Supporting Information

Synthesis and Biological Evaluation of Pyrrolidine Functionalized Nucleoside Analogs

Uthpala Seneviratne,^{†,§} Susith Wickramaratne,^{†,§} Delshanee Kotandeniya, ^{¶,§} Arnold S.

Groehler,^{¶,§} Robert J. Geraghty,[£] Christine Dreis,[£] Suresh S. Pujari,^{¶,§} and Natalia Y.

Tretyakova^{¶,§,*}

Department of Chemistry,[†] Medicinal Chemistry,[¶] Masonic Cancer Center,[§] and the Center for Drug Design,[£] University of Minnesota, College of Pharmacy, Minneapolis, Minnesota 55455, USA.

E-mail: trety001@umn.edu; Fax: +612-624-3869; Tel: +612-626-3432

 $^{\pounds}$ These two authors equally contributed to this publication

* To whom correspondence should be addressed: Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55455, USA. E-mail: trety001@umn.edu; Fax: +612-624-3869; Tel: +612-626-3432

Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA

Instrumentation.

NMR characterization. NMR spectra were acquired with a Varian Inova 400 MHz spectrometer (Varian Inc) or Bruker Advance 400 MHz instrument (Bruker BioSpin) using DMSO-d₆ (Cambridge Isotope Laboratories, Inc) or D₂O (Cambridge Isotope Laboratories, Inc) as a solvent.

HPLC purification. HPLC purification of compounds synthesized in this study was carried out with an Agilent Technologies model 1100 HPLC system equipped with a photodiode array UV detector. Unless specified otherwise, UV absorbance was monitored at 254 nm.

HPLC System 1. HPLC purification of compounds **1-17** was carried out using a semi-preparative Zorbax Eclipse XDB-C18 column (9.4 mm x 250 mm, 5 μm, Agilent Technologies, Inc., eluted with a linear gradient of acetonitrile (B) in water (A) at a flow rate of 3 mL/min.

HPLC System 2. Compounds **8** and **9** monophosphates (**8-MP** and **9-MP**) were purified by reversed phase semi-preparative HPLC using a Synergi 4u Hydro-RP 80A column (10 mm x 250 mm, Phenomenex Inc) eluted at a flow rate of 3 mL/min and maintained at 25°C using 150 mM ammonium acetate (A) and MeOH (B). Solvent composition was held at 0% B was used for the first two minutes of each run followed by a linear gradient of 0% to 7% B in 10 min and an increase to 67% B over the next 20 min. The column was maintained at 67% B over the next three min., after which the gradient was increased linearly to 77% B over the next 15 min., followed by column equilibration at 0% B for 15 min.

Tandem mass spectrometry characterization. All synthetic compounds were characterized by MS, MS² and MS³ using an Agilent MSD SL ion trap mass spectrometer (Agilent Technologies, Inc). The instrument was operated in the ESI⁺ mode. Target ion abundance value was set to 30,000, the maximum accumulation time was 300 milliseconds, and 6 scans were taken per average. A typical fragmentation amplitude was 0.7 V, with a scan width of 1.2 m/z. Nitrogen was used as a nebulizing (15 psi) and a drying gas (5 L/min, 200 °C). Electrospray ionization was achieved at a spray voltage of 3-3.5 kV. Samples were dissolved in a 1:1 mixture of ACN and 0.1% acetic acid and infused at a flow rate of 10-15 μ L/min using a syringe pump. The mass spectrometer was operated in a full scan mode over the range of m/z 15-600.

Accurate mass measurements. High resolution mass spectra were obtained using a Bruker BioTOF II (Bruker Corp.), a reflectron electrospray ionization-time of flight instrument operated in the ESI⁺ mode. HPLC purified nucleoside analogs were dissolved in MeOH and infused using a syringe pump. Poly(ethyleneglycol) (average molar mass = 200) was used as the internal calibrant. Data processing was done by using Bruker Daltonics software.

compound	formula M+H	m/z calc	m/z obs	Error/ppm
1a	C14H20N5O5	338.1464	338.14630	-1.18
1b	C14H20N5O5	338.1464	338.14571	0.56
1c	C14H20N5O5	338.1464	338.14556	1.01
2a	C14H20N5O4	322.1515	322.15070	0.87
2b	C14H20N5O4	322.1515	322.15068	0.93
3	C14H19FN5O3	324.1472	324.14860	-4.34
5	C14H21N6O5	353.1573	353.15670	1.82
6	C13H20N3O6	314.1352	314.12780	23.59
7	C14H22N3O6	328.1509	328.14860	6.89
8	C14H22N3O4	296.1610	296.16010	3.15
9	C13H20N3O4	282.1454	282.14550	-0.42
10	C14H20N5O4	322.1515	322.14730	13.13
11	C13H20N3O5	298.1403	298.13960	2.34
12	C14H22N3O5	312.1559	312.15560	0.96
13	C14H22N3O3	280.1661	280.16360	8.92
15	C8H12N3O	166.0980	166.09870	-4.21
16	C9H15N4O	195.1246	195.12365	2.00
17	C12H17F2N4	255.1421	255.14230	-0.78

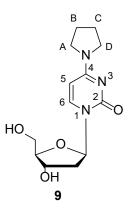
 Table S1. Accurate mass data for compounds 1-17 obtained by ESI-TOF analysis.

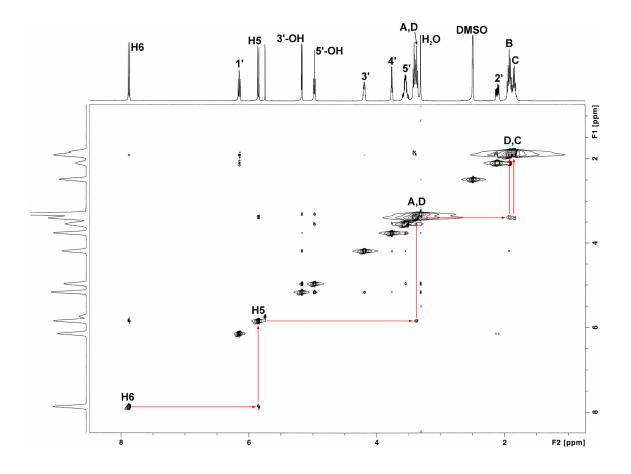
Compound	% Cell viability		
compound	50 µM	100 µM	
1a	105.7±29.0	77.3±10.9	
1b	131.4±17.6	95.8±15.3	
1c	$143.8{\pm}16.0$	80.5 ± 8.5	
2a	106.2±21.6	73.6±4.1	
2b	119.2±16.6	80.4±10.0	
3	124.7±21.8	93.9±7.3	
5	159.0±17.0	124.1±17.7	
6	126.9±2.9	97.9 ± 8.0	
10	152.6±19.2	120.5±12.0	
Control	100±14.1	100±14.1	

Table S2. Anti-HSV testing results for pyrrolidine substituted nucleosides prepared in this study.

	% Cell viability			
Compound	50	μM	100	μM
	Trial 1	Trail 2	Trial 1	Trail 2
1a	105.7±29.0	116.2±9.7	77.3±10.9	99.7±11.0
1b	131.4±17.6	$114.0{\pm}14.7$	95.8±15.3	77.8±13.3
1c	$143.8{\pm}16.0$	107.3 ± 7.3	80.5 ± 8.5	83.6±9.2
2a	106.2±21.6	97.4±5.0	73.6±4.1	73.9±11.1
2b	119.2±16.6	95.0±5.3	$80.4{\pm}10.0$	74.5±2.1
3	124.7±21.8	96.2±21.2	93.9±7.3	67.8±3.3
5	159.0±17.0	108.5 ± 9.0	124.1±17.7	92.4±8.1
6	126.9±2.9	124.0 ± 7.7	97.9 ± 8.0	112.8 ± 14.0
10	152.6±19.2	111.4±9.0	120.5±12.0	85.1±12.5
11			92.9 ± 13.0	
13			83.8 ± 9.2	
15			95.5 ± 11.7	
Control	100±14.1	100±16.5	100 ± 14.1	100±16.5

 Table S3. Percentages of viable DU145 cancer cells following treatment with analogs 1-10.


Compound	Concentration			
Compound	1 μM	10 µM	100 µM	
1a	112.0 ± 9.7	106.5 ± 26.0	94.7 ± 12.8	
6	104.5 ± 21.4	106.4 ± 18.8	105.8 ± 6.3	
11	103.9 ± 11.8	106.5 ± 23.3	105.9 ± 9.1	
13	107.0 ± 5.3	103.6 ± 16.1	90.3 ± 18.2	
15	116.5 ± 8.9	109.0 ± 9.5	99.9 ± 13.7	


Table S4. Percentages of viable CCRF-CEM cancer cells following treatment with nucleoside analogs.

Compound	Concentration			
Compound	1 μM	10 µM	100 µM	
1a	105.3 ± 28.4	105.0 ± 21.3	99.3 ± 29.0	
6	106.5 ± 22.8	102.6 ± 40.2	98.0 ± 27.6	
11	92.9 ± 18.5	102.4 ± 23.2	98.2 ± 29.1	
13	100.1 ± 14.0	97.4 ± 17.7	93.6 ± 10.9	
15	107.6 ± 29.3	108.8 ± 24.3	105.7 ± 27.0	

 Table S5. Percentages of viable HL-60 cancer cells following treatment with nucleoside analogs.

Figure S1. NOESY spectrum of compound 9.

