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Introduction
Since the pioneering work of Pecora and Carroll [1], many types 

of synchronization have been presented [2-5] and synchronization of 
chaotic dynamical systems has attracted a great deal of interest from 
many fields such as ecology [6], physics [7], chemistry [8], secure 
communications [9], and so forth. From then, various methods have 
been devloped to study chaos synchronization [10-13]. Discrete-
time dynamical systems plays an important role in mathematical 
modelization of many problems in sciences and engineering [14]. 
Therefore, it plays also an important role to consider chaos (hyperchaos) 
synchronization in discrete-time dynamical systems. Recently, another 
interesting type of synchronization has received a great deal of 
attention, called Q-S synchronization [15-17]. In Q-S synchronization, 
the drive chaotic system and the response chaotic system synchronize 
up to two scaling functions Q-S synchronization. a few results about 
Q-S synchronization of chaotic systems in discrete-time [18,19].

In this paper, we propose a new type of synchonization when the
scaling functions in Q-S synchronization are replaced by two scaling 
matrice to study the problem of synchronization in different dimension 
for different dimensional discrete-time chaotic system. Based on new 
control laws and Lyapunov stability theory, a constructive schemes to 
investigate special and new synchronization type with double scaling 
matrice between typical chaotic dynamical systems in discrete-time 
with different dimensions are presented. To verify the validity and 
feasibility of the new synchronization results, the proposed controllers 
are applied to the drive 2D Hénon map [20] and the controlled 3D 
hyperchaotic Baier-Klein map [21].

This paper is organized as follows. In Section 2, the problem of 
double scaling matrix synchronization is formulated by given the 
de.nition of the new synchronization type. In Section 3, synchronization 
in 2D between 2D drive system and 3D response system in discrete-
time is studied. In Section 4, synchronization in 3D between 2D drive 
system and 3D response system in discrete-time is investigated. In 
Section 5, synchronization in 4D between 2D drive system and 3D 
response system in discrete-time is proposed. In section 6, the new 
synchronization schemes derived in this paper are applied to some 
typical drive response chaotic systems and numerical simulations 
are given to illustrate the effectiveness of the main results. Finally, 
conclusions are drawn in Section 7. 

Problem Formulation and Definition
Consider the following drive chaotic system described by

X(k + 1) = f(X(k)) (1)

where nX(k)  RÎ is the state vector of the drive system and 
n nf : R   R® . As the response system we consider the following 

chaotic system described by

(k 1) (Y(k)) UY g+ = +                                             (2)

Where m(k) RY Î  the state vector of the response system is, 

: m mg R R® is the nonlinear part of the response system and 

i 1
(u ) m

i m
U R£ £= Î is the vector controller.

Definition 1: The drive system (1) and the rsponse system (2) are 
said to be synchronized in dimension d, with respect to scaling matrice 
Q  and F , respectively, if there exists a controller 

i 1
(u ) m

i m
U R£ £= Î

and a given matrice 
d m

( ) ´Q = Q  and 
d n

( ) ´F = F  such that the 
synchronization error

(k) Y(k) (k)e X= Q -F (3)

Satisfies that lim    || (k) || 0
k

e®+¥ =

Because in real world all chaotic maps are described in 2D and 3D, 
we restrict our study about double scaling matrice synchronization to 
2D chaotic maps and 3D discrete hyperchaotic systems this restriction 
does not lose the generality of our main results.

Synchronization of 2D Drive System and 3D Response 
System in 2D

In this section, the drive and the response chaotic systems are in 
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the following forms

(k 1) AX(k) f(X(k))X + = +                                                      (4)

(k 1) (Y(k))Y g U+ = +                                                            (5)

Where T 2 T 3
1 2

(k) (x (k), x (k)) , (k) (y1(k), y2(k), y 3(k))X R Y R= Î = Î  are 
state vectors of the drive system and the response system, respectively, 

2 2 2 2, :A R f R R´Î ®  is the nonlinear part of the drive system (4), 
3 3:g R R®  and 3U RÎ  is the vector controller.

The synchronization error between the drive system (4) and the 
response system (5) can be derived as

g
(k 1) BY(k)e f+ = Q +Q +Q F FU- AX(k)-                    (6)

Where 2 3 2 2( ) ( )
ij ij

R and R´ ´Q = Q Î F = F Î  are scaling 
matrices. To achieve synchronization between systems (4) and (5), we 
assume that

A AF = F                                                                                               (7)

And

11 12

21 22

0

0

æ öQ Q ÷ç ÷çQ = ÷ç ÷Q Qç ÷çè ø
                                                                                   (8)

The error system between the drive system (4) and the response 
system (5), can be written as

 

1
(k 1) (A L )e(k) R Ue + = - + +Q                                               (9)

1 1
( B A )Y(k) L (k) g fR L X= Q - Q- Q + F +Q -F   (10)

11 12

21 22

æ öQ Q ÷ç ÷çQ = ÷ç ÷Q Qç ÷çè ø
                                                                                        (11)

 T
1 2

(u ,u )U =                                                                                            (12)

And L is 2 2´  control matrix to be determined. The controller is 
chosen as

 

1

U R
-

= -Q                                                                                               (13)

Where 
1-

Q is the inverse matrix of Q
By substituting Eq. (13) in Eq. (9), the error system can be written 

as.

1
(k 1) (A L )e(k)e + = -                                                                            (14)

Theorem 2: If there exists a positive definite matrix P, such that
T

1 1
( ) ( ) I PA L A L- - - = -                                                                   (15)

Then, the drive system (4) and the response system (5) are globally 
synchronized, with respect to scaling matrice Q  and ,.F under the 
controller. (13).

Proof: Construct the candidate Lyapunov function in the form

T(e(k)) e (k)e(k)V =                                                                       (16)

We obtain
T T(e(k)) e (k 1)e(k 1) e (k)e(k)V = + + -

                   

T T T
1 1

e (k(A L ) (A )e(k) e (k)e(k)L= - - -

                                
T T T

1 1
e (k)[(A L ) (A ) I]e(k) e (k)Pe(k)

0

L= - - - = -
<

Thus, from the Lyapunov stability theory, it is immediate that 
lim (k) 0,(i 1,2)

k ei®¥ = = . : That is the zero solution of the error system 
(14) is globally asymptotically stable and therefore, systems (4) and (5) 
are globally synchronized.

Synchronization of 2D Drive System and 3D Response 
System in 3D

In this section, the drive and the response chaotic systems are in 
the following forms

(k 1) f(X(k))X + =                                                                                    (17)

Y(k 1) (k) g(Y(k)) UBY+ = + +                                                       (18)

Where T 2 T 3
1 2 1 2 3

(k) (x (k), x (k)) , (k) (y (k), y (k), y (k))X R Y R= Î = Î

state vectors of the drive system and the response system are, 
respectively, 2 2 3 3 3 3: ,B , :f R R R g R R´® Î ®  is nonlinear part 
response system and 3U RÎ  is the vector controller. To achieve 
synchronization between systems (17) and (18), we assume that

B BQ = Q                                                                                         (19)

Then, the error system between the drive system (17) and the 
response system (18), can be derived as

2
(k 1) (B L )e(k) R Ue + = - + +Q                                           (20)

Where

2 2 g
(k) (B )X(k)R L Y A L f= Q + F-F = Q +Q -F             (21)

And 2
3 3L is ´  control matrix to be determined. We choose the 

controller U as

1U R-= -Q                                                                                         (22)

Where 1-Q  is the inverse matrix of Q
Theorem 3 If 

2
L  is chosen such that all eigenvalues of 2

B L-  are 
strictly inside the unit disk, then the drive system (17) and the response 
system (18) are globally synchronized with respect to Q  and F  under 
the control law (22). 

Proof: By substituting Eq. (22) in Eq. (20), the error system can be 
written as

2
(k 1) (B L )e(k)e + = -                                                                 (23)

Thus, by asymptotic stability of linear discrete-time systems, if all 
eigenvalues of 

2
B L-  are strictly inside the unit disk, it is immediate 

that all solution of error system (23) go to zero as .k ® ¥  Therefore, 
systems (8) and (9) are globally synchronized.

Synchronization of 2D Drive System and 3D Response 
System in 4D

In this section, the drive and the response chaotic systems are in 
the following forms 

(k 1) f(X(k))X + =                                                                                (24)

(k 1) g(Y(k)) UY + = +                                                                  (25)
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Where T 2 T 3
1 2 1 2 3

(k) (x (k), x (k)) , (k) (y (k), y (k), y (k))X R Y R= Î = Î  
state vectors of the drive system and the response system, respectively, 

3: 2 2, : 3 3f R R g R R andU R® ® Î  is the vector controller.

The error system between the drive system (24) and the response 
system (25) can be derived as

3e
(k 1) L (k) R Ue + = + +Q                                                          (26)

Where 

3 3
(k) g(Y(k)) L (k) f(X(k)),R L Y X= Q +Q - F -F                       (27)

4 2R ´F Î is arbitrary scaling matrix, 4 3
ij

( ) R ´Q = Q Î  is scaling 

matrix described as 

11

22

33

4
11

1

0 0

0 0

0 0

0 0
R

R

æ öQ ÷ç ÷ç ÷ç ÷Qç ÷ç ÷ç ÷ç ÷Q = Q ÷ç ÷ç ÷ç ÷ç ÷ç ÷-Qç ÷ç ÷÷çè ø

                                                                (28)

Where 0,(i 1,2, 3)
ii

Q ¹ =  and 3 1 2 3 4
(l , l , l , l )L diag=  is control 

matrix. Then, the error system between systems (24) and (25), can be 
written as

1 1 1 1 11 1

2 2 2 2 22 2

3 3 3 3 33 3

4
4 4 4 4 11 1

1

(k 1) l (k) R

(k 1) l (k) R

(k 1) l e (k) R

(k 1) l e (k) R

e e u

e e u

e u

R
e u

R

ìï + = + +Qïïï + = + +Qïïïï + = + +Qíïïïï + = + -Qïïïïî

                                          (29)

To achieve synchronization, we choose the controller U as

, 1,2, 3.i
i

ii

R
u i= - =

Q
                                                         (30)

By substituting Eq. (30) in Eq. (26), the error system can be written as

i i
(k 1) l e (k), i 1,2, 3, 4.

i
e + = =                                              (31)

Theorem 4: If L3 is chosen such that

i
| l | 1, i 1,2, 3, 4.< =                                                                        (32)

Then, the drive system (24) and the response system (25) are 
globally synchronized, with respect to Q  andF , under the control law 
(30).

Proof: We take as a candidate Lyapunov function:
4

2

1

(e(k)) (k)
i

i

V e
=

= å                                                                           (33)

We get:

(e(k)) (e(k 1)) V(e(k))V V= + -

                    

4 4
2 2

1 1

(k 1) (k)
i i

i i

e e
= =

= = -å å

                   
4

2 2

1

(l 1) (k)
i i

i

e
=

= -å

By using (32), we obtain: (e(k)) 0V <  Thus, by Lyapunov stability 

it is immediate that lim (k) 0,(i 1,2, 3, 4),
k i

e®¥ = =  and from the fact 
lim || (k) || 0.

k
e®¥ =  We conclude that the systems (24) and (25) are 

globally synchronized.

Numerical Application
Now, we consider 2D Hénon map as the drive system and the 

controlled 3D hyperchaotic Baier-Klein map as the response system. 
The Hénon map is can be described as

2
1 2 1

2 1

(k 1) x (k) 1 ax (k)

(k 1) bx (k)

x

x

ìï + = + -ïïíï + =ïïî
                                                        (34)

Which has a chaotic attractor, for example, when ( , ) (1.4,0.2)a b =  
[20] . The Henon map chaotic attractor is shown in Figure 1.

The controlled the Baier-Klein map can be described as [21]:

2
y 3 2 1

2 1 2

3 2 3

(k 1) 0.1 (k) y (k) 1.76 u

(k 1) y (k) u

(k 1) y (k) u

y

y

ìï + = - - + +ïïï + = +íïï + = +ïïî

                           (35)

Where T
1 2 3

(u ,u ,u )U =  is the vector controller. The chaotic 

attractors of Baier Klein map is shown in Figure 2.

Case 1: Synchronization of Hénon map and Baier-Klein map 
in 2D

According to our approach presented in section 3, we obtain

0 1

0
A

b

æ ö÷ç ÷ç= ÷ç ÷ç ÷çè ø
                                                (36)

1 1

1b

æ ö÷ç ÷çF = ÷ç ÷ç ÷çè ø
                                (37)

2 0 0

0 2 0

æ ö÷ç ÷çF = ÷ç ÷ç ÷çè ø
                               (38)

and the control matrix L as

 

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4
-1.5          -1          -0.5           0           0.5           1            1.5

x
Figure 1: The Henon map chaotic attractor.
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1

2 1

2
L

b

æ ö÷ç ÷ç= ÷ç ÷ç ÷çè ø
                              (39)

Using simple calculations, we can show that T
1 1

((A L ) (A L ) I)- - - -  
is a positive de…nite matrix. Therefore, in this case, systems (34) and 
(35) are synchronized in 2D. The error functions evolution is shown 
in Figure 3.

Case 2: Synchronization of Hénon map and Baier-Klein map 
in 3D

According to our approach presented in section 4, we obtain

0 0 0.1

1 0 0

0 1 0

B

æ ö- ÷ç ÷ç ÷ç ÷ç= ÷ç ÷ç ÷ç ÷÷çè ø

                                            (40)

1 0.1 0.1

1 1 0.1

1 1 1

æ ö- - ÷ç ÷ç ÷ç ÷çQ = - ÷ç ÷ç ÷ç ÷÷çè ø

                                 (41)

And the control matrix L2 as

2

1 0 0.1

1 1 0

0 1 1

L

æ ö- ÷ç ÷ç ÷ç ÷ç= ÷ç ÷ç ÷ç ÷÷çè ø

                                     (42)

Simply, we can show that all eigenvalues of B - L2 are strictly 
inside the unit disk. Therefore, in this case, systems (34) and (35) are 
synchronized. The error functions evolution is shown in Figure 4.

Case 3: Synchronization of Hénon map and Baier-Klein map 
in 4D

According to our approach presented in section 5, we obtain

3

0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.5

L

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

                                 (43)

 

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
-2          -1.5         -1           -0.5          0           0.5           1           1.5           2

Figure 2: The Baier-Klein map chaotic attractor.
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Figure 3: Time evolution of synchronization errors: e1 and e2 between 2D 
Henon map and 3D hyperchaoticBaier-Klein map in 2D.
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Figure 4: Time evolution of synchronization errors e1, e2 and e3 between 2D 
Henon map and 3D hyperchaotic Baier-Klein map in 3D.
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Figure 5: Time evolution of synchronization errors e1, e2, e3 and e4 between 
2D Henon map and 3D hyperchaotic Baier-Klein map in 4D.
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Finally, it is easy to know that the conditions of Theorem 3 are 
satisfied. Therefore, in this case, systems (34) and (35) are synchronized. 
The error functions evolution is shown in Figure 5.

Conclusion
In this paper, a new type of synchronization with double scaling 

matrice was proposed and new synchronization result are derived using 
new control schemes and Lyapunov stability theory. Firstly, when the 
dimension of synchronization is the same of the response system the 
synchronization control is achieved by controlling the linear part of the 
response system. Secondly, if synchronization is made in dimension 
of the drive system, the linear part of the drive system is controlled. 
Finally, synchronization is guaranteed by new diagonal matrix when 
the synchronization dimension is greater than the dimensions of drive 
and response systems. Numerical example and simulations results were 
used to verify the effectiveness of the proposed schemes.
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