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Abstract
In essential hypertension, peripheral sympathetic nerve activity is generally thought to be increased regardless 

of salt sensitivity or insensitivity. Recent reports suggest that the cause may be abnormal central nervous system 
enhancement. However, other several reports have shown that a central sympathetic inhibitory system, the neuronal 
nitric oxide synthase system, may be strongly enhanced in salt-sensitive hypertensive Dahl rats, an animal model of 
salt-sensitive hypertension. These two facts lead to questions what happens finally in peripheral sympathetic activity 
and what is the relationship between sympathetic nerves and hypertension. In this review, we will show evidences 
for enhancement of central sympathetic inhibitory system, putative cause for up-regulation of central neuronal nitric 
oxide synthase system, and a role of its function, then lastly we consider the relationship between hypertension and 
sympathetic nerves in a rat model, with a focus on salt-sensitive hypertension.
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SD Rat: Sprague: Dawley Rat; SMTC: S-Methyl-L-Thiocitrulline; 
SON: Supraoptic Nucleus; TPR: Total Peripheral Resistance; VOL: 
Circulating Blood Volume

Introduction
Essential hypertension accounts for about 90% of all cases of 

hypertension, and both salt-sensitive and salt-insensitive cases are 
thought to exist [1,2]. It is unclear whether there are commonalities 
between these two conditions or whether they are completely 
different. The clear pathophysiological mechanisms of essential and/
or salt-sensitive hypertension have not been elucidated and been 
discussed from many aspects [3-5], especially from genetics [6,7], 
renal abnormalities [8], central dysfunction [9], vascular endothelial 
dysfunction [10], hormonal dysfunction [11], immunological 
abnormality [12-14]. We have obtained several findings on 
sympathetic nerve output abnormalities in salt-sensitive hypertension, 
and here, we focus on the relationship between sympathetic activity 
and salt-sensitive hypertension animal model, and discuss the roles of 
sympathetic nerves in salt-sensitive hypertension.

Current thinking on the relationship between sympathetic 
activity and hypertension

From various research results, sympathetic nerve activity is 
thought to be enhanced in essential hypertension [15-17] and salt-
sensitive hypertension [3,11]. Salt-sensitive hypertensive Dahl rats, 
well-known and long-researched animal model of salt-sensitive 
hypertension [14], show marked hypertension when given a high-salt 
diet (Figure 1). Even though no clear increase in activity was found as 
a result of peripheral nerve activity measurements even in this model, 
several reviews indicated that hypertension occurs due to sympathetic 
nerve enhancement from stress responses [18] and baroreceptor reflex 
responses [19,20].

How are hypertension and sympathetic nerve activity related? 
It is conceivable that peripheral vascular resistance increases when 
sympathetic nerve activity increases, leading to hypertension. However, 
this is not the only cause. Theoretically based on the fundamental 
physiology, sympathetic nerves also increase their release of adrenalin 
from the adrenal medulla [21,22], and Na+ reabsorption is also promoted 
by increased renal sympathetic nerve activity [23,24]. Enhanced Na+ 
accumulation leads to a negative spiral in which sympathetic nerve 
activity is increased and in turn promotes further Na+ reabsorption 
[18]. Because a high-salt diet inhibits the volume receptor reflex in the 
cardiopulmonary region [25,26], Na+ ion excretion is further inhibited 
by this response. However, surprisingly, Na+ ions do not accumulate 
in the body of salt-sensitive hypertensive Dahl rats once they become 
hypertensive [27]. Once these rats become salt-sensitive hypertensive, 
the sensitivity of vascular contraction by sympathetic nerves becomes 
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greater [28]. Moreover, various locally regulated vasoconstrictors are 
produced by vascular endothelial cells in peripheral vessels [29,30]. 
Abnormalities in local regulation in peripheral vessels also strongly 
contribute to hypertension.

Reasons for sympathetic nerve enhancement

What are the mechanisms that trigger this increase in sympathetic 
nerve activity in salt-sensitive hypertension? This question is a current 
focus of attention. Many studies are being conducted from the 
perspective of gene mutations as a causative mechanism, and reports 
continue to appear. Opinions on this have not yet come together, and 
this will not be discussed here.

Meanwhile, the mechanisms of the phenomena that explain this 
sympathetic nerve enhancement are also being elucidated. Na+ ion 
transport abnormalities in the choroid of salt-sensitive hypertensive Dahl 
rats have been indicated, and elevation of the Na+ ion concentration in 
cerebrospinal fluid activates the renin-angiotensin system in the brain. 
This is reported to cause abnormal excitement of sympathetic nerve 
centers [31]. Moreover, administration of antioxidants into cerebral 
ventricles inhibits hypothalamic reactive oxygen species, which blocks 
increases in sympathetic nerve activity and decreases blood pressure. 
Thus, abnormal production of hypothalamic reactive oxygen species 
is reported to enhance sympathetic nerves and lead to hypertension 
[32,33]. Gabor and Leenen [34,35] also have shown that a dysbalance 
between angiotensin II and nitiric oxide in the central nervous system 
including paraventriculara nucleus and rostral ventrolateral medulla 
leads to hypertension in Dahl salt hypertension. Even in spontaneously 
hypertensive rats, an animal model of essential hypertension, excessive 
proinflammatory substances in the medulla oblongata are reported 
to cause increased sympathetic nerve activity [36,37]. In all cases, 
abnormal excitement of central nerves has been shown.

Peripheral sympathetic nerve activity

From the above, in salt-sensitive hypertension, peripheral 

sympathetic nerve activity at rest is predicted to be higher than in 
subjects and animals with normal blood pressure. Attempts were 
made to measure renal sympathetic nerve activity at rest in an 
unanesthetized, unrestrained free movement state [38,39]. In actuality, 
this is not a simple thing to do. When nerve activity is expressed as a 
percent, no significant difference is found between normotension and 
hypertension (Table 1). Recently, other researchers have also reported 
no significant difference compared with normal blood pressure [40]. 
Even so, it is still difficult to say that there is no difference in nerve 
activity between the two. Problems exist in measurement technology 
and evaluations. Muscle sympathetic nerve activity in humans is 
evaluated and compared by the frequency of bursts only, but full 
nerve activity like an integrated activity cannot be shown because of 
differences in electric resistance of electrodes for nerve activity each by 
each. In animal experiments, full nerve activity is regularly evaluated to 
ensure accuracy, but still simple comparisons cannot be made because 
electrode resistance differs in each individual. Therefore, expression 
by percent was done as mentioned above, but because these are not 
absolute values, comparisons between individuals cannot be made. 

From another point of views, not resting activity but the maximum 
activity, which is observed when baroreceptor reflex inhibition 
is suppressed completely, that is almost equal to an sympathetic 
generator activity in RVLM, may be higher in hypertensive subjects 
or rats than in normotensive subjects or rats, although there is still no 
way to confirm absolute values. From another different perspective, 
considering that nerve activity in hypertension might be the same level 
with normotension despite the high blood pressure, and/or baroreflex 
function may be suppressed in hypertension [19,20,41], nerve activity 
might be high even considering that in hypertension. Moreover, it is 
also true that resting nerve activity easily rises with a slight stimulus in 
hypertension [18,31], indicating that hypersensitivity in sympathetic 
response to stimuli in hypertension.

Central inhibitory system of sympathetic nerves

The enzyme activity of neuronal nitric oxide synthase (nNOS) 
has been inhibited in salt-sensitive hypertensive Dahl rats to see the 
effect. When 7-nitroindazole, an nNOS inhibitor, was administered 
systemically to rats in an unanesthetized, unrestrained state, peripheral 
sympathetic nerve activity increased significantly [38]. Moreover, 
when S-methyl-L-thiocitrulline (SMTC), an inhibitor with high 
specificity, was administered intraventricularly to rats in the same 
unanesthetized, unrestrained state, a similar rise was seen in resting 
peripheral sympathetic nerve activity as well as in blood pressure [39] 
(Figure 2). These results suggest the following: 1) central neurons with 
nNOS enzyme activity comprise a central inhibitory system of blood 

DS8% (n = 15) 
DS0.4% (n = 15) 
DR8% (n = 15) 
DR0.4% (n = 15) 

Figure 1: Development of salt-induced hypertension in Dahl rats. DS8%: 
Dahl salt-sensitive rats fed an 8% NaCl diet (high-salt diet); DS0.4%: Dahl 
salt-sensitive rats fed a 0.4% NaCl diet (regular diet); DR8%: Dahl salt-
resistant rats fed an 8% NaCl diet; DR0.4%: Dahl salt-resistant rats fed a 
0.4% NaCl diet; SAP: systolic arterial pressure measured with the tail cuff 
method in conscious rats; Age: rat age. *: p < 0.005 vs. DS0.4%; †: p < 0.05 
vs. the initial (8-week) value for DS8%. The high-salt diet produced marked 
hypertension in Dahl salt-sensitive rats [28]. 

MAP (mmHg) HR (bpm) RSNA (%)
DS8% ras (n=9) 153 ± 4* 392 ± 11 24.4 ± 3.2

DS0.4% rats (n=8) 104 ± 3 378 ± 15 28.6 ± 2.4
DR8% rats (n=8) 96 ± 3 373 ± 16 24.7 ± 2.6

DR0.4% rats (n=9) 97 ± 2 393 ± 11 25.6 ± 1.8

DS8% rats: Dahl salt-sensitive rats fed an 8% NaCl diet; DS0.4% rats: Dahl salt-
sensitive rats fed a 0.4% NaCl diet; DR8% rats: Dahl salt-resistant rats fed an 
8% NaCl diet; DR0.4% rats: Dahl salt-resistant rats fed a 0.4% NaCl diet. MAP: 
mean arterial pressure; HR: heart rate; RSNA: renal sympathetic nerve activity, 
expressed as a %. The maximum RSNA (100%) was obtained by release of 
baroreflex-mediated inhibition by caval occlusion. *: p < 0.05 between the S8%, 
S0.4%, R8%, and R0.4% rat groups. The S8% rats show marked hypertension, 
but the RSNA level of the group does not show any difference between the four 
rat groups [28].

Table 1: Resting levels of MAP, HR, and RSNA in the four rats groups.
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Figure 2: Effects of an nNOS inhibitor, SMTC, in the cerebrospinal ���of Dahl salt-sensitive rats on the maximum RSNA induced by hypotension. 
DS0.4%: Dahl salt-sensitive rats fed a regular diet; DS8%: Dahl salt-sensitive rats fed a high-salt diet; Oc with bar line: gradual caval occlusion in which the inferior 
vena cava was occluded in a ramp manner with a perivascular occluder. AP: arterial pressure; MAP: mean arterial pressure; HR: heart rate; RSNA: renal sympathetic 
nerve activity; mean RSNA: mean RSNA expressed as a %; aCSF icv: intracerebroventricular infusion of artificial cerebrospinal fluid (control groups); SMTC icv: 
intracerebroventricular infusion of 50 nmol S-methyl-L-thiocitrulline, an nNOS inhibitor [37]. Each arrow indicates a peak response of mean RSNA to a ramp decrease 
in MAP by caval occlusion. RSNA signals after these peak responses were produced by animal movements because of hypotension. Both resting RSNA and the peak 
response obtained by the release of baroreflex-mediated negative feedback inhibition (baroreceptor-unloaded RSNA, which indicates central sympathetic activity 
generated before baroreflex inhibition) were markedly increased after SMTC infusion [39].
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Figure 3: Distribution of nNOS neurons in rat brain [43]. Red bands indicate areas with higher numbers of nNOS neurons in Dahl salt-sensitive hypertensive rats 
compared with salt-sensitive normotensive rats. Yellow text indicates parts of the sympathetic center. Numbers indicate the plate number in the book by George 
Paxison [44]. PVN: paraventricular nucleus; SON: supraoptic nucleus; DMH: dorsomedial hypothalamus; PAG: periaquaductal gray matter; PB: parabrachial nucleus; 
NTS: nucleus tractus solitarius; RVLM: rostral ventrolateral medulla; CVLM: caudal ventrolateral medulla; CPA: caudal pressor area; IML: intermediolateral column.
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pressure agonistic sympathetic nerve centers; 2) when inhibition is 
blocked, the activity of the rostral ventrolateral medulla (generator 
neurons of sympathetic nerve centers [39,42]) increases; and 3) the 
central inhibitory system is upregulated in salt-sensitive hypertensive 
Dahl rats.

Central nNOS neurons

Brainstem-tissue nNOS activity and nNOS protein amount were 
compared between 4 rats groups (salt-sensitive normotensive Dahl rats, 
salt-sensitive hypertensive Dahl rats, salt-resistant Dahl rats fed regular 
diet, salt-resistant Dahl rats fed high-salt diet) [39]. Both of brainstem 
nNOS activity and nNOS protein amount were significantly higher in 
the DS8% hypertensive group than in the other 3 normotensive rat-
groups, and no significant difference was found in both of activity and 
protein amount between the 3 normotensive rat-groups (salt-sensitive 
normotensive Dahl rats, salt-resistant Dahl rats fed regular diet, salt-
resistant Dahl rats fed high-salt diet) [39]. 

Immunostaining of nNOS enzymes in the brains of salt-sensitive 
hypertensive rats has been used to compare the distribution and number 
of nNOS neurons in the brain with normotensive groups [39,43]. The 
distribution of nNOS neurons in the brain is the same in salt-sensitive 
hypertensive Dahl rats (DS8%), salt-sensitive normotensive Dahl rats 
(DS0.4%), salt-resistant Dahl rats (DR0.4% and DR8%), and Sprague-
Dawley (SD) rats on which they are based. This distribution is shown in 
Figure 3. nNOS neurons are distributed widely in nerve nuclei from the 
hypothalamus to the medulla, and many of the distributed nerve nuclei 
that contain these neurons correspond to blood pressure agonistic 
sympathetic nerve centers.

The number of nNOS neurons was counted for each brain nucleus 
and compared in hypertensive and normotensive rats [39,43,44] (Table 
2). In hypertension, the number of nNOS neurons was significantly 
increased in seven of the ten different nuclei in which nNOS neurons 
were present. The number of all nNOS neurons was also significantly 
increased. Each of these seven nuclei is important as a sympathetic 
nerve center. These results demonstrate that nNOS neurons, which 
form a sympathetic nerve center inhibitory system, are upregulated in 
salt-sensitive hypertensive rats.

What is the cause of this upregulation of nNOS neurons? There 
are three possibilities: high salt, elevated blood pressure, and gene 
mutation. When hypertension was caused by a high-salt diet, blood 
pressure was decreased to a normal level with oral administration 
of nifedipine (Figure 4). When the number of nNOS neurons in the 
brain of salt-sensitive hypertensive rats with not-high blood pressure 
was compared (Table 2), the number of nNOS neurons had returned 
to the same number as in normotension in four of the seven nuclei 
in which the nNOS neuron number had increased [45]. The number 
in the pedunculopontine tegmental nucleus did not return enough 
to the same number as in salt-sensitive normotensive Dahl rats, but 
significantly decreased from the number in salt-sensitive hypertensive 
Dahl rats. In other words, the cause of the nNOS neuron up-regulation 
in these five nuclei was mostly hypertension per se.

In a comparison of nNOS neuron number in the brains of salt-
sensitive hypertensive and normotensive Dahl rats and SD rats, the 
number of neurons was smaller in both salt-sensitive and resistant 
Dahl rats. Hence, the cause of the nNOS neuron activation in both 
nuclei of the supraoptic nucleus (SON) and the laterodorsal tegmental 
nucleus (LDT) that increased with salt-sensitive hypertension and that 

did not respond to hypertension treatment was thought to be high salt 
rather than gene mutations.

Roles of central nNOS neurons

One may ask whether these upregulated nNOS neurons really 
inhibit sympathetic nerve activity that lowers blood pressure. When 
very small doses of SMTC were intraventricularly administered 
continuously for 2 weeks in unanesthetized, unrestrained salt-sensitive 
hypertensive rats, arterial pressure that had been hypertensive was 
found to rise even further [45] (Figure 5). Because nNOS neurons 
have been shown to inhibit sympathetic nerves from the acute 
infusion experiments of SMTC [38,39] and from the chronic infusion 
experiments of SMTC (Figure 5, [45]), activated nNOS neurons in the 

DS04% DS8% DS8%-nif
Supraoptic nucleus 4355 ± 55 4886 ± 15* 4855 ± 53*

Paraventricular nucleus 2625 ± 59 2700 ± 41 2634 ± 72
Dorsolateral periaqueductal gray 1562 ± 41 2133 ± 38* 1545 ± 55†

Pedunculopontine tegmental 
nucleus 1590 ± 42 1921 ± 56* 1718 ± 60*†

Dorsal raphe nucleus 275 ± 36 322 ± 18 333 ± 17
Lateral parabrachial nucleus 1341 ± 32 1670 ± 27* 1424 ± 47†

Laterodorsal tegmental nucleus 2687 ± 166 3548 ± 134* 3443 ± 38*

Raphe magnus 420 ± 16 420 ± 12 420 ± 10
Rostral ventrolateral medulla 1751 ± 73 2432 ± 61* 1742 ± 56†

Nucleus tractus solitarius 788 ± 39 1072 ± 23* 698 ± 37†

Total 17394 ± 189 21106 ± 213* 19012 ± 198*†

DS0.4%: Dahl salt-sensitive normotensive rats (n=6); DS8%: Dahl salt-sensitive 
hypertensive rats (n=6); DS8%-nif: Dahl salt-sensitive rats fed a high-salt diet 
(n=6), in addition, their arterial pressure was normalized with the hypotensive drug, 
nifedipine (calcium antagonist, 50-62.5 mg/day p.o.). All nNOS-positive neurons 
were counted in every slice of each brain nucleus. Data are the mean ± SEM (n=6). 
*: p < 0.05 vs. the S0.4% group; †: p < 0.05 vs. the S8% group. (Modified from Ref. 
45) The number of nNOS neurons is increased in most nNOS neuron-containing 
brain nuclei in salt-induced hypertensive rats. Treatment of hypertension abolishes 
the up-regulation of nNOS neuronal activity in most nNOS neuron-increased nuclei 
except for the supraoptic nucleus and the laterodorsal tegmental nucleus, in salt-
induced hypertension.

Table 2: The number of nNOS neurons in the Dahl salt-sensitive rat brain.
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Figure 4: Arterial pressure was normalized with nifedipine in salt-
induced hypertensive rats. DS 8%: Dahl salt-sensitive rats fed a high-salt 
diet only; DS 8%-nif: Dahl salt-sensitive rats fed a high-salt diet concomitant 
with nifedipine (50-62.5 mg/day); DS 0.4%-nif: Dahl salt-sensitive rats fed a 
regular salt diet concomitant with nifedipine (50-62.5 mg/day). SAP: systolic 
arterial pressure measured with the tail cuff method in conscious rats (n = 
5); Age: rat age. *: p < 0.05 vs. DS-0.4%. Oral nifedipine, a hypotensive drug 
that acts via calcium antagonism, normalized arterial pressure in salt-induced 
hypertension [30].
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brain were demonstrated to inhibit hypertension through sympathetic 
nerve inhibition.

Thus, in salt-sensitive hypertensive rats, Na+ transport abnormalities 
in the choroid in the brain [31] and overproduction of reactive oxygen 
species in the hypothalamus [32] increase sympathetic nerve activity 
centrally. However, nNOS neurons, which comprise the central 
sympathetic nerve inhibitory system, are upregulated by elevated blood 
pressure and block increases in peripheral sympathetic nerve activity. 
Peripheral nerve activity is thought not to increase much as a result, so 
that the marked difference with normotension is no longer found, at 
least in the periphery.

Causes of continuing hypertension

Because evaluations of sympathetic nerve activity in the hypertension 
formation process are not necessarily accurate, the role of sympathetic 
nerve activity in this process is not well understood. However, looking 
at hypertension that already exists, resting sympathetic nerve activity 
is relatively stabilized [38,39], which suggests that sympathetic activity 
may not be a powerful factor in maintaining hypertension.

Osborn et al. reported that hypertension induced by a high-salt diet 
is normalized by renal denervation [46]. This may also involve blood 
pressure normalization from elimination of Na+ ion reabsorption by 
the renal nerves and stimulation of renin secretion, and the possibility 
has been suggested that information from afferent nerves from the 
kidneys also contributes in some way [47]. Moreover, the contractility 
of peripheral vessels is known to be increased (Figure 6), and local 
dysregulation due to vascular endothelial cells continues to be shown 
[28,30].

Considering the above observations together, the primary causes of 
continuing hypertension may be peripheral control problems, such as 
local dysregulation [29,48,49] in peripheral vessels or renal dysfunction 
[14,50-52], rather than a problem in central control.
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Figure 5: Changes in 24-hr arterial pressure measured with telemetry in 
Dahl salt-sensitive hypertensive rats fed a regular diet for 6 days followed 
by a high-salt diet (8% NaCl diet) for 26 days. After 14 days, an icv catheter 
and an osmotic minipump were implanted aseptically, and then an nNOS 
inhibitor, SMTC (7 µg/hr, SMTC group), or vehicle (0.5 µl/hr, aCSF group) 
was infused icv over 12 days in salt-induced hypertensive rats. aCSF: artificial 
cerebrospinal fluid; MAP: mean arterial pressure. The MAP value in each day 
or night phase (D or N) of the day is the average of 1440 sampled values 
obtained with radiotelemetry over 12 hr for each group. Data are the mean ± 
SE (n = 5 for each group). *: p < 0.05 compared with the corresponding phase 
on Day 12 in the SMTC group, or compared with the corresponding day in the 
aCSF group. icv SMTC significantly amplified hypertension in salt-induced 
hypertension and worsened hypertension compared to the saline icv group 
[45]. 
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Figure 6: Contractive activities evoked by norepinephrine (NE, 10-8 to 10-6 
mol/l) in aortic rings of rats in the four groups. ◇, □: Dahl salt-sensitive rats 
fed 8% NaCl (n = 10); ◆, lightly dotted bars: Dahl salt-sensitive rats fed 0.4% 
NaCl (n = 12); ○, heavily dotted bars: Dahl salt-resistant rats fed 8% NaCl (n 
= 12); ●, ■: Dahl salt-resistant rats fed 0.4% NaCl (n = 10). ED50: a logarithm 
of agonist concentration at half maximal response; Emax: maximum response. 
*: p < 0.05 between high-salt and low-salt Dahl salt-sensitive rat groups [28]. 

Conclusion
In Dahl hypertensive rats, the sympathetic center becomes 

pathophysiologically hyper-reactive, concomitant with compensatory 
upregulated activity in nNOS neuron-mediated inhibitory systems of 
the central sympathetic center, which results in almost same activity in 
resting peripheral sympathetic nerve of hypertensive Dahl rats as that 
of normotensive Dahl rats. The enhancement of the central inhibitory 
system caused by high blood pressure per se produces reduction in 
arterial pressure, indicating that the sympathetic control system seems 
to be operated in order to counter-attack hypertension, although the 
other part of the sympathetic center becomes pathophysiologically 
enhanced. This is a kind of dilemma in the sympathetic center: one 
inhibited and the other excited. Peripheral sympathetic activity in 
hypertensive Dahl rats is not so high as to explain hypertension, but 
the target organs have enough damage to explain hypertension. The 
kidney functions abnormally, and the peripheral vascular system shows 
hypertrophy and abnormally functioning endothelium, as shown in 
Figure 7.

Hypertension is a cause of nNOS neuron upregulation, meaning 
that signals from the periphery where hypertension is sensed induce 
enhancement of the inhibitory system. Information from baroreceptors 
may be involved. Peripheral information that tries to block central 
abnormalities and enhancement of the inhibitory system occur in 
addition to local dysregulation of peripheral tissue, and ultimately, 
development of hypertension will occur when all of these factors 
contribute.

The functions necessary for an organism to live are divided and 
specialized, and the life of an individual comes from the integration 
of all these various functions. This integration is achieved through 
circulation, and blood pressure is the driving force of that circulation. 
Therefore, the essential mission of the long-term blood pressure 
regulatory mechanism [53] cannot be fulfilled with only one-way 
instructions from either peripheral tissues or central nerves. Even if 
central or peripheral abnormalities exist, hypertension may form 
when a steady state is reached as a result of compromise between the 
demands of both.
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Figure 7: Putative characteristics of the blood pressure control system and 
the target organs in Dahl salt-sensitive hypertension [53]. Baro: Arterial 
Baroreceptors; CNS: Central Nervous System; Nr Inside An Airplane: Neural 
Outputs From The CNS; H Inside A Ship: Humoral Outputs From The CNS; 
Ht: Heart; TPR: Total Peripheral Resistance; VOL: Circulating Blood Volume; 
AP: Arterial Pressure; PSN: Peripheral Sympathetic Nerves [53]. In Dahl 
hypertensive rats, the sympathetic center becomes pathophysiologically 
hyper-reactive, concomitant with compensatory upregulated activity in 
nNOS neuron-mediated inhibitory systems of the central sympathetic center, 
which is a dilemma in the sympathetic center, resulting in almost same 
activity in resting peripheral sympathetic nerve in hypertensive Dahl rats 
as that in normotensive Dahl rats. Once the NO-mediated inhibitory system 
is suppressed due to some stimuli, hypertensive Dahl rats produce hyper-
reactivity in peripheral sympathetic activity. On the other side of the target 
organs, the kidney functions abnormally, and the peripheral vascular system 
shows hypertrophy and abnormally functioning endothelium.
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