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Introduction
Digital microelectronics found in embedded, high-performance 

and portable computing systems have highly complex components, 
design hierarchy and interconnections. During the last couple of 
decades, commercial and academic organisations have invested in 
HLS and optimisation techniques, so as to achieve design automation, 
quality of implementations and short specification-to-product times 
[1,2]. However, existing HLS tools are not widely accepted by the 
engineering community because of their poor results, especially for 
large applications with complex module and control-flow hierarchy. 
Very often, the programming style of the source code has a severe 
impact on the quality of the synthesized implementation. For large-
scale applications, the complexity of the synthesis transformations 
(front-end compilation, algorithmic transformations, optimizing 
scheduling, allocation and binding), increases exponentially, with a 
linear increase of the design size [3].

Existing HLS tools impose proprietary extensions or restrictions 
(e.g. exclusion of while loops) on the programming model of the 
specifications that they accept as input, and various heuristics on the 
HLS transformations that they utilize (e.g. guards, speculation, loop 
shifting, trailblazing). Most of them are suitable for linear, dataflow 
dominated (e.g. stream-based) designs, such as pipelined DSP, image 
processing and video/sound streaming.

The contribution of this work is an integrated HLS toolset which 
utilises intelligent and formal techniques so as to apply the source-
to-implementation optimizing transformations, thus, the produced 
hardware implementations are correct-by-construction. Therefore, 
the design needs verification only at the top behavioral level, without 
spending days or even weeks, on lengthy RTL or annotated gate 
simulations. Moreover, various custom options can be applied by the 
user on the automatic HLS transformation, such as the type of the 
micro-architecture, the generated HDL code as well as the inclusion 
of custom (e.g. arithmetic) logic functions throughout the HLS 
compilation.

The author has designed and developed an intelligent HLS 
compiler [4] that includes a scheduler of operations into control steps, 
achieving the maximum functional parallelism in the synthesized 
implementation [5]. This HLS scheduler called PARCS, utilizes logic 
programming [6] and RDF subject-predicate-object relations [7], to 
formally achieve the maximum possible parallelism of operations. In 
this way, the functionality of the delivered implementations is correct-
by-construction [3] explores various scheduling techniques. 

Formal HLS techniques are analysed in the next section. Next, the 
intelligent approach of the prototype optimising CCC synthesizer is 
described, such as formal predicate logic [6], RDF relations and XML 
schema validation [7]. Then, the usability and correctness of the CCC 
HLS toolset are evaluated with a number of benchmarks. The last 
section draws useful conclusions and proposes future work.

Existing Work in intelligent HLS techniques 
Established and well studied HLS tasks include scheduling, 

allocation and binding [3]. The front-end part of HLS tools include 
parts of software programming language compilers [8], such as parsing, 
semantic analysis, intermediate variable optimization, elimination of 
dead code, etc. The front-ends exchange information with the back-ends 
using intermediate formats, such as the Electronic Design Interchange 
Format (EDIF) [9,10], used by most E-CAD tools. Complex control flow 
optimization has been evaluated in [2,11,12], but for small parts of code 
and by no means complete application tests [13], discusses synthesis 
for distributed logic and memory [14] uses communicating processes 
as a system specification medium. HLS methods that include memory 
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access management are outlined in [1], where digital signal processing 
(DSP) and streaming applications are synthesized using performance 
constraints [15], analyses mutually exclusive scheduling on extended 
data-flow graphs (EDFG) [16] synthesizes behavioural descriptions 
with time constraints, where complex operations are decomposed into 
simpler ones, and a similar set of decomposed fragments of operators, 
with the same pattern, are scheduled in a clock cycle. 

In [17] an actor, that is used to model every module or system 
process, communicates with other actors via communication channels. 
These actors are used by the System Co-Designer [17] to exercise 
electronic system level (ESL) design space exploration. In [18] the 
SURYA system utilises the Simplify theorem prover to prove that the 
RTL model generated by HLS tools is functionally-equivalent to the 
specification. SURYA found two bugs in the SPARK HLS tool [2], which 
were until then unknown. In [19] flip-flops are replaced with latches 
so as to improve implementation timing, since latches are inherently 
more tolerant to process variations than flip-flops. Nevertheless, latch-
based design is more cumbersome than flip-flops.

The W3C Resource Description Framework

The Resource Description Framework (RDF) is a metadata model 
and is used to model the information of web resources [7]. RDF models 
include subject-predicate-object relations with explicit statements, 
called triplets. Triplets specify resources that store knowledge, 
information and data retrieval in large automated software tools. This is 
achieved due to the suitability of RDF to capture, store, exchange, and 
use machine-readable web information. Here, RDF is used to formally 
model and validate the internal data and state of the author’s HLS tool.

The eXtensible Markup Language (XML) serialization format is 
used to define RDF. XML’s syntax is formally specified [7] and is ideal 
to model simple triples such as subject-predicate-object (and other) 
relations. The following RDF relation:

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description	 rdf:about="http://www.awl.com/
Formal_Synthesis">

   <dc:title>High-level Synthesis</dc:title>

   <dc:publisher> Addison-Wesley Publishing</dc:publisher>

 </rdf:Description>

</rdf:RDF>

is the RDF knowledge model of the fact: “The title of this resource, 
published by the Addison-Wesley Publishing company, is High-
level Synthesis”. RDF and XML define object relations that also 
represent data attributes in large programs, and they can be used to 
validate internal data representations of E-CAD tools. XML files are 
easily readable by both humans and machines. An XML schema is a 
formal definition of an XML file, and it constraints the content and 
structure of such files. XML schema can be used to validate a particular 
XML instance. Well-known formalisms of the XML schema are the 
document type definition (DTD) language, the XML Schema and the 
Relax NG formats [7].

A valid XML instance can be checked against the rules of an 
XML schema. This is done by certain XML (commercial or free) 

parsers compatible with specific XML schema implementations such 
as the DTD or the Relax NG languages. The following XML instance 
is automatically produced by the author’s HLS tool (see following 
paragraphs), and it defines a data type and two subprograms in the 
tool’s source ADA programs:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Produced by CCC front-end compiler -->

<schemaxmlns=http://www.w3.org/2001/XMLSchema	

 targetNamespace="http://www.w3.org/2001/XMLSchema">

<annotation>

  <documentation>

   XML schema for a hierarchical module of the source code

  </documentation>

</annotation>

<complexType name=" hierarchy_part">

  <sequence>

    <element name=" type_def_natural_2048"/>

     <sequence>

      <element name=" data_object_variable2 "/>

      <element name=" data_object_constant1_value_100 "/>

      <element name=" data_object_constant1_value_1000"/> 

        </sequence>

         <element name=" function_convert3"/>

        <sequence>

         <element name=" input_parameter_my_input1 "/>

         <element name=" input_parameter_my_input2 "/>

         <element name=" input_parameter_my_input3 "/>

        </sequence>

         <element name=" procedure_differential2"/>

        <sequence>

         <element name=" input_parameter_my_input4 "/>

         <element name=" input_parameter_my_input5 "/>

         <element name=" output_parameter_my_output1 "/>

        </sequence>

     </sequence>

   </complexType>

</schema>

The above XML instance defines the data type “natural_2048” and 
two subprograms, the function “convert3” with three formal input 
parameters “my_input1”, “my_input2” and “my_input3” as well as 
procedure (see ADA-95 definition) differential2 with two formal input 
parameters and one output. 
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These elements are of type “hierarchy_part”, and each one of them 
includes a sequence of “leaf” sequences with the structure of all child 
elements with type defined above.

The graphical validation result of the above XML code is shown 
in Figure 1, and it was automatically produced by a DTD parser that 
helped to identify and correct some initial semantic issues in the tool 
development.

As widely documented, XML is a formal way to model internal 
information in design (E-CAD) tools. XML representation of C code 
is introduced in [20] to aid the CASE tool development. A hash table 
and a stream index are used in [21] to filter out invalid elements of 
an XML document. The IEEE std 1685-2009 IP_XACT, is based on 
XML schema, and is used as internal representation and exchange 
format between EDA tools (IEEE IP-XACT std, 2010). Such internal 
data include design units, interconnections, functional primitives, 
metadata, and IP blocks [22].

XML schema and the eXtensible Stylesheet Language 
Transformations (XSLT) language are used in [23] to enable the 
sharing, conversion, transfer and exchanging of healthcare database 
data. Many academic/commercial database and web tools utilise XML 
schemas and instantiations to represent internal information, such as 
primary data generated automatically and used by database, multi-
media and web processing tools. 

XML is combined with Web technology in [24] to structure, consult 
and share corporate data. Similarity algorithms for XML documents 
are analysed in [25]. The IBM DB2 query matching and compensation 
techniques are enhanced with XML functionality, to implement and 
evaluate query rewrite rules in [26]. An incremental approach called 

"T-Schema" (of XML-to-relational mapping storage), is proposed 
in [27], to address the strong dynamics of XML. The SMOQE tool 
generates the first regular XPath engine and provides answering queries 
technique, over recursively defined XML views [28] discusses the use of 
semantic web for EIS and databases. A XML metamodel captures NFRs 
and their relations in [29].

The Intermediate Predicate Format

The Intermediate Predicate Format (IPF) was invented by the 
author of this paper, to model the design and the HLS transformations 
in the CCC HLS tool [30] analyses the syntax and semantics of IPF, 
which uses the resolution of Horn clauses as formal object relations 
[6], to implement the HLS transformations. The front-end phase of the 
CCC compiler (see following paragraphs), generates the IPF database 
to capture all the algorithmic, structural and data typing attributes of 
the source program, as in the following Prolog fact:

 fact_id(object1, object2, …, objectN)	 (form 1)

The Prolog predicate name fact_id relates the objects object1 to 
objectN in a formal manner. The identifier fact_id names the logical 
relation between the above objects. IPF facts represent program 
operations, data object descriptions, data types, operators, subprogram 
calls, etc. The back-end phase of the CCC compiler applies HLS 
transformations on these facts so as to produce the optimized design 
implementation. This is done in combination with the internal logical 
rules as a design knowledge-base in order to “conclude” and infer the 
RTL (register-transfer level) implementations. The IPF syntax facilitates 
declarative processing by Prolog predicates, as well as imperative 
processing. This is because IPF facts (e.g. data table facts) are referenced 
with their entry numbers in other IPF facts (e.g. program table facts). 

The IPF XML schema view is used to validate the internal state of 
the front-end and back-end phases of the CCC HLS tools. The following 
XML instance models the program statement [30] of form 1:

   <complexType name=" prog_stmt">

     <sequence>

<element name=" module_subprogram2"/>

<element name=" entry_number_3"/>

<element name=" states_0"/>

<element name=" operator_63"/>

<element name=" left_operand_dx"/>

<element name=" right_operand_dy"/>

<element name=" result_operand_xc"/>

<element name=" next_operation_5"/>

     </sequence>

   </complexType>

The validation of this XML instance is shown in Figure 2.

The Intelligent CCC HLS Techniques
The synthesis design flow

The HLS flow includes two major steps: the front-end phase 
and the back-end phase. These two tools exchange data via the IPF 
database. XML instances of IPF are automatically generated to validate 

hierarchy_part

type_def_natural_2048

data_object_variable2

data_object_constant1_ value_1...

data_object_constant1_ value_1...

function_convert3

input_parameter_my_input1

input_parameter_my_input2

input_parameter_my_input3

input_parameter_my_input4

procedure_differential2

input_parameter_my_input5

output_parameter_my_output1

Figure 1:  Validation of an Xml Document Instance against a Specific Xml 
Schema (Automatically Produced From Internal Compiler Data)
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the compilation process, using graphical or command-line based XML 
validators. The front-end phase performs the typical tasks of a software 
compiler, such as parsing, generation of abstract syntax trees, type-
checking of data and program statements, optimization of auxiliary 
variables and constants, generation of syntactic and semantic error 
messages etc. 

The XML schema view is also used by the front-end and back-
end phases to formally validate the translation, since IPF constitutes a 
formal link between the two phases of the hardware synthesizer.

CCC analyses the IPF database and generates the initial FSM 
schedule, considering custom options (such as the location of large 
data objects on shared memory). Then, it optimises the initial schedules 
using the PARCS (Parallel Abstract Resoure-Constrained Scheduling) 
scheduler. PARCS works with, or without resource constraints, and 
generates the maximally parallel hardware implementation [4], while 
satisfying source code dependencies. 

A custom options file can be used to mark certain program 
subroutines as “custom blocks”, so that they are used as pre-optimized 
and static custom modules. Hardware arithmetic blocks, or complete 
data-flow systems such as DSP filter blocks and cryptographic 
mathematical functions, can be used as custom blocks as in the 
benchmarks analysed in later sections. 

Other custom options of the back-end compiler are the targeting of 
either massively-parallel (with resource redundancy), or conventional 
FSM+datapath micro-architectures modelled in Hardware Description 
Language (HDL) RTL code. More options include the targeted language 
which (at the moment) include VHDL and Verilog HDL.

Formal Back-end HLS Transformations

The logical relations of the back-end compiler use definite clauses 
[6] such as follows:

A0 ← A1 ˄ … ˄ An (where n ≥ 0)	 (form 2)

where ← is the logical implication symbol (A ← B means that if B
applies then A applies), ˄ is the logical conjunction symbol, and A0, …, 
An are atomic formulas (logic facts) of the form:

predicate_symbol(Var_1, Var_2, …, Var_N) (form 3)

Where the positional parameters Var_1,…,Var_N of the above 
predicate “predicate_symbol” are either variable names (such as in 
the back-end inference rules), or constants (such as in the IPF table 
statements) [6]. By combining these, the source code subroutines 
are transformed into optimized, provably-correct RTL hardware 
implementations.

Formal validation using XML schema

Formal logic rules (logic relations) as in form 2 construct the back-
end inference engine. Hence, the IPF’s facts “drive” the logic rules 
of the back-end compiler which infers provably-correct hardware 
implementations, which are technology-independent, free of any 
standard template and custom microarchitectures in synthesizable 
HDL code. 

The PARCS optimizer works on the enhanced with the custom 
user options schedule, such as the shared memory access operations. 
The XML view is validated for the intermediate representations and 
processes, throughout the various phases of the compilation. Here 
follows the XML schema validation of the state (…) inference rule:

<complexType name="state">

   <sequence>

    <element name="Module_1"/>

      <element name="parcs"/>

      <element name="parcs_state_number"/>

      <element name="parcs_state_name"/>

      <element name="parcs_next_state"/>

      <element name="no_conditional_transition"/>

      <element name="scheduled_operation_list">

       <complexType>

        <sequence>

         <element name="Operation_1"/>

         <element name="Operation_2"/>

         <element name="Operation_3"/>

        </sequence>

       </complexType>

      </element>

      <element name="no_conditional_operations"/>

    </sequence>

  </complexType>

This XML instance models one PARCS state of design Module_1, 
with three scheduled operations in parallel and with no conditional 
operations or transitions. Both the logic and the XML views of IPF are 
extracted automatically by the front-end and back-end compilation 
phases, and they are validated in both logic programming and XML 
views. The graphical validation of the above XML PARCS state instance 
is shown in Figure 3.

The XML view of the HLS transformations and data of the back-
end compiler consists of relations between predicate symbols. An 
example logic programming view of the relation transform1 (HLS 

prog_stmt

module_subprogram2

entry_number_3

states_0

operator_63

left_operand_dx

right_operand_dy

result_operand_xc

next_operand_5

Figure 2:  Graphical Validation of the Program Statement Xml Instance
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transformation) between objects operation1, operand_A, operand_B, 
result_C is the following:

transform1(operation1, operand_A, operand_B, result_C). 

Here follows the XML view of the same relation:

   <complexType name=" transform1">

     <sequence>

       <element name=" operation1"/>

       <element name=" left_operand_A "/>

       <element name=" right_operand_B "/>

      <element name=" result_data_C "/>

     </sequence>

   </complexType>

The graphical XML validation of the same transformation is 
shown in Figure 4. The XML schema instances are validated using any 
available validators.

Experimental Designs with Custom Options
A large number of ADA designs were synthesized with the CCC 

compiler and all of them were proven by simulations to be accurate and 
matching the behaviour of their source models. Here two of them have 
been analysed in order to demonstrate the usability of the CCC HLS 
custom options. These are a DSP FIR filter, and a RSA crypto-processor 
from cryptography applications.

In all tests, the intermediate form and the internal HLS 
transformations were validated against the respective XML schemas 
which were automatically extracted from critical points in the 
compilation flow. For the DSP filter, the two lower-level subroutines 
in ADA, which model the processing of one more incoming sample 
and the shifting of the filter history by one position, were chosen to be 
implemented as custom combinatorial blocks taking one clock cycle to 
implement. A top-level subroutine which contains calls to the above 
subroutines, was used to process a whole length of incoming sample 
arrays.

This subroutine was processed normally via the CCC compiler and 
produced VHDL code with an optimized FSM of 10 states. Within 
appropriate state descriptions of this FSM, the above custom block 
subroutines are called via VHDL call mechanism. The whole ADA 
coding and compilation of the DSP filter took less than half an hour to 
run. The hierarchy of the FIR ADA code and implementation is shown 
in Figure 5.

The experimental CCC environment is shown in Figure 6. The 
intended system is modelled in the ADA programming language. The 
initial ADA specification model is compiled with the GNU ADA and 
the generated binaries are verified with the ADA testbench and test 
vectors. This exhibits a rapid verification manner, due to extremely high 
compile-and-execute verification speed. Then the ADA subroutines 
that are intended for hardware (microelectronic) implementation are 
integrated in an autonomous ADA package (library module). The latter 
is compiled and synthesized into hardware using the prototype CCC 
tools. The generated hardware modules are downloaded in A Xilinx 
Virtex-2 FPGA was accommodating the synthesized hardware blocks, 
with the synthesis flow and the target architecture shown in Figure 6. 

The initial state schedules are first extended with custom option-
guided operations and the result is optimized with the PARCS 
scheduler as a new schedule. Statistics regarding the optimization rates 
of the PARCS scheduler are shown in Table 1.

Table 1 indicates that the states reduction rate reaches up to 41% for 
the FIR processor case. This is a very efficient hardware implementation 
of large designs with a few hundred states per module, such as large 
ASICs and complex IP modules being part of embedded system SoCs.

The code of the ADA subroutines can be either standalone or 
hierarchical. This means that a number of ADA subroutines can 
include function/procedure calls to other subroutines of the library 
that is synthesized.

This hierarchy is maintained through the CCC compilation. Thus, 
the CCC designer dictates the modularity of the generated hardware 
blocks. Additionally,  all the necessary co-processor interfaces and (e.g. 
memory) communication protocols are automatically synthesized by 
the CCC compiler and inserted in the initial schedules derived directly 
from the input models. This is implemented via a memory custom 
options file. Moreover, selected ADA subroutines can be “marked” 
as custom arithmetic modules. These are usually complex Boolean 

Module_1

parcs

parcs_state_number

parcs_state_nume

parcs_next_state

no_conditional_transition

scheduled_operation_list

no_conditional_operations

Operation_1

Operation_2

Operation_3

state

Figure 3:  Xml Schema Validation of a PARCS State

transform1

operation1

left_operand_A

right_operand_B

result_data_C

Figure 4:  Xml Schema Validation of the Transform1 Back-End Compiler 
Predicate
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functions and they are inserted as expanded VHDL procedure calls in 
the generated FSM states, executed in a clock cycle. The custom blocks 
option strategy was followed on the lower-level functions of the FIR 
DSP filter and RSA crypto-processor benchmarks.

Table 1 demonstrates that the number of hardware states is 
increasingly high, which constitutes the importance of the CCC 
framework contribution, in keeping the complexity of contemporary 
designs under control. It is a shared experience by experienced hardware 
designers, that development and verification of very complex FSMs 
with over 20-30 states is cumbersome and extremely prune to errors. 
Experienced programmers can use the CCC toolset, to implement very 
complex hardware designs in a few hours, whereas this takes usually 
more than 6 months of traditional development and verification time. 
This is due to the use of formal logic programming and RDF validation 
techniques embedded in the intelligence of the CCC synthesizer.

The ADA code hierarchy for the RSA public-key cryptography 
application is shown in Figure 7. The modular exponentiator and 
multiplier automatically produce optimized FSMs with 12 and 29 states 
respectively. The other 3 lower-level modules are transformed as custom 
blocks and their VHDL calls are instantiated into the higher-level FSM 
state descriptions, as shown in Figure 7. The multiplier subroutine is 
called within the exponentiator subroutine. This is a special case for 
the CCC translation and is being dealt as such by the compiler. In 
particular, this subroutine call is used to generate an “interface event” 
between the modular multiplier module and the exponentiator module. 
In general, when across both sides of a subroutine call, none of them is 
intended to be a custom block, then the subroutine calling is converted 
into a HDL module interface and data exchange mechanism. All of the 
VHDL modules for the FIR filter and the RSA cryptoprocessor have 
been simulated (although due to the formal nature of the CCC tool, 
not necessary) and the results coincided with the results of the ADA 
verification testbenches.

Conclusions and Future Work
The main contribution of this work is a formal, high-level hardware 

synthesis toolset and method developed by the author of this paper. 
The CCC HLS tool utilizes compiler-compiler and logic inference 
techniques to turn synthesis formal. The synthesis transformations are 
enhanced with XML schema validation as well as RDF logic relations 
to implement the execution and formal validation of the prototype 
hardware compiler. XML views of IPF as well as the formal CCC 
transformations are validated against their schema views.

Arbitrary and general input ADA code is synthesized into 
functionally-equivalent RTL VHDL/Verilog hardware implementation. 
Many applications were synthesized with the CCC toolset, two, 
very indicative ones being discussed in this paper. In any case, the 
functionality of the produced hardware accelerators (coprocessors) 
matched that of the input subprograms. The synthesized hardware 
can be used to accelerate complete hardware/software systems in 
their time-critical routines. The PARCS scheduler achieves high state-
optimization rates which exceeded 36% in some cases (Table 1). 

Top-level FIR_ALL ADA 

procedure (FSM) 

PROCESSED_SAMPLE ADA 

procedure for processing on more FIR 

sample (custom block) 

SHIFT_HISTORY ADA lower-level routine 

(custom block) 

Figure 5:  Fir Filter Ada Code Hierarchy

Host (main) 

processor(s) 

Shared 
memory 

FSM+datapath 1 

FSM+datapath 
N 

LOCAL 

HANDSHAKE 

SYSTEM BUS 

System model in ADA 

GNU ADA 

software tools 

CCC ADA 

hardware tools 

Figure 6:  Synthesis Flow and Execution Architecture 

Modular exponentiation routine (FSM) 

Modular multiplier routine (FSM) 

A number of lower-level custom block 

arithmetic and Boolean logic 

subroutines

Figure 7:  RSA Crypto processor ADA Code Hierarchy

Module Name Initial Schedule 
States

PARCS Result 
States

State 
Reduction 
Percentage

DSP FIR filter 
processor 17 10 41%

RSA Crypto 
Processor 16 11 31%

Table 1: PARCS Optimization Statistics
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Future work includes more input programming languages 
(e.g. ANSI-C, C++) and a more globalized use of RDF techniques 
throughout the flow of the HLS toolset. Moreover, more diagrammatic 
system modelling formats are explored such as the UML diagrams to 
play the role of system hardware accelerator models. 
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