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Abstract

Previous studies of properties of metabolic works have mainly focused on the statistic properties of networks,
including the small world, and power-law distribution of node degree, and building block of network motifs.
Symmetry in the metabolic networks has not been systematically investigated. In this report, symmetry in di-
rected graph was introduced and an algorithm to calculate symmetry in directed and disconnected graphs was
developed. We calculated several indices to measure the degree of symmetry and compared them with random
networks. We showed that metabolic networks in KEGG and BioCyc databases are generally symmetric and in
particular locally symmetric. We found that symmetry in metabolic networks is distinctly higher than that in
random networks. We obtained all the orbits in networks which are defined as structurally equivalent nodes and
found that compound pairs in the same orbit show much more similarity in chemical structures and function than
random compound pairs in network, which suggests that symmetry in the metabolic network can generate the
functional redundancy, increase the robustness and play an important role in network structure, function and
evolution.
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Abbreviations

NCS: Number of Connected Subgraphs
MCS: proportion of nodes in the Maximum Connected
Subgraph
ECS: Entropy based on Connected Subgraph
NECS: Normalized Entropy based on Connected Subgraph

Introduction

Metabolic networks are composed of consecutive chemi-
cal reactions to produce energy and various molecules. They
are represented as directed hyper-graphs, with compounds
and(or) enzymes as nodes and the reactions activated by
the enzymes as hyper-arcs. How to characterize the struc-
ture of metabolic networks and how to link their structure

Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China 

Human Genetics Center, University of Texas School of Public Health, Houston, TX 77030, USA

Department of Computing and Information Technology, Fudan University, Shanghai 200433, China

Chinese Academy of Science-Max-Planck-Gesellschaft Partner Institute for Computational Biology, 
Shanghai Institutes for Biological Science, CAS, Shanghai, 200433, China

http://dx.doi.org/10.4172/jcsb.1000001


Journal of Computer Science & Systems Biology - Open Access
              Research  Article       JCSB/Vol.1/ 2008

J Comput Sci Syst Biol Volume 1 : 001-020 (2008) -002
 ISSN:0974-7230   JCSB, an open access journal

with function are important in gaining deep understanding
of metabolic networks. In the last decade, we have wit-
nessed the great progress in theories and models of com-
plex networks, which provide new powerful tools for study
of metabolic networks.  Previous research in complex net-
works have primarily focused on finding the statistical prop-
erties of various networks, such as small world
properties (Jeong et al., 2000; Ma and Zeng, 2003; Wagner
and Fell, 2001; Watts and Strogatz, 1998); power-law distri-
bution of node degree (Mahadevan and Palsson, 2005; Samal
et al., 2006); building block of network motifs (Eom
et al., 2006; Milo et al., 2002) and hierarchical struc-
ture of the network topology (Guimera and Nunes,
2005; Ravasz et al., 2002). A lot of research exploiting the
theory or model of complex networks has been dedicated
towards metabolic networks. Jeong et al.,  (2000);
M a  a n d  Z e n g ,  ( 2 0 0 3 )  c a l c u l a t e d  t h e  a v e r a g e
path length of the metabolic networks and concluded that
metabolic network belongs to small-world network. The
small-world characteristic implies that information and en-
ergy can be rapidly transferred to the whole network and
the cell can response quickly to perturbation of environ-
ments. Jeong et al., (2000) also calculated the degree
distribution and concluded that metabolic network follows
the power-law distribution with exponential index .
However, the small-world property is still disputing (Arita,
2004). Milo et al., (2002) introduced the concept of
‘network motifs’ and developed algorithms for their identi-
f icat ion.  Eom et  a l . ,  (2006)  appl ied the concept
of network motifs to metabolic network and identified
the network motifs and the statistically significant 
subgraph patterns as well. Ravasz et al., (2002) (Clauset et al.,
2008;  Guimera  and  Nunes ,  2005)  proposed  the  
h i e r a r c h i c a l - m o d u l a r  m o d e l  a c c o r d i n g  t o  t h e
characteristics of metabolic network. They calculated the
average clustering coefficient for 43 different organisms as
a function of the number of distinct substrates present in
their metabolism. They found that, for all 43 organisms, the
average clustering coefficient is about an order of magni-
tude larger than expected for a scale-free network of simi-
lar size.

However, symmetry, a universal property of real networks,
has been rarely studied for metabolic network. Symmetry
characterizes the invariance under possible transformations
and implies conservation laws of nature (Hatcher, 2002;
MacArthur, 2008; MacArthur and Anderson, 2006). Sym-
metry provides redundancy and robustness against pertur-
bation of environments. There is increasing recognition that
the universal evolution is caused by symmetry break, gen-
erating diversity and increasing complexity and

energy (Mainzer, 2005; Quack, 2003).  Symmetry break is
often followed by addition of functional modules that usu-
ally show local symmetry, increasing network
robustness (Felder et al., 2001). Until recently, after the con-
cept of symmetry based on the automorphism has been uti-
lized to explore real networks, quantitative methods for in-
vestigation network symmetry have been developed.
MacArthur, (2008); MacArthur and Anderson, (2006)
first found that large real networks are quite sym-
metric and such symmetry in real networks can be attrib-
uted to the local symmetry which is hidden in local sub-
structures. Xiao et al., (2008b); Xiao et al., (2008c) then
proposed a principle referred to as “similar linkage pattern”,
which means that nodes with similar properties such as de-
gree tend to have similar linkage targets, to explain the emer-
gence of symmetry. In (Mahadevan and Palsson, (2005), symmetry is 
exploited to characterize the structural heterogeneity of complex net-
works. Symmetry in real networks has been further used to
characterize the simplicity hidden in networks and conse-
quently has been utilized to simplify the network while re-
serving many key properties of original networks, such as
complexity and communication (Xiao et al., 2008a).

To date, symmetry in metabolic networks and the rela-
tions between the structural symmetry and function of the
network have rarely been investigated. It is still unknown
whether symmetry exits in metabolic networks.  If it does,
the existence of such symmetry also begs a biological ex-
planation.  Purposes of this report are (1) to examine the
symmetry of the metabolic networks, (2) to measure the
abundance of the symmetry in metabolic networks, (3) to
obtain the orbits (structurally equivalent nodes) through re-
stricted network quotient and (4) to explore biological impli-
cation of the symmetry of the metabolic networks. To ac-
complish this, we first reconstruct metabolic networks for
705 organisms in KEGG and 373 in BioCyc databases. Then,
we study the influence of connectivity of the reconstructed
networks on the symmetry of metabolic networks.  Previ-
ous works about symmetry in the general networks have
focused on undirected graphs.  However, the metabolic
networks are usually handled as directed graphs.  Hence,
it’s necessary to explore symmetry in directed graphs and
develope algorithms to find symmetry in the directed and
disconnected networks.  Based on these results, we then
systematically investigate the properties of symmetry in
metabolic networks, including the degree of symmetry, re-
stricted network quotient. To explore functional implications
of the structural symmetry of metabolic networks, we test
the chemical structure similarity of the symmetric compounds
in metabolic networks of 705 organisms which allow us to
reveal the relationships between the network symmetry and
its function.
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Figure 1: KEGG Metabolic network reconstruction of Drosophila melanogaster
(A) Metabolism of Cofactors and Vitamins module for Drosophila melanogaster (fruit fly) Nodes: 100, Edges:96.  The nodes
represented compound ID in KEGG database. The nodes in different orbit are marked with different colours and non-trivial
orbits are marked in green ellipse. We can see that there are 25 connected subgraphs and 12 orbits in the module. (B) All 100
metabolic pathways of Drosophila melanogaster were integrated into a metabolic network (Nodes: 1050, Edges:1340). The
nodes in different orbit are marked with different colours. The compound ID is not shown in the figure.
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Results and Discussion

Reconstruction of Metabolic Network

A metabolic network is represented as a directed graph
G(N,E) with node set N representing compounds and the
edge set E representing the chemical reactions which the
compounds participate in. The direction of each edge im-
plies the direction of the chemical reaction. We downloaded
the metabolic network data from two major metabolic net-
work databases: KEGG (Kanehisa and Goto, 2000) and
BioCyc.

KEGG is a collection of simplified metabolic networks
which are manually drawn pathway maps representing
knowledge on reactions, while currency metabolites such
as H2Oand ATP are not included. Xml files of all metabolic
pathways for 705 organisms were downloaded from KEGG
FTP. We reconstructed the metabolic networks according
to the reactions data extracted from the xml files and visu-
alized the network by Pajek (Batagelj and Mrvar, 2003).
According to KEGG metabolic functions classification, we
integrated single pathways into functional modules. Finally
we integrated 11 functional modules into a whole metabolic
network. See Figure 1 (a) (b) for Drosophila melanogaster’s
Cofactors and Vitamins Metabolism module and the inte-
grated metabolic network.

The BioCyc collection of Pathway/Genome Databases
(DBs) provides electronic reference sources on the path-
ways and genomes of different organisms. We collected
metabolic pathways of 373 organisms, extracted the reac-
tion data of each organism and integrated the reactions to a
network for each organism. Direction of reactions is not
given in BioCyc database but currency metabolites are in-
cluded in. So we finally got 373 undirected graphs including
currency metabolites from BioCyc. We first analyze sym-
metry of KEGG networks and replicate our experiment for
BioCyc networks to validate whether our conclusions are
ubiquitous in metabolic networks. See additional files 1 for
organisms and pathways in KEGG and BioCyc.

The Connectivity of Metabolic Networks

For the integrated networks of 705 organisms in KEGG,
the number of the connected subgraphs (NCS) varies from
1 to 271. Only 5 networks (0.7%) contain less than 10 con-
nected subgraphs. The maximum connected subgraph
(MCS) contains 7.8%-100% nodes of the whole network.
The proportion of MCS, which is defined as the ratio of the
number of the nodes in MCS over the total number of nodes
in the network, in 99.6% and 56% of the constructed meta-

bolic networks is less than 80% and 60%, respectively.  So
we can conclude that the connectivity of metabolic is quite
low. We introduced normalized entropy based on the con-
nected subgraph (NECS) to measure the degrees of the
connectivity of the network (See Materials and Methods).
The larger NECS, the less the network connected.  NECS
value of the metabolic networks ranges from 0 to 0.778064
with the mean value 0.410917.

For the integrated networks of 373 organisms in BioCyc,
the number of the connected subgraphs (NCS) varies from
2 to 76, which is distinctly less than that in KEGG. The maxi-
mum connected subgraph (MCS) contains 92.1%-99.3%
nodes of the whole network, definitely larger than that in
KEGG. NECS value of the metabolic networks ranges from
0.007 to 0.075 with the mean value 0.0347128. As the cur-
rency metabolites were included in BioCyc , the connectiv-
ity of metabolic network is significantly increased.

To gain deeper understanding of the connectivity in meta-
bolic networks, we compared it with the random networks.
For each real graph, we generate 100 randomized networks
b y  r e w i r i n g  t h e  l o c a l  e d g e s  ( M a s l o v ,  2 0 0 4 ) .
Then we compute the MCS, NCS and NECS for
every network and summarize the mean and variance over
the 100 randomized networks. From the error bar in Figure
2, we can see clearly that:  most of the NCS in real meta-
bolic network is larger than that in random network (89.8%);
most of the MCS in real metabolic network is lower than
that in random network (96.9%); NECS in real network is
obviously larger than the corresponding random network
(96.9%). We  also compared the connectivity of BioCyc
network with their random networks using the same method.
In spite of relatively larger connectivity compared with that
in KEGG, the connectivity in BioCyc metabolic network is
still smaller than that in random networks. The results are
shown in Supplementary Figure 1. The results of NCS, MCS
and NECS value for 705 real networks and their corre-
sponding randomized networks for both KEGG and BioCyc
networks were shown in additional data file 2. The results
above imply that the connectivity in metabolic network is
rather small. Consequently connectivity has to be taken into
account when exploring the network reduction of metabolic
networks.

Symmetry in Metabolic Networks

Given a metabolic network G(N,E), a one-to-one map-
ping, or bijective mapping, from N onto itself is called a per-
mutation on N. Two nodes are adjacent if there is an arc
from one node to the other node. Among all the permuta-
tions in S(N), where S(N) is the set of permutations acting
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Figure 2: Comparison of the connectivity of metabolic network in KEGG with random network
The random networks are produced by randomly rewiring the local edge in the given real networks. (A) NCS of the real
metabolic networks and their random networks. (B) MCS of the real metabolic networks and their random networks. (C)
NECS of the real metabolic networks and their random networks. Please note that due to the tiny variances of MCS and
NECS of random networks, the error bar looks like the scatter line.
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Figure 3: The automorphism partition of underlying graph and the directed graph
(A) Underlying graph (B) The directed graph. Different orbits are marked with different colours.
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on N, some permutations can preserve the adjacency of the
nodes and these permutations are called automorphisms
acting on the node set. The set of automorphisms under the
product of permutations forms a group: Aut(G) (Tinhofer and
Klin, 1999).Two nodes x and y are automorphically equiva-
lent to each other if there is an automorphism that trans-
forms node x to node y.  In the context without confusion,
such equivalence relation of nodes is also called structural
equivalence. A set of structurally equivalent nodes is de-
fined as an orbit of Aut(G).  According to such equivalent
relation on node set, we can get a partition P={N1,N2,…Nm},
called as automorphism partition, which is composed of or-
bit sets N1,N2,…Nm . An orbit is non-trivial when it contains
more than one node, otherwise it’s trivial. A network is called
symmetric if we can find at least one non-trivial orbit in this
network, otherwise the network is asymmetric. The quo-
tient graph of an undirected graph is defined as a reduced
graph which has every orbit (structurally equivalent nodes)
as its new node and adds an edge to connect two nodes if
there is at least one edge from any one node in the orbit to
any one node in another orbit. The quotient graph of a di-
rected graph is similar to that of undirected graph except
that the direction of the arcs is preserved in the quotient of
directed graph.

Consider the undirected graph G0  in Figure 3(A), the
automorphism partition is P0={N1,N2,N3, N4}, where
N1={1,2}, N2={3}, N3={4}, and N4={5,6,7}.  There are four
orbits which are classified by different colours. The quo-
tient graph of G0 is shown in G1. The four orbits of G0  are
reduced to four nodes in G1 , and as long as there is an edge
between any two orbits of G0, the corresponding nodes in
G1are adjacent. For directed graph G0 in Figure 3(B) , the
automorphism partition is  P0={N1,N2,N3,N4,N5}, where
N1={1,2}, N2={3}, N3={4}, and N4={5,6} and N5={7}. The
five orbits of G0 are reduced to five nodes in G1 , and as
long as there is an arc from one orbit to another orbit in G0,
there is an arc from one corresponding node to another cor-
responding node in G1 (shown in Figure 3(B)). Please note
that in the directed graph G0 in Figure 3(B), the edges be-
tween orbits N1 and N2 and that between N2 and  N3 are
both bidirectional, which determines that the edge between
corresponding nodes in G1 are bidirectional. Because the
direction of arc <7, 4> is different from that of <4, 5> and
<4, 6>, nodes 5 and 6 belong to the fourth orbit while node 7
belongs to the fifth orbit.

Consider Figure1 (A) where we take the Drosophila
melanogaster’s Cofactors and Vitamins metabolism mod-

ule as a real example. There are 100 nodes and 96 arcs in
this module. The NCS (number of connected subgraph) is
25, which implies the connectivity of this network is very
small. There are 12 non-trivial orbits in the network, each
of which is marked in green ellipse.

To measure the degree of the symmetry of metabolic
networks, we calculate :the size of Aut (G), : the rela-
tive degree of network symmetry of 705 metabolic networks1

. reflects the absolute symmetry degree of network di-
rectly. is used to measure the symmetry of networks with
different sizes. Generally, the larger and  is, the more
symmetric the network is.  Among all the tested metabolic
networks, 99.3% of them have larger than 1010 and 82.3%
of them have larger than 10100, which implies that most
of metabolic networks are far away from asymmetric net-
work. Hence, generally metabolic networks can be charac-
terized as symmetric networks. Statistics of shows that
98.7% of the metabolic network has smaller than 0.1
and 83.3% of the metabolic network has smaller than
0.01, which suggests that relative symmetry degree of meta-
bolic network is quite low compared to the maximal sym-
metry degree of networks with equivalent number of nodes.

We also summarize : the degree of global symmetry
for the networks. For some networks, there is some of
automorphisms moving all the nodes or most of nodes. The
action of such automorphism on node set will have global
influence on the structure of the graph. However, for some
other networks, all the automorphisms only move a small
part of vertices or only action on the local subgraph of the
network. Hence, when studying symmetry of networks, it’s
necessary to characterize the degree of global symmetry or
local symmetry of the network. Generally, the larger is,
the more globally symmetric the network is. Among all the
tested metabolic networks, 98.6% of which has smaller
than 0.1 and 72.8% has between 0.05-0.01, which sug-
gest that metabolic network is very local symmetric.

To validate our conclusion, we replicate our experiment
using BioCyc datasets.  Among all the tested metabolic net-
works, 97.6% of them have larger than 1010 and only
one network (metaCyc) has larger than 10100. Statistics
of shows that only 1metabolic network has smaller
than 0.001 and 5 of the metabolic networks has larger
than 0.01,  values of the other networks (98.4%) are all
between 0.001 and 0.01. of BioCyc data varies from
0.002071 to 0.0434783 with a mean value of 0.008364.
Please see additional data file 3 for the results of  , and

1All symmetry statistics including   and  ,in this section are summarized from the underlying graphs of the metabolic networks. The underlying graph
was derived by removing directions and self loops from the original network.
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Figure 4: Comparison of the symmetry indices of real metabolic networks with random networks
 The random networks are produced by Erdos-Renyi model in Pajek . (A) Error bar of the symmetry index of real
metabolic networks and corresponding randomized networks. (B) Error bar of the symmetry index of real metabolic
networks and their corresponding randomized networks. (C) Error bar of the symmetry index of real metabolic networks
and their corresponding randomized networks. Please note that the variances of  and of randomized networks is so
small that the error bar can not be observed obviously.
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value for metabolic networks in KEGG and BioCyc.

To further investigate the symmetry of metabolic network,
we compared three indices  and of metabolic net-
work with corresponding randomized networks. For each
real metabolic networks for703 organisms, we generated
100 randomized networks with the same number of nodes
and edges as the real network following Erdos-Renyi ran-
dom graph model(Erdos and Renyi, 1960) .2  (Two organisms:
Debaryomyces hansenii (dha) and Legionella pneumophila
Corby (lpc) were not included because they cannot pro-
duce Erdos-Renyi random networks due to their small net-
work size). Then we compute for every ran-
dom network and summarize the mean and variance over
the 100 randomized networks for each real network. The
comparisons of between real network and
random networks are shown in Figure 4.  We can see clearly
from Figure 4 that 99.4% of ,  99.4% of  and 99.9%
of in real metabolic network is larger than that in random
network. These results demonstrated that the symmetry in

2 Although it is desired to preserve the degree of vertices when meaningfully randomizing the network, however, it has been shown that symmetry is
significantly relying on the degree of vertices(note 5 in xiao 2008c). In other words, when preserving degree of each vertex by exploiting the  approach of
edge rewiring (Maslov et al., 2004), the randomized networks will have almost the same symmetry properties with the real network, Hence, in this section,
we relax the constraint when generating the randomized networks.

metabolic network is obviously strong than that in random
network, suggesting that symmetry is an important and non-
ignored feature in metabolic network.

Again, we replicated our study in BioCyc metabolic net-
works. We found that in spite of relatively less symmetry
compared with KEGG, the symmetry in BioCyc network is
still substantially larger than that in random networks, sug-
gesting that metabolic network is far away from asymmet-
ric network.  The comparisons of  between real
network in BioCyc and random networks are shown in
Supplementary Figure 2. Please see additional data file 4
for the results of  value for randomized net-
works in both KEGG and BioCyc.

Comparison of the Cconnectivity and Symmetry of
Metabolic Networks between KEGG and BioCyc
Datasets

 In table 1, we compared the range, mean value and vari-

database KEGG BioCyc
Number of organisms 705 373

range 1-271 2-76
mean 124.048227 16.07238606NCS 
variance 3128.634034 44.65872467
range 7.8%-100%  92.1%-99.3%
mean 0.548437869 0.966615067MCS 
variance 0.023976601 0.00011063
range 0-0.778064 0.007-0.075
mean 0.410917 0.0347128NECS 
variance 0.012554904 0.000108611
range 0.301-488.52 0.903-612.608
mean 199.39 30.69700184α10log  
variance 11423.74545 1099.766327
range 0.00196-0.72478 0.000598-0.0581303
mean 0.01 0.004181307β   
variance 0.001709304 1.04908E-05

range 
0.00576-
0.666667 0.00207-0.0434783

mean 0.02 0.008363534
ϕ  

variance 0.001298575 2.01729E-05

Table 1: Comparison of the connectivity and symmetry of metabolic networks between KEGG and BioCyc datasets.
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ance of three connectivity indices NCS, MCS, NECS and
three symmetry indices between networks of
705 species in KEGG and networks of 373 species in
BioCyc. We can see clearly that for all the six measures,
the range and variances in BioCyc datasets is significantly
less than that in KEGG datasets. (For the range of

in BioCyc, if we get rid of the largest value 612.608
and the smallest value 0.903; remaining values range from
6.85-96.367).  The mean values of NCS and NECS of
BioCyc datasets are less than that in KEGG datasets, how-
ever, MCS of BioCyc is larger than that of KEGG.  All
these facts suggest that metabolic network in BioCyc is
more connected. Since symmetry is typically greater for
lower connectivity and shorter branches networks
(MacArthur, 2008),  it’s naturally to find that symmetry in
BioCyc networks is less than that in KEGG networks.

However, for both datasets, we clearly found that sym-
metry in real networks is obviously larger than that in ran-
domized networks. No matter which metabolic network re-
construction methods were used, we came to the same con-
clusion that the symmetry of metabolic network, specifi-
cally, local symmetry, does exist.

3In this section, all results are obtained from KEGG data, since we can only construct undirected graph from BioCyc database, which make the orbits we
got is less biologically meaningful for metabolic networks than in directed graphs in KEGG.

Inferring Functional Equivalence from Structural
Equivalence

We calculated the automorphism group (See material and
methods for its definition) and obtained the orbits (structur-
ally equivalent nodes) considering the connectivity and di-
rection constraints for the reconstructed metabolic networks
of all 705 organisms in KEGG. Since nodes in the same
orbit are structurally equivalent to each other, it motivates
us to further explore whether structurally equivalent nodes
are functional equivalent. To accomplish this, we first gen-
erated two datasets which consist of similarity scores (See
Materials and Methods for definition of similarity score).
One dataset is referred to as orbit dataset.  For each orbit in
the metabolic network we calculated similarity scores for
all pairs of compounds in the orbit and averaged them as
the similarity score of the orbit. All similarity scores of the
orbits in the networks of 705 organisms in KEGG were col-
lected to form the orbit dataset where the replicated orbits
were just calculated once. Another dataset which is referred
to as random dataset was generated by collections of simi-
larity scores of all pairs of compounds in the metabolic mod-
ules of all 705 organisms in KEGG. We used t statistics and

Modules Orbits
#  

Compound 
pairs # 

Pt
1 Pt

2 Pr 

Glycolysis 55 406 3.04E-13 1.5814E-10 2.3055E-12

TCA cycle 40 171 0.009 0.0192 0.0497 

Amino_Acid 557 131328 2.205E-81 8.0344E-32 2.9589E-38

Carbohydrate 618 92665 4.6399E-110 1.5533E-50 1.475E-65

Cofactors_Vitamins 211 37128 2.7279E-92 1.3082E-33 2.5883E-47 

Energy 142 5050 0 0 0

Glycan_Biosynthesis 24 2278 4.4982E-26 0 8.2242E-12 

Lipid 301 81406 3.6647E-171 1.1755E-63 3.395E-90

Nucleotide 193 9453 4.6127E-66 2.1246E-40 2.5256E-49

Other_Amino_Acids 102 10440 0 0.0015 0.0131 

Polyketides 9 780 0 0.0027 0.0007

Secondary_Compounds 76 75078 1.5539E-78 4.5943E-17 9.5074E-24 

Xenobiotics 134 73920 8.0514E-59 7.1642E-31 1.7688E-43

Table 2:  P-values for testing significance of  the similarity of the compounds in the orbits.
See additional files 5 for the module description.  Orbits # denotes the number of pairs of compounds in the orbit, compound
pairs # denotes the number of pairs of compounds in the random dataset, Pt

1  is the P-values of right tail t-test with equal
variance; Pt

2  is the P-values of right tail t-test with unequal variance,  Pr  is the P-values of Wilcoxon two-sided rank sum test.

 and βα ϕ
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Table 3: Orbits and their similarity in Glycolysis/Gluconeogenesis and TCA cycle pathways
Orbits were sorted in the descending order of similarity score. See additional files 4 for the orbit similarity and random
compound similarity of another 11 modules.

Glycolysis/Gluconeogenesis TCA cycle 
orbits similarity orbits similarity
C00668 C01172  1 C00042 C00122  1 
C00084 C00469  1 C00311 C05379  1 
C00221 C00267  1 C00036 C00149  1 
C00111 C00118  1 C00311 C00417  0.923077 
C00031 C00267  1 C00158 C00417  0.923077 

C00022 C00186  1 
C00158 C00311 
C00417  0.901099 

C00668 C01172 C05345  0.921569 C00122 C00149  0.888889 
C00111 C00197  0.909091 C00036 C00042  0.888889 
C00074 C00631  0.909091 C00036 C00122  0.888889 
C01172 C05345  0.882353 C00042 C00149  0.888889 
C00103 C01172  0.882353 C00068 C05381  0.787879 
C00103 C00668  0.882353 C00074 C00149  0.727273 
C00668 C05345  0.882353 C00036 C00074  0.727273 
C06187 C06188  0.88 C00149 C00158  0.692308 
C00197 C00631  0.833333 C00022 C00036  0.666667 
C00236 C06189  0.8125 C00022 C00149  0.666667 

C05345 C05378  0.8 
C00022 C00074 
C00149  0.664647 

C00197 C06189  0.785714 C00074 C00122  0.636364 
C00033 C00084  0.75 C00042 C00074  0.636364 
C00033 C00469  0.75 C00022 C00074  0.6 
C00221 C01172  0.75 C00022 C00122  0.555556 
C00111 C00118 C00668 C01172  0.75 C00033 C00122  0.5 
C00103 C00221  0.75 C00033 C00036  0.444444 

C00118 C00631  0.75 
C00011 C 00026 
C00311  0.433333 

C00103 C00267  0.75 
C00036 C00158 
C00566  0.333625 

C00221 C00668  0.75 C00011 C00026  0.3 

C00197 C00236  0.733333 
C00022 C00024 
C00033  0.273504 

C00197 C01159  0.733333 C00011 C00311  0.230769 
C00631 C01159  0.733333 C00158 C00566  0.177419 
C00074 C00197 C01159  0.716667 C00010 C00158  0.173077 
C01451 C06186  0.695652 C00024 C00074  0.173077 
C00031 C00267 C06187  0.681159 C00024 C00036  0.132075 
C00111 C00236  0.666667 C00024 C00149  0.132075 
C00111 C00118 C05378  0.666667 C00036 C00566  0.131148 
C00074 C00111  0.666667 C00042 C00091  0.125 
C00074 C00118  0.666667 C00091 C00122  0.125 
C00031 C00267 C06188  0.666667 C00091 C00149  0.122807 
C00118 C00236  0.666667 C00036 C00091  0.122807 
C00031  C00267 C06187 C06188 0.653913 C00022 C00024  0.096154 
C00103 C05378  0.636364 C00024 C00033  0.057692 
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wilcoxon rank sum statistics(Pagano and Gauvreau, 2000)
to test whether there were significant differences in the
similarity scores between orbit dataset and random dataset3 .

The results were shown in Table 2, from which we can
see that in all pathway/modules, the compounds in the orbit
showed significant evidence of similarity in compound chemi-
cal structures, which implied that the structurally equivalent
nodes in metabolic networks are similar in their chemical
structure.  The compounds with similar chemical structure
will have similar functions and play similar roles in biochemi-
cal reactions (Gutteridge et al., 2007). In Table 3, we listed
the values of similari ty of the compounds in all
the orbits in Glycolysis/Gluconeogenesis and TCA cycle
pathways. In Glycolysis/Gluconeogenesis pathway, 92.7%
of orbits’ similarity is larger than 0.5, while in TCA cycle
pathways 55% of orbits’ similarity is larger than 0.5. To
gain further understanding of the nature of similarity among
the compounds in the orbit, we presented the results of Gly-
colysis/Gluconeogenesis pathway and TCA  cycle pathway.

(1) The orbit [C00668, C01172] in Glycolysis/Gluco-
neogenesis pathway.

 It included C00668 (alpha-D-Glucose 6-phosphate) and
C01172 (beta-D-Glucose 6-phosphate). Their chemical
structures were shown in Table 3. C01172 is an isomer of
C0066, so their chemical structures are identical. We ex-
amined the pathways which two compounds C00668 and
C01172 participate in and the enzymes catalyzing the bio-
chemical reactions of these two compounds. We found that
they shared most of the pathways and enzymes (some en-
zymes are the same; some enzymes are in the same cat-
egory, like 3.2.1.86 and 3.2.1.26). Interested readers please
see Table 4 for details.

(2) The orbit [C00158, C00311, C00417] in TCA cycle
pathway.

Their names, chemical structures, pathways which they
participate in and enzymes they were catalyzed by were
shown in Table 5. The compound C00311 (Isocitrate) is the
isomer of the compound C00158 (Citrate). C00417 (cis-
Aconitate) is the product of dehydrolysis from C00158 and
C00311. In TCA cycle, the three reactions among these
three compounds are catalyzed by the same enzyme
EC4.2.1.3:

R01325: Citrate<=> cis-Aconitate + H2O

R01900: Isocitrate <=> cis-Aconitate + H2O

R01324: Citrate <=> Isocitrate

From the Table 5 we can see clearly that three compounds
C00158, C00311 and C00417 participated in the same path-
ways and were catalyzed by same enzymes in most cases.

Since metabolic function is mainly determined by chemi-
cal structure (Gutteridge et al., 2007), our work showed that
structural equivalent nodes in the metabolic networks were
more likely to have the same or similar function.

Recently, symmetry in general complex networks has at-
tracted certain research interest. All previous works
(MacArthur, 2008; Xiao et al., 2008a; Xiao et al., 2008b;
Xiao et al., 2008c) about symmetry in the networks have
focused on undirected graphs. To explore symmetry in the
metabolic networks, in this report we first introduced the
concept of symmetry and developed algorithms to search
symmetry in the directed networks. Then we further sys-
tematically investigated the symmetry properties of meta-
bolic network, including the degree of symmetry, restricted
network quotient. We observed much higher symmetry in
metabolic networks which are reconstructed from KEGG
and BioCyc datasets than that in random networks. Our
preliminary results showed that metabolic networks are
generally symmetric and in particular locally symmetric. To
explore functional implications of the structural symmetry
of metabolic networks, we tested significance of the chemi-
cal structure similarity of the compounds in the same orbit
of the network. We found that compounds that are struc-
turally equivalent to each other tend to have high similarity
in chemical structures and that the structurally equivalent
compounds often take part in the activities of the same path-
way and are catalyzed by same enzymes. This may sug-
gest that the symmetry in the metabolic network can gener-
ate the functional redundancy, and increase the robustness
and the ability against attack of external disturbances.

Symmetry may arise from duplications in evolution of meta-
bolic networks. In this report, we have focused on the sym-
metry of the metabolic networks. Due to the strong corre-
lation between symmetry and duplication (a universe mecha-
nism in biological networks) (Bhan et  al . ,  2002;
Chung et al., 2003; Teichmann and Babu, 2004), symmetry
is expected to be ubiquitous in a variety of other biological
networks and to play an important role in the evolution of
biological networks.

Despite increasing interests in exploring the role of sym-
metry in evolution of networks, mechanism of evolution of
symmetry has not been well investigated. It is worth study-
ing the mechanism of generating symmetry of the networks
and the role of structurally equivalent compounds in cell
and molecular functions in the future.
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Materials and Methods

Metabolic Network Reconstruction

At present, two major metabolic reconstruction methods
are usually used. One method is introduced in Ma and
Zeng(Ma and Zeng, 2003), where “currency” metabolites
like H2O, ATP, ADP are not included as nodes in network.
This simplified metabolic network is biochemically mean-
ingful in calculating path length. KEGG PATHWAY data-
base uses the simplified metabolic network reconstruction
method. The xml files of totally 152 metabolic pathways for
every organism (705 organisms in total) were downloaded
from KEGG FTP(Release date: Dec. 18, 2007). Reaction
data were read from the xml files and represented as di-
rected graph. The direction of each link implies the direc-
tion from an input compound (reactant) to an output com-
pound (product) (See Figure 1(a)). Single pathways are
combined to modules according to their metabolic functions,
such as Carbohydrate Metabolism, Metabolism of Cofac-
tors and Vitamins. There are 11 modules and each module
contains 2-23 pathways. See additional data file 1.  We also
integrated all the 152 metabolic pathways into a metabolic
network for every organism. Another metabolic network
reconstruction method includes currency metabolites as
nodes in network (Jeong et al., 2000), which makes meta-
bolic network more connected. The metabolic network re-
construction in BioCyc database is a representative of this

method. Totally 373 available Pathway/Genome Databases
was downloaded (Release date: Oct. 15, 2008. Each data-
base in the BioCyc collection describes the genome and
metabolic pathways of a single organism, including another
independent database AraCyc which has not been com-
bined into BioCyc yet). We processed the tabular flat files
of reaction data and combined the reactions into an inte-
grated network for each organism. Direction information
was not given in reaction files of BioCyc. So the integrated
networks are unidirectional networks.

Connectivity of Metabolic Networks

Since many enzymes have not been found in some organ-
isms yet, the reactions (edges in network) which are cata-
lyzed by these enzymes are absent in the current network.
Hence, we expect that the connectivity of metabolic net-
work is quite low compared to corresponding randomized
synthetic networks. To verify such conjecture, we use the
number of connected subgraphs (NCS) and ratio of size of
maximum connected subgraph to the whole network size
(MCS) to measure the connectivity of metabolic network.
We calculate the number of connected subgraph (NCS) in
every single network. Apparently, the larger the NCS is, the
lower the connectivity of metabolic network is; the larger
MCS is, the more connected the network is. Furthermore,
based on these concepts, we can define a new index: en-
tropy based on connected subgraph (ECS) to measure the

C00668 C01172
Name alpha-D-Glucose 6-phosphate beta-D-Glucose 6-phosphate 

Chemical 

structure 

map00010  Glycolysis / 
Gluconeogenesis 
map00030  Pentose phosphate 
pathway 
map00500  Starch and sucrose 
metabolism  

Pathway 

map00010  Glycolysis / 
Gluconeogenesis 
map00030  Pentose phosphate 
pathway 
map00052  Galactose 
metabolism 
map00500  Starch and sucrose 
metabolism  

Enzyme 

2.4.1.15   2.7.1.1   2.7.1.2    2.7.1.63  
2.7.1.69    
3.1.3.9   3.2.1.26  3.1.3.9    3.2.1.26   
5.3.1.9   5.1.3.15  5.4.2.2   5.4.2.5 

1.1.1.49       
2.7.1.1    2.7.1.2    2.7.1.63  
3.2.1.86        
5.3.1.9    5.1.3.15   5.4.2.6 

Table 4: Compounds in Orbits [C00668, C01172].
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average connectivity of a metabolic network:

, where C is the set of connected subgraphs of the network
and  pi is the probability that a node belongs to a connected
subgraph Cj. Given all connected subgraphs C={C1 , C2
,…, Ck }, we can calculate pi as:

, where N is the number of nodes in a graph. Clearly, for
networks with N nodes, ECSmax =logN  when pi=1/N  for

each (in this case, every node in the network is

isolated from each other); ECSmin =0, when the network is
a connected graph and consequently p=1 . Thus, we can
define normalized entropy based on ECSmax and ECSmin :

In general, networks that contain a large connected sub-
graph tend to have a relatively small value under the mea-
surement of NECS. Whereas metabolic networks are ex-
pected to be less connected and consequently the value of
NECS is expected to be relatively large. The connectivity
statistics including NCS, MCS and NECS in this section are
summarized from the underlying graphs of the metabolic
networks, where the direction and self loops were removed

C00158 C00311 C00417

Name Citrate Isocitrate cis-Aconitate 

Chemical 
structure 

Pathway 

map00020 Citrate 
cycle (TCA cycle)  
map00251 Glutamate 
metabolism  
map00252 Alanine 
and aspartate  
map00630 Glyoxylate 
and dicarboxylate  
map00720 Reductive 

carboxylate cycle 

map00020 Citrate 
cycle (TCA cycle)  
map00630 
Glyoxylate and 
dicarboxylate  
map00720 

Reductive 

carboxylate cycle 

map00020 Citrate cycle 
(TCA cycle)  
map00630 Glyoxylate and 
dicarboxylate  
map00660 C5-Branched 
dibasic acid metabolism 
map00720 Reductive 

carboxylate cycle 

Enzyme 

2.3.3.1   2.3.3.3   
2.3.3.8   2.8.3.10 
3.4.13.20   4.1.3.6    
4.2.1.3   4.2.1.4 
6.2.1.18    6.3.2.27 

1.1.1.41  1.1.1.42 
1.1.1.286 
2.3.1.126 
4.1.3.1   4.2.1.3 

4.1.1.6  4.2.1.3  4.2.1.4 
5.3.3.7 

Table 5: Compounds in Orbits [C00158, C00311, C00417].
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from the original network.

Assessing Symmetry of Complex Networks

The degree of the symmetry of a graph G usually could
be quantified by the following formula:

which is the size of the automorphism group of graph G.
Generally, is very large and we usually use

In order to compare the symmetry of networks with dif-
ferent sizes, symmetry measure  is often used, which is
defined as:

where N is the node number of network, measures the
symmetry relative to maximal possible automorphism group
of a graph with N nodes.

In general, for empirical networks, when network grows
its symmetry is often destroyed. As evolution proceeds we
rarely find global symmetry in the network, which means
we can rarely find automorphisms that transforms most of
nodes. In fact, many real networks have been shown to be
locally symmetric (MacArthur, 2008) , which means that we
can only find automorphisms which transform only small
part of nodes in the network. Here, we use to quantify
the degree to which graph G is globally symmetric(Xiao Y
et al., “Efficiently Indexing Shortest Paths by Exploiting
Symmetry in Graphs”. In Proceedings of the 12th Interna-
tional Conference on Extending Database Technology
(EDBT’09), March 23-26, 2009.):

where supp(g)={vi: vi
g vi } and ID(G)  is the set of

indecomposable automorphisms of graph G. An
indecomposable automorphism of Aut(G) is a non-identity
automorphism in Aut(G) that can not be decomposed into
the product of two automorphisms g1 and g2 such that g1 e
and g2 e  and supp(g1) supp(g2)=∅ , where e is the iden-
tity permutation that transform each vertex to itself.

To compute the above measures, the well known nauty
program(McKay, 1981), which is one of the most efficient
graph isomorphism algorithms available, is used to calculate
the size and structure of automorphism groups.

Symmetry in Metabolic Networks

Symmetry in Directed Graph

In most of the previous studies of complex networks, net-
works are usually pre-processed as their underlying graphs:
where weights, directions and self-loops are omitted. How-
ever, in the studies of metabolic network, the direction can’t
be omitted since many reactions are irreversible and the
direction determines the reaction rates and the product out-
put. Hence, when exploring symmetry in metabolic networks,
we need to investigate symmetry in directed networks first.

In general, a directed network is a pair (N, E) with N
representing the node set and E representing the set of or-
dered pairs of N. The related concepts of symmetry in di-
rected graph is completely the same as that in undirected
graphs. The fact that we need to highlight when exploring
symmetry in directed networks is that any automorphism in
a directed network need to preserve the oriented relation
instead of un-oriented relation in undirected graph.

It’s trivial to show that if g is an automorphism of a di-
rected graph G, g will also be an automorphism of its under-
lying graph G’.  However the inverse does not necessarily
hold true.  Hence, if G’ is the underlying graph of graph G,
we have Aut(G)  Aut(G’), which implies that the degree
of symmetry of G is smaller than that of G’.  Consequently,
the automorphism partition of the directed graph is finer4

than that of its underlying graph.

Restricted Network Quotient

Recall that nodes of a symmetric network can be parti-
tioned into disjoint equivalent classes which are called or-
bits of the graph according to the automorphic equivalence
relation on nodes. Nodes in the same orbit are structurally
equivalent and cannot be distinguished from each
other (Tinhofer and Klin, 1999) by usual measurement on
nodes, such as degree, clustering coefficient. Therefore they
can be glued together to create a coarse reduced network,
known as the quotient. In Figure 3, G1 are quotient net-
works of G0. Since metabolic networks possess a non-trivial
automorphism partition they carry a significant amount of
redundant information in which more than one node plays

4 Let P and Q be two partitions on the same set X, we say P is finer than Q if any cell in P is a subset of some cell in Q.
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the same structural role.

In most of the previous researches about complex net-
work, only the automorphism group of the largest connected
subgraph is exploited. In above sections, we have shown
that metabolic networks are more disconnected than other
empirical networks. Hence it is necessary to explore the
symmetry of metabolic networks with all disconnected sub-
graphs taken into account.

However, preserving all disconnected subgraphs will pose
a challenge to the calculation of quotient of metabolic struc-
ture. Please note that when calculating quotient of a graph
consisting of two isomorphic disconnected subgraphs, these
two subgraphs will be merged into one subgraph under the
action of the automorphism group of the graph.  Hence,
calculation of network quotient should take into account the
connectivity constraint so that the isomorphic isolated mod-
ules will not be merged into one reduced subgraph in the
quotient.

Specifically, assume that graph G contains pair-wise iso-
morphic and disconnected subgraphs G1, G2, …Gm. Let
H(G) be the set consisting of all those automorphisms that
swap nodes between pair-wise and disconnected subgraphs,
i.e.

H(G)={g: xg=y and

Then we can calculate the restricted quotient of graph
G under the action of R(G)=Aut(G)-H(G).

It’s easy to show that in the restricted quotient all discon-
nected subgraphs in the original graph will not be merged
and consequently the number of disconnected subgraphs
will be preserved. We obtained the orbits in network through
the restricted network quotient.

Given a graph G0 consisting of two isomorphic subgraphs,
as shown in Figure5(A). Obviously, the automorphism group
of G0 can be decomposed into the wreath product(Rotman,
1999) of Gin  and Gout, where Gin  is the triangle, shown in
Figure 5(B), and Gout is the abstracted outer graph, as shown
in Figure 5(C).  Note that in Aut(G), there are some
automorphisms, such as g=(1,4)(2,5)(3,6) that swap nodes
in different isolated subgraphs( e.g. 1 and 4 are transformed
to each other in spite of that these two vertices are in dif-
ferent isolated subgraphs). Under the action of such
automorphisms, we finally can obtain one single orbit
{1,2,3,4,5,6}for G0. Thus the quotient of G0  is just a single
node (shown in Figure 5(D)), which contradicts to the fact
that two isolated triangle structures often interpreted as two

isolated functional modularity for biological networks. How-
ever based on the concept of restricted network quotient,
the network G0 can be reduced to a quotient network con-
sisting of two isolated nodes (shown in Figure 5(E)).

In the computation of symmetry of directed networks,
we find that nauty program can not ensure the correctness
for directed graphs. Hence, we first use nauty to get the
automorphism partition of the underlying graph of the net-
work and then refine the automorphism partition. Consider-
ing the direction and connectivity of metabolic networks,
the algorithm to get the orbits is shown in Algorithm 1. Al-
though theoretically we can not ensure that the resulting
partition is equivalent to the automorphism partition under
the restricted automorphism group, the resulting partition is
practically close to the desired partition and is practically
useful in the exploration of functional equivalence of nodes
in the same orbits:

Algorithm1: getOrbits (G)

Input: a metabolic network G
Output: new orbit partition P’
{
1. P’=∅, G={ G1, G2, …Gm } //get Connected

Subgraphs of G ;
2. R(G)=Aut(G)-H(G)  // get restricted automorphisms

3. P={V1, V2, …Vk}// obtain partition according to
R(G);
4. for each  such that |Vi|>1
5. for each
6. L(v)=(|N+(v)|,|N-(v)|); //compute the in-degree and
out-degree of v
7. Order(Vi) ;  //Sort Vi according to lexicographic
order of L(v)
8. {Vi1, Vi2,…, Vik} =Subdivide(Vi);
9.  

10. return P’

}

Analyze Orbit Similarity

In the above section, we have known that nodes in the
same orbit group are structurally equivalent.  It is well known
that structural equivalence implies functional equivalence.
Whether the structurally equivalent nodes in the network
are more similar in function has still not been validated. In
metabolic networks, nodes are compounds with specific
structure which determines its function in reactions. If two
compounds are structurally similar to each other, they will
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Figure 5: A graph consisting of two isomorphic isolated subgraphs
(A) Underlying graph,   (B) Gin ,  (C) Gout , (D) the network quotient of the underlying graph  and (E) the restricted network
quotient of the underlying graph considering the connectivity.
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function similarly. Alex Gutteridge et.al have found that
chemical structure of small molecular compounds often
determines compound suitability for use in regulation and
how groups of similar compounds can regulate sets of
enzymes (Gutteridge et al., 2007). Hence, it is reasonable to
believe that whether the structurally equivalent nodes in the
network are functionally equivalent can be inferred from
the similarity between their chemical structures.

Many chemical structure comparison methods have been
proposed to analyze the compound similarity in the meta-
bolic pathways (Hattori et al., 2003; Nobeli et al., 2003;
R a y m o n d  e t  a l . ,  2 0 0 2 ;  R a y m o n d  a n d  W i l l e t t ,
2002).  In most of the algorithms, the chemical structure is
treated as a two dimensional (2D) object, which can be
presented as a graph consisting of nodes (atoms) and edges
(bonds). In this paper, we use the method proposed by
Hattori et al.,  (2003) to compute the similarities
between chemical compounds. In this method, the simi-
larities between compounds are measured by the size of
maximal common subgraph (MCS) between two graphs
representing these two compounds. A normalized similarity
score based on Jaccard coefficient (Watson, 1983) is used
in this method, which is defined as the ratio of the size of
the maximal common substructure to  the size of the non-
redundant set of all substructures:

, where |G| is defined as the number of nodes of graph G.

After obtaining the similarity of all the compound pairs by
Masahiro’s algorithm, we compared the compound similari-
ties between nodes in the same orbits to the compound simi-
larity between nodes in the network and test the signifi-
cance of similarity scores of nodes in the same orbit.

All similarity score of the orbits in the networks of 705
organisms were collected to form the orbit dataset where
the replicated orbits were just calculated once.  Another
dataset which is referred to as random dataset was gener-
ated by collections of similarity scores of all pairs of com-
pounds in the metabolic modules of all 705 organisms.

Three statistics were used to test differences in the simi-
larity scores between the orbit dataset and random dataset:
right tail t-test with equal variance, right tail t-test with un-
equal variance and Wilcoxon two-sided rank sum
test (Pagano and Gauvreau, 2000).

We assume that the compounds in the same orbit should
have similar chemical structure and function. So we use
Hattori’s maximal-common-subgraph based algorithm with
loose weighting condition to do chemical structure compari-
son. We summarized the average over similarity scores of
all compound pairs in the same orbit:
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