intelligent HLS
compiler [4] that includes a scheduler of operations into control steps,
achieving the maximum functional parallelism in the synthesized
implementation [5]. This HLS scheduler called PARCS, utilizes logic
programming [6] and RDF subject-predicate-object relations [7], to
formally achieve the maximum possible parallelism of operations. In
this way, the functionality of the delivered implementations is correct-
by-construction [3] explores various scheduling techniques.

Formal HLS techniques are analysed in the next section. Next, the
intelligent approach of the prototype optimising CCC synthesizer is
described, such as formal predicate logic [6], RDF relations and XML
schema validation [7]. Then, the usability and correctness of the CCC
HLS toolset are evaluated with a number of benchmarks. The last
section draws useful conclusions and proposes future work.

Existing Work in intelligent HLS techniques
Established and well studied HLS tasks include scheduling,

allocation and binding [3]. The front-end part of HLS tools include
parts of software programming language compilers [8], such as parsing,
semantic analysis, intermediate variable optimization, elimination of
dead code, etc. The front-ends exchange information with the back-ends
using intermediate formats, such as the Electronic Design Interchange
Format (EDIF) [9,10], used by most E-CAD tools. Complex control flow
optimization has been evaluated in [2,11,12], but for small parts of code
and by no means complete application tests [13], discusses synthesis
for distributed logic and memory [14] uses communicating processes
as a system specification medium. HLS methods that include memory

*Corresponding author: Michael Dossis, Department of Informatics Engineering,
TEI of Western Macedonia, Kastoria Campus, Fourka Area, Kastoria, GR 52 100,
Greece, Tel: 30-694-6154078; E-mail: mdossis@yahoo.gr

Received May 27, 2014; Accepted June 5, 2014; Published June 7, 2014

Citation: Dossis M (2014) Synthesis of Custom Hardware from ADA with Artificial
Intelligence Techniques. Adv Robot Autom 3: 121. doi: 10.4172/2168-9695.1000121

Copyright: © 2014 Dossis M. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
 The advancing complexity of contemporary microelectronics has motivated research in high-level and system

synthesis (HLS). Formal and intelligent HLS techniques are presented in this contribution, thus the generated
implementation is correct-by-construction. These intelligent techniques include RDF (Resource Description
Framework) and logic relations, along with automatic implementation options and they are employed for the
transformations of a hardware compiler. The proposed toolset utilizes compiler-generators, RDF rules and logic
programming in combination with XML validation of the internal state of the compiler. These intelligent and formal
techniques make the whole transformation from source code to implementation, formal. The HLS tool is enhanced
with the Parallel, Abstract Resource – Constrained Scheduler, which aggressively optimizes the initial state
schedules, into maximally parallelized ones. A number of custom options are applied by the user of this toolset,
in order to automatically compile selected testcases from real-world applications which prove the usability of the
embedded scheduler and the formal compilation of the intelligent HLS compiler.

Synthesis of Custom Hardware from ADA with Artificial Intelligence
Techniques
Michael Dossis*
Department of Informatics Engineering, TEI of Western Macedonia, Kastoria Campus, Fourka Area, Kastoria, GR 52 100, Greece

Advances in Robotics
& AutomationAd

va
nc

es
 in

Robotics &Autom
ation

ISSN: 2168-9695

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Dossis M (2014) Synthesis of Custom Hardware from ADA with Artificial Intelligence Techniques. Adv Robot Autom 3: 121. doi: 10.4172/2168-
9695.1000121

Page 2 of 7

Volume 3 • Issue 2 • 1000121

access management are outlined in [1], where digital signal processing
(DSP) and streaming applications are synthesized using performance
constraints [15], analyses mutually exclusive scheduling on extended
data-flow graphs (EDFG) [16] synthesizes behavioural descriptions
with time constraints, where complex operations are decomposed into
simpler ones, and a similar set of decomposed fragments of operators,
with the same pattern, are scheduled in a clock cycle.

In [17] an actor, that is used to model every module or system
process, communicates with other actors via communication channels.
These actors are used by the System Co-Designer [17] to exercise
electronic system level (ESL) design space exploration. In [18] the
SURYA system utilises the Simplify theorem prover to prove that the
RTL model generated by HLS tools is functionally-equivalent to the
specification. SURYA found two bugs in the SPARK HLS tool [2], which
were until then unknown. In [19] flip-flops are replaced with latches
so as to improve implementation timing, since latches are inherently
more tolerant to process variations than flip-flops. Nevertheless, latch-
based design is more cumbersome than flip-flops.

The W3C Resource Description Framework

The Resource Description Framework (RDF) is a metadata model
and is used to model the information of web resources [7]. RDF models
include subject-predicate-object relations with explicit statements,
called triplets. Triplets specify resources that store knowledge,
information and data retrieval in large automated software tools. This is
achieved due to the suitability of RDF to capture, store, exchange, and
use machine-readable web information. Here, RDF is used to formally
model and validate the internal data and state of the author’s HLS tool.

The eXtensible Markup Language (XML) serialization format is
used to define RDF. XML’s syntax is formally specified [7] and is ideal
to model simple triples such as subject-predicate-object (and other)
relations. The following RDF relation:

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description	 rdf:about="http://www.awl.com/
Formal_Synthesis">

 <dc:title>High-level Synthesis</dc:title>

 <dc:publisher> Addison-Wesley Publishing</dc:publisher>

 </rdf:Description>

</rdf:RDF>

is the RDF knowledge model of the fact: “The title of this resource,
published by the Addison-Wesley Publishing company, is High-
level Synthesis”. RDF and XML define object relations that also
represent data attributes in large programs, and they can be used to
validate internal data representations of E-CAD tools. XML files are
easily readable by both humans and machines. An XML schema is a
formal definition of an XML file, and it constraints the content and
structure of such files. XML schema can be used to validate a particular
XML instance. Well-known formalisms of the XML schema are the
document type definition (DTD) language, the XML Schema and the
Relax NG formats [7].

A valid XML instance can be checked against the rules of an
XML schema. This is done by certain XML (commercial or free)

parsers compatible with specific XML schema implementations such
as the DTD or the Relax NG languages. The following XML instance
is automatically produced by the author’s HLS tool (see following
paragraphs), and it defines a data type and two subprograms in the
tool’s source ADA programs:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Produced by CCC front-end compiler -->

<schemaxmlns=http://www.w3.org/2001/XMLSchema	

 targetNamespace="http://www.w3.org/2001/XMLSchema">

<annotation>

 <documentation>

 XML schema for a hierarchical module of the source code

 </documentation>

</annotation>

<complexType name=" hierarchy_part">

 <sequence>

 <element name=" type_def_natural_2048"/>

 <sequence>

 <element name=" data_object_variable2 "/>

 <element name=" data_object_constant1_value_100 "/>

 <element name=" data_object_constant1_value_1000"/>

 </sequence>

 <element name=" function_convert3"/>

 <sequence>

 <element name=" input_parameter_my_input1 "/>

 <element name=" input_parameter_my_input2 "/>

 <element name=" input_parameter_my_input3 "/>

 </sequence>

 <element name=" procedure_differential2"/>

 <sequence>

 <element name=" input_parameter_my_input4 "/>

 <element name=" input_parameter_my_input5 "/>

 <element name=" output_parameter_my_output1 "/>

 </sequence>

 </sequence>

 </complexType>

</schema>

The above XML instance defines the data type “natural_2048” and
two subprograms, the function “convert3” with three formal input
parameters “my_input1”, “my_input2” and “my_input3” as well as
procedure (see ADA-95 definition) differential2 with two formal input
parameters and one output.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Dossis M (2014) Synthesis of Custom Hardware from ADA with Artificial Intelligence Techniques. Adv Robot Autom 3: 121. doi: 10.4172/2168-
9695.1000121

Page 3 of 7

Volume 3 • Issue 2 • 1000121

These elements are of type “hierarchy_part”, and each one of them
includes a sequence of “leaf” sequences with the structure of all child
elements with type defined above.

The graphical validation result of the above XML code is shown
in Figure 1, and it was automatically produced by a DTD parser that
helped to identify and correct some initial semantic issues in the tool
development.

As widely documented, XML is a formal way to model internal
information in design (E-CAD) tools. XML representation of C code
is introduced in [20] to aid the CASE tool development. A hash table
and a stream index are used in [21] to filter out invalid elements of
an XML document. The IEEE std 1685-2009 IP_XACT, is based on
XML schema, and is used as internal representation and exchange
format between EDA tools (IEEE IP-XACT std, 2010). Such internal
data include design units, interconnections, functional primitives,
metadata, and IP blocks [22].

XML schema and the eXtensible Stylesheet Language
Transformations (XSLT) language are used in [23] to enable the
sharing, conversion, transfer and exchanging of healthcare database
data. Many academic/commercial database and web tools utilise XML
schemas and instantiations to represent internal information, such as
primary data generated automatically and used by database, multi-
media and web processing tools.

XML is combined with Web technology in [24] to structure, consult
and share corporate data. Similarity algorithms for XML documents
are analysed in [25]. The IBM DB2 query matching and compensation
techniques are enhanced with XML functionality, to implement and
evaluate query rewrite rules in [26]. An incremental approach called

"T-Schema" (of XML-to-relational mapping storage), is proposed
in [27], to address the strong dynamics of XML. The SMOQE tool
generates the first regular XPath engine and provides answering queries
technique, over recursively defined XML views [28] discusses the use of
semantic web for EIS and databases. A XML metamodel captures NFRs
and their relations in [29].

The Intermediate Predicate Format

The Intermediate Predicate Format (IPF) was invented by the
author of this paper, to model the design and the HLS transformations
in the CCC HLS tool [30] analyses the syntax and semantics of IPF,
which uses the resolution of Horn clauses as formal object relations
[6], to implement the HLS transformations. The front-end phase of the
CCC compiler (see following paragraphs), generates the IPF database
to capture all the algorithmic, structural and data typing attributes of
the source program, as in the following Prolog fact:

 fact_id(object1, object2, …, objectN)	 (form 1)

The Prolog predicate name fact_id relates the objects object1 to
objectN in a formal manner. The identifier fact_id names the logical
relation between the above objects. IPF facts represent program
operations, data object descriptions, data types, operators, subprogram
calls, etc. The back-end phase of the CCC compiler applies HLS
transformations on these facts so as to produce the optimized design
implementation. This is done in combination with the internal logical
rules as a design knowledge-base in order to “conclude” and infer the
RTL (register-transfer level) implementations. The IPF syntax facilitates
declarative processing by Prolog predicates, as well as imperative
processing. This is because IPF facts (e.g. data table facts) are referenced
with their entry numbers in other IPF facts (e.g. program table facts).

The IPF XML schema view is used to validate the internal state of
the front-end and back-end phases of the CCC HLS tools. The following
XML instance models the program statement [30] of form 1:

 <complexType name=" prog_stmt">

 <sequence>

<element name=" module_subprogram2"/>

<element name=" entry_number_3"/>

<element name=" states_0"/>

<element name=" operator_63"/>

<element name=" left_operand_dx"/>

<element name=" right_operand_dy"/>

<element name=" result_operand_xc"/>

<element name=" next_operation_5"/>

 </sequence>

 </complexType>

The validation of this XML instance is shown in Figure 2.

The Intelligent CCC HLS Techniques
The synthesis design flow

The HLS flow includes two major steps: the front-end phase
and the back-end phase. These two tools exchange data via the IPF
database. XML instances of IPF are automatically generated to validate

hierarchy_part

type_def_natural_2048

data_object_variable2

data_object_constant1_ value_1...

data_object_constant1_ value_1...

function_convert3

input_parameter_my_input1

input_parameter_my_input2

input_parameter_my_input3

input_parameter_my_input4

procedure_differential2

input_parameter_my_input5

output_parameter_my_output1

Figure 1: Validation of an Xml Document Instance against a Specific Xml
Schema (Automatically Produced From Internal Compiler Data)

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Dossis M (2014) Synthesis of Custom Hardware from ADA with Artificial Intelligence Techniques. Adv Robot Autom 3: 121. doi: 10.4172/2168-
9695.1000121

Page 4 of 7

Volume 3 • Issue 2 • 1000121

the compilation process, using graphical or command-line based XML
validators. The front-end phase performs the typical tasks of a software
compiler, such as parsing, generation of abstract syntax trees, type-
checking of data and program statements, optimization of auxiliary
variables and constants, generation of syntactic and semantic error
messages etc.

The XML schema view is also used by the front-end and back-
end phases to formally validate the translation, since IPF constitutes a
formal link between the two phases of the hardware synthesizer.

CCC analyses the IPF database and generates the initial FSM
schedule, considering custom options (such as the location of large
data objects on shared memory). Then, it optimises the initial schedules
using the PARCS (Parallel Abstract Resoure-Constrained Scheduling)
scheduler. PARCS works with, or without resource constraints, and
generates the maximally parallel hardware implementation [4], while
satisfying source code dependencies.

A custom options file can be used to mark certain program
subroutines as “custom blocks”, so that they are used as pre-optimized
and static custom modules. Hardware arithmetic blocks, or complete
data-flow systems such as DSP filter blocks and cryptographic
mathematical functions, can be used as custom blocks as in the
benchmarks analysed in later sections.

Other custom options of the back-end compiler are the targeting of
either massively-parallel (with resource redundancy), or conventional
FSM+datapath micro-architectures modelled in Hardware Description
Language (HDL) RTL code. More options include the targeted language
which (at the moment) include VHDL and Verilog HDL.

Formal Back-end HLS Transformations

The logical relations of the back-end compiler use definite clauses
[6] such as follows:

A0 ← A1 ˄ … ˄ An (where n ≥ 0)	 (form 2)

where ← is the logical implication symbol (A ← B means that if B
applies then A applies), ˄ is the logical conjunction symbol, and A0, …,
An are atomic formulas (logic facts) of the form:

predicate_symbol(Var_1, Var_2, …, Var_N) (form 3)

Where the positional parameters Var_1,…,Var_N of the above
predicate “predicate_symbol” are either variable names (such as in
the back-end inference rules), or constants (such as in the IPF table
statements) [6]. By combining these, the source code subroutines
are transformed into optimized, provably-correct RTL hardware
implementations.

Formal validation using XML schema

Formal logic rules (logic relations) as in form 2 construct the back-
end inference engine. Hence, the IPF’s facts “drive” the logic rules
of the back-end compiler which infers provably-correct hardware
implementations, which are technology-independent, free of any
standard template and custom microarchitectures in synthesizable
HDL code.

The PARCS optimizer works on the enhanced with the custom
user options schedule, such as the shared memory access operations.
The XML view is validated for the intermediate representations and
processes, throughout the various phases of the compilation. Here
follows the XML schema validation of the state (…) inference rule:

<complexType name="state">

 <sequence>

 <element name="Module_1"/>

 <element name="parcs"/>

 <element name="parcs_state_number"/>

 <element name="parcs_state_name"/>

 <element name="parcs_next_state"/>

 <element name="no_conditional_transition"/>

 <element name="scheduled_operation_list">

 <complexType>

 <sequence>

 <element name="Operation_1"/>

 <element name="Operation_2"/>

 <element name="Operation_3"/>

 </sequence>

 </complexType>

 </element>

 <element name="no_conditional_operations"/>

 </sequence>

 </complexType>

This XML instance models one PARCS state of design Module_1,
with three scheduled operations in parallel and with no conditional
operations or transitions. Both the logic and the XML views of IPF are
extracted automatically by the front-end and back-end compilation
phases, and they are validated in both logic programming and XML
views. The graphical validation of the above XML PARCS state instance
is shown in Figure 3.

The XML view of the HLS transformations and data of the back-
end compiler consists of relations between predicate symbols. An
example logic programming view of the relation transform1 (HLS

prog_stmt

module_subprogram2

entry_number_3

states_0

operator_63

left_operand_dx

right_operand_dy

result_operand_xc

next_operand_5

Figure 2: Graphical Validation of the Program Statement Xml Instance

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Dossis M (2014) Synthesis of Custom Hardware from ADA with Artificial Intelligence Techniques. Adv Robot Autom 3: 121. doi: 10.4172/2168-
9695.1000121

Page 5 of 7

Volume 3 • Issue 2 • 1000121

transformation) between objects operation1, operand_A, operand_B,
result_C is the following:

transform1(operation1, operand_A, operand_B, result_C).

Here follows the XML view of the same relation:

 <complexType name=" transform1">

 <sequence>

 <element name=" operation1"/>

 <element name=" left_operand_A "/>

 <element name=" right_operand_B "/>

 <element name=" result_data_C "/>

 </sequence>

 </complexType>

The graphical XML validation of the same transformation is
shown in Figure 4. The XML schema instances are validated using any
available validators.

Experimental Designs with Custom Options
A large number of ADA designs were synthesized with the CCC

compiler and all of them were proven by simulations to be accurate and
matching the behaviour of their source models. Here two of them have
been analysed in order to demonstrate the usability of the CCC HLS
custom options. These are a DSP FIR filter, and a RSA crypto-processor
from cryptography applications.

In all tests, the intermediate form and the internal HLS
transformations were validated against the respective XML schemas
which were automatically extracted from critical points in the
compilation flow. For the DSP filter, the two lower-level subroutines
in ADA, which model the processing of one more incoming sample
and the shifting of the filter history by one position, were chosen to be
implemented as custom combinatorial blocks taking one clock cycle to
implement. A top-level subroutine which contains calls to the above
subroutines, was used to process a whole length of incoming sample
arrays.

This subroutine was processed normally via the CCC compiler and
produced VHDL code with an optimized FSM of 10 states. Within
appropriate state descriptions of this FSM, the above custom block
subroutines are called via VHDL call mechanism. The whole ADA
coding and compilation of the DSP filter took less than half an hour to
run. The hierarchy of the FIR ADA code and implementation is shown
in Figure 5.

The experimental CCC environment is shown in Figure 6. The
intended system is modelled in the ADA programming language. The
initial ADA specification model is compiled with the GNU ADA and
the generated binaries are verified with the ADA testbench and test
vectors. This exhibits a rapid verification manner, due to extremely high
compile-and-execute verification speed. Then the ADA subroutines
that are intended for hardware (microelectronic) implementation are
integrated in an autonomous ADA package (library module). The latter
is compiled and synthesized into hardware using the prototype CCC
tools. The generated hardware modules are downloaded in A Xilinx
Virtex-2 FPGA was accommodating the synthesized hardware blocks,
with the synthesis flow and the target architecture shown in Figure 6.

The initial state schedules are first extended with custom option-
guided operations and the result is optimized with the PARCS
scheduler as a new schedule. Statistics regarding the optimization rates
of the PARCS scheduler are shown in Table 1.

Table 1 indicates that the states reduction rate reaches up to 41% for
the FIR processor case. This is a very efficient hardware implementation
of large designs with a few hundred states per module, such as large
ASICs and complex IP modules being part of embedded system SoCs.

The code of the ADA subroutines can be either standalone or
hierarchical. This means that a number of ADA subroutines can
include function/procedure calls to other subroutines of the library
that is synthesized.

This hierarchy is maintained through the CCC compilation. Thus,
the CCC designer dictates the modularity of the generated hardware
blocks. Additionally, all the necessary co-processor interfaces and (e.g.
memory) communication protocols are automatically synthesized by
the CCC compiler and inserted in the initial schedules derived directly
from the input models. This is implemented via a memory custom
options file. Moreover, selected ADA subroutines can be “marked”
as custom arithmetic modules. These are usually complex Boolean

Module_1

parcs

parcs_state_number

parcs_state_nume

parcs_next_state

no_conditional_transition

scheduled_operation_list

no_conditional_operations

Operation_1

Operation_2

Operation_3

state

Figure 3: Xml Schema Validation of a PARCS State

transform1

operation1

left_operand_A

right_operand_B

result_data_C

Figure 4: Xml Schema Validation of the Transform1 Back-End Compiler
Predicate

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Dossis M (2014) Synthesis of Custom Hardware from ADA with Artificial Intelligence Techniques. Adv Robot Autom 3: 121. doi: 10.4172/2168-
9695.1000121

Page 6 of 7

Volume 3 • Issue 2 • 1000121

functions and they are inserted as expanded VHDL procedure calls in
the generated FSM states, executed in a clock cycle. The custom blocks
option strategy was followed on the lower-level functions of the FIR
DSP filter and RSA crypto-processor benchmarks.

Table 1 demonstrates that the number of hardware states is
increasingly high, which constitutes the importance of the CCC
framework contribution, in keeping the complexity of contemporary
designs under control. It is a shared experience by experienced hardware
designers, that development and verification of very complex FSMs
with over 20-30 states is cumbersome and extremely prune to errors.
Experienced programmers can use the CCC toolset, to implement very
complex hardware designs in a few hours, whereas this takes usually
more than 6 months of traditional development and verification time.
This is due to the use of formal logic programming and RDF validation
techniques embedded in the intelligence of the CCC synthesizer.

The ADA code hierarchy for the RSA public-key cryptography
application is shown in Figure 7. The modular exponentiator and
multiplier automatically produce optimized FSMs with 12 and 29 states
respectively. The other 3 lower-level modules are transformed as custom
blocks and their VHDL calls are instantiated into the higher-level FSM
state descriptions, as shown in Figure 7. The multiplier subroutine is
called within the exponentiator subroutine. This is a special case for
the CCC translation and is being dealt as such by the compiler. In
particular, this subroutine call is used to generate an “interface event”
between the modular multiplier module and the exponentiator module.
In general, when across both sides of a subroutine call, none of them is
intended to be a custom block, then the subroutine calling is converted
into a HDL module interface and data exchange mechanism. All of the
VHDL modules for the FIR filter and the RSA cryptoprocessor have
been simulated (although due to the formal nature of the CCC tool,
not necessary) and the results coincided with the results of the ADA
verification testbenches.

Conclusions and Future Work
The main contribution of this work is a formal, high-level hardware

synthesis toolset and method developed by the author of this paper.
The CCC HLS tool utilizes compiler-compiler and logic inference
techniques to turn synthesis formal. The synthesis transformations are
enhanced with XML schema validation as well as RDF logic relations
to implement the execution and formal validation of the prototype
hardware compiler. XML views of IPF as well as the formal CCC
transformations are validated against their schema views.

Arbitrary and general input ADA code is synthesized into
functionally-equivalent RTL VHDL/Verilog hardware implementation.
Many applications were synthesized with the CCC toolset, two,
very indicative ones being discussed in this paper. In any case, the
functionality of the produced hardware accelerators (coprocessors)
matched that of the input subprograms. The synthesized hardware
can be used to accelerate complete hardware/software systems in
their time-critical routines. The PARCS scheduler achieves high state-
optimization rates which exceeded 36% in some cases (Table 1).

Top-level FIR_ALL ADA

procedure (FSM)

PROCESSED_SAMPLE ADA

procedure for processing on more FIR

sample (custom block)

SHIFT_HISTORY ADA lower-level routine

(custom block)

Figure 5: Fir Filter Ada Code Hierarchy

Host (main)

processor(s)

Shared
memory

FSM+datapath 1

FSM+datapath
N

LOCAL

HANDSHAKE

SYSTEM BUS

System model in ADA

GNU ADA

software tools

CCC ADA

hardware tools

Figure 6: Synthesis Flow and Execution Architecture

Modular exponentiation routine (FSM)

Modular multiplier routine (FSM)

A number of lower-level custom block

arithmetic and Boolean logic

subroutines

Figure 7: RSA Crypto processor ADA Code Hierarchy

Module Name Initial Schedule
States

PARCS Result
States

State
Reduction
Percentage

DSP FIR filter
processor 17 10 41%

RSA Crypto
Processor 16 11 31%

Table 1: PARCS Optimization Statistics

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Dossis M (2014) Synthesis of Custom Hardware from ADA with Artificial Intelligence Techniques. Adv Robot Autom 3: 121. doi: 10.4172/2168-
9695.1000121

Page 7 of 7

Volume 3 • Issue 2 • 1000121

Future work includes more input programming languages
(e.g. ANSI-C, C++) and a more globalized use of RDF techniques
throughout the flow of the HLS toolset. Moreover, more diagrammatic
system modelling formats are explored such as the UML diagrams to
play the role of system hardware accelerator models.
References

1. Gal BL, Casseau E, Huet S (2008) Dynamic Memory Access Management
for High-Performance DSP Applications Using High-Level Synthesis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
16: 1454-1464.

2. Gupta S, Rajesh KG, Nikil DD, Nikolau A (2004) Coordinated Parallelizing
Compiler Optimizations and High-Level Synthesis. ACM Transactions on
Design Automation of Electronic Systems 9: 441-470.

3. Walker RA, Chaudhuri S (1995) Introduction to the scheduling problem. IEEE
Design & Test of Computers 12: 60-69

4. Dossis MF (2011) A Formal Design Framework to Generate Coprocessors with
Implementation Options. International Journal of Research and Reviews in
Computer Science (IJRRCS) 2: 929-936.

5. Paulin PG, Knight JP (1989) Force-directed scheduling for the behavioral
synthesis of ASICs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 8: 661-679.

6.	 Nilsson U, Maluszynski J (1995) Logic Programming and Prolog. John Wiley
& Sons Ltd.

7. Allemang D, Hendler J (2011) Semantic Web for the Working Ontologist.

8. Holub A (1990) Compiler Design in C. Prentice-Hall Inc., New Jersey, USA

9. The Electronic Design Interchange Format

10.	http://www.rulabinsky.com/cavd/text/chapd.html

11. Kountouris AA, Wolinski C (2002) Efficient Scheduling of Conditional Behaviors
for High-Level Synthesis. ACM Transactions on Design Automation of
Electronic Systems 7: 380-412.

12.	Wang W, Tan TK, Luo J, Fei Y, Shang L, et al. (2003) A comprehensive high-
level synthesis system for control-flow intensive behaviors. Proceedings of the
13th ACM Great Lakes symposium on VLSI (GLSVLSI '03).

13.	Huang C, Ravi S, Raghunathan A, Jha NK (2007) Generation of Heterogeneous
Distributed Architectures for Memory-Intensive Applications Through High-
Level Synthesis. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 15: 1191-1204.

14.	Huang W, Raghunathan A, Jha NK, Dey S (2003) High-level Synthesis of
Multi-process Behavioral Descriptions”. in Proceedings of the 16th IEEE
International Conference on VLSI Design (VLSI’03).

15.	Gupta S, Gupta RK, Nikil DD, Nikolau A (2003) Dynamically increasing the
scope of code motions during the high-level synthesis of digital circuits. In
Proceedings of the IEEE Conference on Computers and Digital Technologies
150: 330-337.

16.	Molina MC, Ruiz-Sautua R, Garcia-Repetto P, Hermida R (2009) Frequent-
Pattern-Guided Multilevel Decomposition of Behavioral Specifications. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
28: 60-73.

17.	Keinert J, Streubuhr M, Schlichter T, Falk J, Gladigau J, et. al. (2009)
SystemCoDesigner—an automatic ESL synthesis approach by design
space exploration and behavioral synthesis for streaming applications. ACM
Transactions on Design Automation of Electronic Systems (TODAES).

18.	Kundu S, Lerner S, Gupta RK (2010) Translation Validation of High-Level
Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 29: 566-579.

19.	Paik S, Insup S, Kim T, Youngsoo S (2010) HLS-l: A High-Level Synthesis
framework for latch-based architectures. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 29: 657-670.

20.	Atsumi N, Kobayashi T, Yamamoto S, Agusa K (2011) An XML C Source Code
Interchange Format for CASE Tools. In Proceedings of the IEEE 35th Annual
Computer Software and Applications Conference (COMPSAC): 498-503.

21.	Weijian X, Heji Z, Jiasheng Z (2011) The XML filtration based on hash
table and stream index. In Proceedings of the International Conference on
Mechatronic Science, Electric Engineering and Computer (MEC):1286-1290.

22.	Jumaa H, Rubel P, Fayn J (2010) An XML-based framework for automating
data exchange in healthcare. In Proceedings of the 12th IEEE International
Conference on e-Health Networking Applications and Services (Healthcom).

23.	Sanchez-Martinez LD, Medina-Ramirez RC (2010) An XML information
management: a research team case. In Proceedings of the 20th
International Conference on Electronics, Communications and Computer
(CONIELECOMP):197-200.

24.	Sun X, Cheng H, Wang X (2010) An XML schema-based similarity algorithm.
In Proceedings of the 2nd International Conference on Future Computer and
Communication (ICFCC) 1: 36-38.

25.	Godfrey P, Gryz J, Hoppe A, Ma W, Zuzarte C (2009) Query Rewrites
with Views for XML in DB2. In Proceedings of the 25th IEEE International
Conference on Data Engineering (ICDE '09).

26.	Xu Y, Ma S, Yi S, Yan Y (2010) From XML Schema to Relations: A Incremental
Approach to XML Storage. In Proceedings of the 2010 International Conference
on Computational Intelligence and Software Engineering (CiSE):1-4.

27.	Rajugan R, Chang E, Feng L, Dillon TS (2006) Modeling Dynamic Properties
in the Layered View Model for XML Using XSemantic Nets. Advanced Web and
Network Technologies, in Lecture Notes in Computer Science.

28.	Kassab M, Ormandjieva O, Daneva M (2008) A Traceability Metamodel for
Change Management of Non-Functional Requirements. In Proceedings
of the Sixth International Conference on Software Engineering Research,
Management and Applications IEEE: 245-254.

29.	Dossis M (2010) Intermediate Predicate Format for design automation tools.
Journal of Next Generation Information Technology (JNIT) 1: 100-117.

30.	Wenfei F, Geerts F, Xibei J, Kementsietsidis A (2007) Rewriting Regular
XPath Queries on XML Views. In Proceedings of the 23rd IEEE International
Conference on Data Engineering (ICDE 2007): 666-675.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4601486&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4601486
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4601486&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4601486
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4601486&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4601486
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4601486&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4601486
http://dl.acm.org/citation.cfm?id=1027087
http://dl.acm.org/citation.cfm?id=1027087
http://dl.acm.org/citation.cfm?id=1027087
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2F195.130.87.55%2Fdossis%2FIJRRCS_AUG_2011_A_Formal_Design_Framework_to_Generate_Coprocessors_with_implementation_Options.pdf&ei=3wqPU-eHG5aJuATsqoDgCQ&usg=AFQjCNFBDIuUesoI8RTlPQcbeZLI3OzW5g&bvm=bv.68235269,d.c2E
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2F195.130.87.55%2Fdossis%2FIJRRCS_AUG_2011_A_Formal_Design_Framework_to_Generate_Coprocessors_with_implementation_Options.pdf&ei=3wqPU-eHG5aJuATsqoDgCQ&usg=AFQjCNFBDIuUesoI8RTlPQcbeZLI3OzW5g&bvm=bv.68235269,d.c2E
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2F195.130.87.55%2Fdossis%2FIJRRCS_AUG_2011_A_Formal_Design_Framework_to_Generate_Coprocessors_with_implementation_Options.pdf&ei=3wqPU-eHG5aJuATsqoDgCQ&usg=AFQjCNFBDIuUesoI8RTlPQcbeZLI3OzW5g&bvm=bv.68235269,d.c2E
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=31522&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D31522
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=31522&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D31522
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=31522&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D31522
http://www.ida.liu.se/~ulfni/lpp/
http://www.ida.liu.se/~ulfni/lpp/
http://en.wikipedia.org/wiki/EDIF Accessed 9 February 2012
http://www.rulabinsky.com/cavd/text/chapd.html
http://dl.acm.org/citation.cfm?id=567272
http://dl.acm.org/citation.cfm?id=567272
http://dl.acm.org/citation.cfm?id=567272
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.ruf.rice.edu%2F~mobile%2Fpublications%2Fwang03impact.pdf&ei=_AKPU_OYK8S2uASlpYB4&usg=AFQjCNEd6GivR-ASk1jlwhjAaovoE-pCUQ&bvm=bv.68235269,d.c2E
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.ruf.rice.edu%2F~mobile%2Fpublications%2Fwang03impact.pdf&ei=_AKPU_OYK8S2uASlpYB4&usg=AFQjCNEd6GivR-ASk1jlwhjAaovoE-pCUQ&bvm=bv.68235269,d.c2E
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.ruf.rice.edu%2F~mobile%2Fpublications%2Fwang03impact.pdf&ei=_AKPU_OYK8S2uASlpYB4&usg=AFQjCNEd6GivR-ASk1jlwhjAaovoE-pCUQ&bvm=bv.68235269,d.c2E
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4351976&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4351976
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4351976&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4351976
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4351976&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4351976
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4351976&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4351976
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1183178&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1183178
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1183178&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1183178
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1183178&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1183178
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1245602&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F2192%2F27911%2F01245602.pdf%3Farnumber%3D1245602
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1245602&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F2192%2F27911%2F01245602.pdf%3Farnumber%3D1245602
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1245602&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F2192%2F27911%2F01245602.pdf%3Farnumber%3D1245602
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1245602&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F2192%2F27911%2F01245602.pdf%3Farnumber%3D1245602
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4723642&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4723642
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4723642&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4723642
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4723642&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4723642
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4723642&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4723642
http://dl.acm.org/citation.cfm?id=1455230
http://dl.acm.org/citation.cfm?id=1455230
http://dl.acm.org/citation.cfm?id=1455230
http://dl.acm.org/citation.cfm?id=1455230
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CC8QFjAB&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F234779274_SystemCoDesigneran_automatic_ESL_synthesis_approach_by_design_space_exploration_and_behavioral_synthesis_for_streaming_applications%2Ffile%2F32bfe50cadcfd5eb04.pdf&ei=4gSPU6zrCoigugT5jYHIDQ&usg=AFQjCNFpVcarVIIX_X7q8ygL7JVyaB00eA&bvm=bv.68235269,d.c2E
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CC8QFjAB&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F234779274_SystemCoDesigneran_automatic_ESL_synthesis_approach_by_design_space_exploration_and_behavioral_synthesis_for_streaming_applications%2Ffile%2F32bfe50cadcfd5eb04.pdf&ei=4gSPU6zrCoigugT5jYHIDQ&usg=AFQjCNFpVcarVIIX_X7q8ygL7JVyaB00eA&bvm=bv.68235269,d.c2E
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CC8QFjAB&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F234779274_SystemCoDesigneran_automatic_ESL_synthesis_approach_by_design_space_exploration_and_behavioral_synthesis_for_streaming_applications%2Ffile%2F32bfe50cadcfd5eb04.pdf&ei=4gSPU6zrCoigugT5jYHIDQ&usg=AFQjCNFpVcarVIIX_X7q8ygL7JVyaB00eA&bvm=bv.68235269,d.c2E
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5452109&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5452109
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5452109&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5452109
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5452109&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5452109
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6032387&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6032387
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6032387&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6032387
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6032387&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6032387
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6025704&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6025704
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6025704&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6025704
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6025704&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6025704
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5556559&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5556559
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5556559&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5556559
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5556559&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5556559
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5440768&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5440768
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5440768&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5440768
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5440768&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5440768
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5440768&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5440768
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5497843&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5487607%2F5497305%2F05497843.pdf%3Farnumber%3D5497843
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5497843&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5487607%2F5497305%2F05497843.pdf%3Farnumber%3D5497843
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5497843&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5487607%2F5497305%2F05497843.pdf%3Farnumber%3D5497843
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4812535&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4812535
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4812535&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4812535
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4812535&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4812535
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5677246&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5677246
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5677246&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5677246
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5677246&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5677246
http://link.springer.com/chapter/10.1007%2F11610496_19
http://link.springer.com/chapter/10.1007%2F11610496_19
http://link.springer.com/chapter/10.1007%2F11610496_19
http://doc.utwente.nl/65197/
http://doc.utwente.nl/65197/
http://doc.utwente.nl/65197/
http://doc.utwente.nl/65197/
http://www.aicit.org/jnit/global/paper_detail.html?jname=JNIT&q=12
http://www.aicit.org/jnit/global/paper_detail.html?jname=JNIT&q=12
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4221715&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4221715
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4221715&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4221715
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4221715&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4221715

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Existing Work in intelligent HLS techniques
	The W3C Resource Description Framework
	The Intermediate Predicate Format

	The Intelligent CCC HLS Techniques
	The synthesis design flow
	Formal Back-end HLS Transformations
	Formal validation using XML schema

	Experimental Designs with Custom Options
	Conclusions and Future Work
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	References

