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Description

This is a look at some of the many ways that computer science and 
mathematical logic interact. The general idea is that computer science provides 
new ways of looking at logical problems and emphasizes the importance of 
areas of logic that might otherwise have been overlooked. Computer science 
has strong connections with many aspects of mathematical logic, but those 
aspects are sometimes different from those that are typically studied for pure 
mathematical purposes. Additionally, mathematical logic provides tools for 
understanding and unifying topics in computer science. This paper examines a 
few of those interactions in detail. The clarification of computational concepts 
by logic and the incorporation of new concepts and questions into logic by 
computation are its two primary themes. This section talks about some of the 
first interactions. Because they do not involve resource limitations, they are 
referred to as computability theory or recursion theory rather than computer 
science. Nonetheless, I think it's important to mention them to emphasize 
the role that mathematical logic plays in a wide range of mathematics-related 
issues [1].

This section discusses first-order logic, in particular the idea of structure 
that serves as the foundation for the semantics of first-order logic. It makes the 
point that the same idea of structure is suitable for numerous roles in computer 
science. In addition, I present a computational perspective on first-order logic's 
expressive potential. The central non-first-order concept in computation, 
iteration, is added to first-order logic to create logical systems in this section. 
Fixed-point operators, which are involved in the logical characterizations of 
various complexity classes, provide the logical manifestation of iteration. This 
paper's subsequent sections all involve fixed-point operators. The very broad 
hypothesis of Yuri Gurevich that polynomial-time computation on general finite 
structures cannot be precisely captured by any logic (in the broad sense of 
"logic") serves as the foundation for this section. I also describe a logic called 
"choiceless polynomial time" that is surprisingly close to capturing PTime and 
discuss the possibility that it actually serves as a counterexample to Gurevich's 
hypothesis.

A rather distinct type of logic is the focus of this section. It is derived from 
first-order logic by omitting the universal quantifier and adding a fixed-point 
operator simultaneously. It turns out that this existential fixed-point logic is 
mathematically elegant and has strong connections to computation. Although 
a reasonable set of axioms and rules governing the behavior of a fixed-point 
operator can be written down in a reasonable way, fixed-point logics do not 
permit a complete deductive system in the traditional sense. The inquiry then 
emerges whether the undeniable inadequacy of such a framework influences 
just muddled, Gödel-style sentences or whether exceptionally straightforward 
bits of insight may be unprovable. In this section, I talk about the system I'm 
thinking of and end with a question about a simple fact that might be hard 

to prove. In each of these instances, the initial challenge was to locate an 
algorithm. After describing the equations under consideration, Hilbert's tenth 
problem states, "One is to give a procedure by which it can be determined 
by a finite number of operations whether the equation is solvable in rational 
integers," for instance. In a similar vein, the word problem is stated by Dehn 
as "one is to give a method to decide, with a finite number of steps, whether [a 
given] element is equal to the identity or not [4].

The decision problem was described by Hilbert and Ackermann as "The 
decision problem is solved if one knows a procedure which, given a logical 
expression, allows one to decide its validity resp. by finitely many operations." 
its satisfiability Logicians provided a brand-new perspective on such issues. 
They substituted "Is there an algorithm...?" for "Find an algorithm..." That is, 
they introduced the idea that an algorithm might not exist and, more importantly, 
that such a result might be able to be proven. This indicates that one requires 
a precise mathematical concept of algorithm, or at least of algorithmic 
computability, as opposed to the prevalent notion of algorithm at the time, 
which was "I'll know it when I see it." These definitions were independently 
provided by Church employing the -calculus and by Turing employing what 
are now referred to as Turing machines. The results of undecidability, also 
known as theorems claiming that there are no algorithms for various problems, 
came next. The decision problem's undecidability for first-order logic was first 
demonstrated by Turing [3-5].
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