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Abstract We provide the geometrical interpretation for the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST
symmetry invariance of the Lagrangian density of a four (3 + 1)-dimensional (4D) interacting U(1) gauge theory
within the framework of superfield approach to BRST formalism. This interacting theory, where there is an explicit
coupling between the U(1) gauge field and matter (Dirac) fields, is considered on a (4, 2)-dimensional supermanifold
parametrized by the four spacetime variables xμ(μ = 0, 1, 2, 3) and a pair of Grassmannian variables θ and θ̄

(with θ2 = θ̄2 = 0, θθ̄ + θ̄θ = 0). We express the Lagrangian density and (anti-)BRST charges in the language
of the superfields and show that (i) the (anti-)BRST invariance of the 4D Lagrangian density is equivalent to
the translation of the super Lagrangian density along the Grassmannian direction(s) (θ and/or θ̄) of the (4, 2)-
dimensional supermanifold such that the outcome of the above translation(s) is zero, and (ii) the anticommutativity
and nilpotency of the (anti-)BRST charges are the automatic consequences of our superfield formulation.

MSC 2010: 81T80, 81T13, 58J70

1 Introduction

The usual superfield approach [1,2,3,4,6,19,20,21] to BRST formalism has been very successfully applied to the
case of 4D (non-)Abelian 1-form (A(1) = dxμAμ) gauge theories. In this approach, one constructs a super curvature
2-form F̃ (2) = d̃Ã(1) + iÃ(1) ∧ Ã(1) by exploiting the Maurer-Cartan equation in the language of the super 1-form
gauge connection Ã(1) and the super exterior derivative d̃ = dZM∂M ≡ dxμ∂μ + dθ∂θ + dθ̄∂θ̄ (with d̃2 = 0) that
are defined on a (4, 2)-dimensional supermanifold, parametrized by the superspace variables ZM = (xμ, θ, θ̄) (with
the super derivatives ∂M = (∂μ, ∂θ, ∂θ̄)).

The above super curvature is subsequently equated to the ordinary 2-form curvature F (2) = dA(1)+iA(1)∧A(1)

(with d = dxμ∂μ and A(1) = dxμAμ) defined on the 4D ordinary flat Minkowskian spacetime manifold that
is parametrized by the ordinary spacetime variable xμ(μ = 0, 1, 2, 3). This restriction, popularly known as the
horizontality condition, leads to the derivation of the nilpotent (anti-)BRST symmetry transformations for the gauge
and (anti-)ghost fields of the 4D (non-)Abelian 1-form gauge theories.

The key reasons behind the emergence of the nilpotent (anti-)BRST symmetry transformations for the gauge
and (anti-)ghost fields, due to the above horizontality condition1 (HC), are

(i) the nilpotency of the (super) exterior derivatives (d̃)d which play very important roles in the above HC, and
(ii) the super 1-form connection Ã(1) = dZM ÃM involves the vector superfield ÃM that consists of the multiplet

superfields (Bμ,F , F̄) which are nothing but the generalizations of the gauge and (anti-)ghost fields (Aμ, C, C̄).
The latter are the basic fields of the 4D (non-)Abelian 1-form gauge theories.

The above equality (i.e. F̃ (2) = F (2)), due to the HC2, implies that the ordinary curvature 2-form F (2) remains
unaffected by the presence of the Grassmannian coordinates θ and θ̄ (with θ2 = θ̄2 = 0, θθ̄ + θ̄θ = 0) of
the superspace variable ZM . This restriction, however, does not shed any light on the derivation of the nilpotent
(anti-)BRST symmetry transformations that are associated with the matter (e.g. Dirac, complex scalar, etc.) fields of
an interacting 4D (non-)Abelian 1-form gauge theory.

1 This condition has been christened as the soul-flatness condition in [18].
2 It is clear that, for the Abelian 1-form theory, we have F̃ (2) = d̃Ã(1) and F (2) = dA(1).
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In a recent set of papers [10,11,12,13,14], the above HC has been extended so as to derive the nilpotent
(anti-)BRST symmetry transformations for the matter (or analogous) fields within the framework of the superfield
approach to BRST formalism without spoiling the cute geometrical interpretations for the nilpotent (anti-)BRST
symmetry transformations (and their corresponding generators) that emerge from the application of the HC alone.

In fact, in a set of a couple of papers [13,14], we have been able to generalize the HC by a gauge invariant
restriction (GIR) on the matter superfields (defined on the above (4, 2)-dimensional supermanifold) which enables
us to derive the nilpotent (anti-)BRST symmetry transformations together for the gauge, (anti-)ghost and matter
fields of a 4D interacting (non-)Abelian gauge theory in one stroke. In this single GIR on the matter superfields of
the above supermanifold, the (super) covariant derivatives and their intimate connection with the (super) curvature
2-forms, play a very decisive role.

In the earlier works on the superfield formulation [21,20,19,2,1,3,4,6,18,10,11,12,13,14], the nilpotent (anti-
)BRST symmetry invariance of the physical 4D Lagrangian density of the (non-)Abelian 1-form gauge theories has
not yet been captured. In our previous endeavours [7,8,9], we have attempted to capture the nilpotent symmetry
invariance of the 2D (non-)Abelian 1-form gauge theories (without any interaction with matter fields) within the
framework of the superfield approach to BRST formalism. However, these theories are found to be topological
in nature and they are endowed with the nilpotent (anti-)BRST as well as nilpotent (anti-)co-BRST symmetry
transformations.

In our very recent paper [15], we have been able to provide the geometrical interpretation for the (anti-)BRST
invariance of the 4D free (non-)Abelian 1-form gauge theories (where there is no interaction with the matter fields)
within the framework of the superfield formalism. In this work [15], we have also provided the reasons behind the
uniqueness of the above symmetry transformations (and their invariances) and furnished the logical arguments for
the non-existence of the on-shell nilpotent (anti-)BRST symmetry transformations together for the 4D non-Abelian
1-form gauge theory.

The central theme of our present paper is to generalize the key results of our earlier work in [15] to the more
general case of an interacting U(1) gauge theory where there is an explicit coupling between the 1-form U(1) gauge
field and the Noether conserved current constructed with the matter (Dirac) fields. We find that the GIR on the matter
(Dirac) superfields (defined on the above (4, 2)-dimensional supermanifold) enables us to derive the exact nilpotent
(anti-)BRST symmetry transformations for the matter (Dirac) fields which can never be obtained by exploiting the
HC alone. The above GIR also provides a meeting-ground for the HC of the usual superfield formalism [1,2,3,4,6,
18,19,20,21] and a gauge invariant condition on the matter superfields.

For our central objective of encapsulating the (anti-)BRST invariance of the 4D Lagrangian density of the
interacting U(1) gauge theory within the framework of the superfield approach to BRST formalism, the following
key points are of utmost importance, namely;

(i) the application of the HC enables us to demonstrate that the kinetic energy term of the U(1) gauge field remains
independent of the Grassmannian variables when it is expressed in terms of the gauge superfields (that are
obtained after the application of the HC), and

(ii) the application of the above GIR on the matter superfields enables us to show that all the terms containing the
matter (Dirac) superfields are independent of the Grassmannian variables when they are expressed in terms of
the superfields that are obtained after the application of the HC as well as the GIR on the matter superfields (see,
e.g. (4.8) below).

The above key restrictions (i.e. HC and GIR) enable us to express the total Lagrangian density of the 4D
interacting U(1) gauge theory with Dirac fields in the language of the superfields, in such a manner that, ultimately,
a partial derivative w.r.t. θ and/or θ̄ on it becomes zero. In other words, the total super Lagrangian density (defined
on the (4, 2)-dimensional supermanifold) becomes independent of the Grassmannian variables.

The above observation, in turn, implies that the corresponding 4D Lagrangian density of the parent theory
(defined on the 4D ordinary spacetime manifold) becomes automatically (anti-)BRST invariant. Stated in the lan-
guage of geometry on the above supermanifold, the translation of the above super Lagrangian density (defined
in terms of the superfields obtained after the application of the HC and GIR) along either of the Grassmannian
directions (i.e. θ and/or θ̄) of the above supermanifold becomes zero. This result is consistent with our earlier
observation in [15].

The main motivating factors that have contributed to our curiosity to carry out the present investigation are as
follows. First, it is very important for us to generalize our earlier work [15] to the case where there is an explicit
coupling between the U(1) gauge field and matter (Dirac) fields. Second, it is a challenge to check the validity
of the geometrical interpretations, provided for the (anti-)BRST invariance in our earlier work [15], to the present
interacting case. Third, we explicitly express the (anti-)BRST charges in terms of the superfields and prove their
nilpotency and anticommutativity properties. Finally, our present attempt is a modest step towards our main goal of
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applying the superfield formalism to the case of higher p-form (p ≥ 2) gauge theories which have become important
in the context of string theories.

Our present paper is organized as follows.
In Section 2, we give a brief synopsis of the nilpotent (anti-)BRST symmetry invariance of the Lagrangian

density of a 4D interacting U(1) gauge theory where there is an explicit coupling between the U(1) gauge field and
the Noether conserved current, constructed with the help of the Dirac fields.

We exploit, in Section 3, the horizontality condition (HC) to express the kinetic energy, gauge-fixing, and ghost
terms in the language of the superfields (derived after the application of HC).

Section 4 deals with a GIR on the matter superfields to obtain the (anti-)BRST symmetry transformations for
the matter fields and to express the kinetic term, interaction term and mass term of the Dirac fields in the language
of the superfields, obtained after the application of the HC and GIR.

In Section 5, we express the (anti-)BRST charges in the language of the superfields obtained after the application
of the HC and GIR. This exercise enables us to prove the nilpotency and anticommutativity of the above charges in
a simple manner from which the geometrical meanings ensue.

Finally, in Section 6, we make some concluding remarks and point out a few future directions for further
investigations.

Appendix A is devoted to the derivation of the nilpotent (anti-)BRST symmetry transformations together for the
gauge, matter and (anti-)ghost fields of the theory from a single GIR on the matter superfields.

2 Nilpotent (anti-)BRST symmetry invariance in QED: Lagrangian formalism

We begin with the following nilpotent (anti-)BRST symmetry invariant Lagrangian density of the 4D interacting
Abelian 1-form U(1) gauge theory in the Feynman gauge3 (see, e.g. [18])

Lb = −1

4
FμνFμν + ψ̄(iγμDμ −m)ψ +B(∂ ·A) + 1

2
B2 − i∂μC̄∂

μC

≡ L(g)
b + L(d)

b .

(2.1)

In the above, the kinetic energy term for the 1-form gauge field is constructed with the help of the curvature tensor
Fμν which is derived from the 2-form F (2) = (1/2!)(dxμ ∧ dxν)Fμν . The latter emerges (i.e. F (2) = dA(1)) when
the exterior derivative d = dxμ∂μ (with d2 = 0) acts on the 1-form connection A(1) = dxμAμ that defines the
gauge potential Aμ of our present theory. The Nakanishi-Lautrup auxiliary scalar field B is invoked to linearize the
gauge-fixing term [−(1/2)(∂ · A)2]. The latter requires, for the nilpotent (anti-)BRST symmetry invariance in the
theory, the fermionic (i.e. C2 = C̄2 = 0, CC̄ + C̄C = 0) (anti-)ghost fields (C̄)C which play a central role in the
proof of the unitarity of the theory. The covariant derivative Dμψ = ∂μψ + ieAμψ generates the interaction term
(i.e. −eψ̄γμAμψ) between the gauge field Aμ and Dirac fields ψ and ψ̄ (with mass m and charge e). Here γμ’s are
the standard hermitian 4× 4 Dirac matrices in 4D.

The above Lagrangian (2.1) has been split into two parts L(g)
b and L(d)

b for our later convenience. The former
corresponds to the kinetic term, gauge-fixing term and Faddeev-Popov ghost term for the 1-form gauge and fermionic
(anti-)ghost fields of the theory and the latter corresponds to all the terms in the Lagrangian density that necessarily
possess the Dirac fields.

The following off-shell nilpotent (s2(a)b = 0) and anticommuting (sbsab + sabsb = 0) infinitesimal (anti-)BRST

symmetry transformations s(a)b
4

sbAμ = ∂μC, sbC = 0, sbC̄ = iB, sbB = 0, sbψ = −ieCψ, sbψ̄ = −ieψ̄C, sbFμν = 0, (2.2)

sabAμ=∂μC̄, sabC̄=0, sabC=−iB, sabB=0, sabψ=−ieC̄ψ, sabψ̄=−ieψ̄C̄, sabFμν=0, (2.3)

leave the above Lagrangian density (2.1) quasi-invariant because it transforms to a total spacetime derivative under
the above transformations (cf. (5.1) below). The key features of the above transformations are:

3 We follow here the convention and notations such that the flat 4D Minkowski spacetime manifold is characterized by a metric ημν with
the signatures (+1,−1,−1,−1) so that � = ημν∂μ∂ν = (∂0)2− (∂i)

2 and P ·Q = ημνPμQν ≡ P0Q0−PiQi is the dot product
between two non-null 4-vectors Pμ and Qμ. The Greek indices μ, ν, κ, . . . = 0, 1, 2, 3 correspond to the spacetime directions and the
Latin indices i, j, k, . . . = 1, 2, 3 stand only for the space directions on the above 4D flat Minkowskian spacetime manifold.

4 We follow here the notation and convention adopted in [10,11,12,13,14]. In their totality, the (anti-)BRST symmetry transformations
δ(A)B are the product (i.e. δ(A)B = ηs(a)b) of an anticommuting (ηC == Cη, ηψ = −ψη etc.) spacetime independent parameter η
and s(a)b such that the operator form of the nilpotency of δ(A)B is traded with that of s(a)b.
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(i) the curvature tensor, owing its origin to the cohomological operator d = dxμ∂μ (with d2 = 0), remains invariant
under both the above nilpotent symmetry transformations (i.e. s(a)bFμν = 0),

(ii) the total terms involving the Dirac fields (i.e. ψ̄(iγμDμ − m)ψ) also remain invariant under s(a)b (i.e.
s(a)b[ψ̄(iγ

μDμ −m)ψ] = 0),
(iii) the nilpotency (i.e. d2 = 0) of the exterior derivative d = dxμ∂μ is replicated in the language of the nilpotency

of the above symmetry transformations s(a)b (i.e. s2(a)b = 0), and
(iv) there is a deep connection between the exterior derivative and the above nilpotent transformations which will

be exploited in the superfield approach to BRST formalism (see Sections 3 and 4 and the appendix below).

It can be checked that the gauge-fixing and Faddeev-Popov ghost terms of the Lagrangian density (2.1) can be
written, in the exact form(s), as

−sb
[
iC̄

{
(∂ ·A) + 1

2
B

}]
, sab

[
iC

{
(∂ ·A) + 1

2
B

}]
, sbsab

(
i

2
AμA

μ +
1

2
CC̄

)
, (2.4)

modulo some total spacetime derivative terms which do not affect the dynamics of the theory. The above expressions
provide a simple proof for the nilpotent symmetry invariance of the Lagrangian density (2.1) because of

(i) the nilpotency of the transformations s(a)b (i.e. s2(a)b = 0),
(ii) the invariance of the curvature term (i.e. s(a)bFμν = 0), and

(iii) the invariance of the terms involving Dirac fields (i.e. s(a)b[ψ̄(iγ
μDμ − m)ψ] = 0) under the nilpotent

(anti-)BRST symmetry transformations s(a)b.

3 Symmetry transformations for the gauge and ghost fields: horizontality condition

We exploit here the usual superfield approach [1,2,3,4,6,18,19,20,21] to obtain the nilpotent (anti-)BRST symme-
try transformations for the gauge and (anti-)ghost fields of the Lagrangian density (2.1). To this end in mind, first of
all, we generalize the 4D local fields (Aμ(x), C(x), C̄(x)) to the superfields (Bμ(x, θ, θ̄),F(x, θ, θ̄), F̄(x, θ, θ̄)) that
are defined on a (4, 2)-dimensional supermanifold, parametrized by the superspace variables ZM = (xμ, θ, θ̄). In
terms of these superfields, we can define a super 1-form connection as

Ã(1) = dZM ÃM = dxμBμ + dθF̄ + dθ̄F , (3.1)

where ÃM is the vector superfield with the component multiplet fields as (Bμ,F , F̄) and dZM = (dxμ, dθ, dθ̄) is
the superspace differential.

The above component superfields can be expanded in terms of the basic fields (Aμ, C, C̄), auxiliary field B and
secondary fields as (see, e.g. [1,2,3,4])

Bμ(x, θ, θ̄) = Aμ(x) + θR̄μ(x) + θ̄Rμ(x) + iθθ̄Sμ(x),

F(x, θ, θ̄) = C(x) + iθB̄(x) + iθ̄B(x) + iθθ̄s(x),

F̄(x, θ, θ̄) = C̄(x) + iθB̄(x) + iθ̄B(x) + iθθ̄s̄(x),

(3.2)

where the secondary fields are B̄(x),B(x), B̄(x), s(x), s̄(x). It will be noted that, in the limit (θ, θ̄) → 0, we retrieve
our basic fields (Aμ, C, C̄). In the above expansion, the bosonic and fermionic component fields do match with
each-other. The exact expressions for the secondary fields can be derived in terms of the basic fields of the theory if
we exploit the celebrated HC.

Let us recall our observation after the (anti-)BRST symmetry transformations (2.2) and (2.3). These transforma-
tions s(a)b owe their origin to the exterior derivative d = dxμ∂μ which plays a very important role in the application
of the HC. To this end in mind, let us generalize the 4D ordinary d to its counterpart on the (4, 2)-dimensional
supermanifold, as

d→ d̃ = dZM∂M = dxμ∂μ + dθ∂θ + dθ̄∂θ̄, ∂M = (∂μ, ∂θ, ∂θ̄). (3.3)

The HC is the requirement that the super 2-form F̃ (2) = d̃Ã(1), defined on the (4, 2)-dimensional supermanifold,
should be equal (i.e. F̃ (2) = F (2)) to the ordinary 4D 2-form F (2) = dA(1). Physically, this amounts to the
restriction that the gauge (i.e. (anti-)BRST) invariant quantities, which are the components of the curvature tensor
Fμν , should remain unaffected by the presence of the Grassmannian variables θ and θ̄.
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The explicit computations for F̃ (2) (from (3.1) and (3.3)) and its subsequent equality with the ordinary 4D 2-
form F (2), leads to the following relationships between the secondary fields and basic fields of the theory [10,11,
12,13,14]

Rμ = ∂μC, R̄μ = ∂μC̄, Sμ = ∂μB ≡ −∂μB̄, B + B̄ = 0, B = 0, B̄ = 0, s = 0, s̄ = 0. (3.4)

Insertion of these values into the expansion (3.2) of the superfields leads to the following final expansion

B(h)
μ (x, θ, θ̄) = Aμ(x) + θ∂μC̄(x) + θ̄∂μC(x) + iθθ̄∂μB(x)

≡ Aμ(x) + θ
(
sabAμ(x)

)
+ θ̄

(
sbAμ(x)

)
+ θθ̄

(
sbsabAμ(x)

)
,

F(h)(x, θ, θ̄) = C(x)− iθB(x)

≡ C(x) + θ
(
sabC(x)

)
+ θ̄(sbC(x)) + θθ̄

(
sbsabC(x)

)
,

F̄(h)(x, θ, θ̄) = C̄(x) + iθ̄B(x)

≡ C̄(x) + θ
(
sabC̄(x)

)
+ θ̄

(
sbC̄(x)

)
+ θθ̄

(
sbsabC̄(x)

)
,

(3.5)

where the following points are important, namely;

(i) the superscript (h) on the superfields corresponds to the superfields obtained after the application of the HC,
(ii) the transformations sbC = 0 and sabC̄ = 0 have been taken into account in the above uniform expansions,

(iii) the super curvature tensor F̃ (h)
μν = ∂μB(h)

ν − ∂νB(h)
μ is found to be equal to the ordinary curvature tensor

Fμν = ∂μAν − ∂νAμ because all the Grassmannian dependent terms cancel out to become zero, and
(iv) there is a very intimate relationship between the (anti-)BRST symmetry transformations acting on a 4D field

and the translational generators (along the Grassmannian directions of the supermanifold) acting on the corre-
sponding (4, 2)-dimensional superfield obtained after the application HC. Mathematically, this statement can be
expressed as

Lim
θ→0

∂

∂θ̄
Ω̃(h)(x, θ, θ̄) = sbΩ(x), Lim

θ̄→0

∂

∂θ
Ω̃(h)(x, θ, θ̄) = sabΩ(x), (3.6)

where Ω(x) is the ordinary 4D generic local field and Ω̃(h)(x, θ, θ̄) is the corresponding generic superfield
derived after the application of the HC.

The above superfields would be used to express the kinetic term for the U(1) gauge field, gauge-fixing term for
the photon field and Faddeev-Popov ghost terms for the (anti-)ghost fields of the theory. These can be expressed in
the following three different and distinct forms (see, e.g. [15])

L̃(1)
(g)

= −1

4
F̃

(h)
μν F̃

μν(h) + Lim
θ→0

∂

∂θ̄

[
− iF̄(h)

(
∂μB(h)

μ +
1

2
B

)]
,

L̃(2)
(g)

= −1

4
F̃

(h)
μν F̃

μν(h) + Lim
θ̄→0

∂

∂θ

[
+ iF(h)

(
∂μB(h)

μ +
1

2
B

)]
,

L̃(3)
(g)

= −1

4
F̃

(h)
μν F̃

μν(h) +
∂

∂θ̄

∂

∂θ

[
+
i

2
Bμ(h)B(h)

μ +
1

2
F(h)F̄(h)

]
,

(3.7)

where the subscript (g) on the above super Lagrangians stands for the terms in the 4D Lagrangian density that
correspond to the gauge and (anti-)ghost fields. In other words, we have encapsulated the kinetic term, gauge-fixing
term and Faddeev-Popov ghost term of the 4D Lagrangian density (2.1) in the language of the superfields derived
after the application of the HC.

It is very interesting to note that the (anti-)BRST invariance of the kinetic term, gauge-fixing term and Faddeev-
Popov ghost term can be captured in the language of the translations of the above super Lagrangian densities L̃(1,2,3)

(g)

along the Grassmannian directions. Mathematically, the nilpotent BRST invariance can be expressed as follows

sbL(g)
b = 0 ⇐⇒ Lim

θ→0

∂

∂θ̄
L̃(1)
(g)

= 0, s2b = 0 ⇐⇒
(
Lim
θ→0

∂

∂θ̄

)2

= 0, (3.8)

sbL(g)
b = 0 ⇐⇒ ∂

∂θ̄
L̃(3)
(g)

= 0, s2b = 0 ⇐⇒
(
∂

∂θ̄

)2

= 0. (3.9)
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Similarly, the anti-BRST invariance of the kinetic, gauge-fixing and ghost terms can be expressed, in the language
of the superfields, as follows

sabL(g)
b = 0 ⇐⇒ Lim

θ̄→0

∂

∂θ
L̃(2)
(g)

= 0, s2ab = 0 ⇐⇒
(
Lim
θ̄→0

∂

∂θ

)2

= 0, (3.10)

sabL(g)
b = 0 ⇐⇒ ∂

∂θ
L̃(3)
(g)

= 0, s2ab = 0 ⇐⇒
(
∂

∂θ

)2

= 0. (3.11)

Thus, we note that the Grassmannian independence of the super Lagrangian densities, defined in terms of the
superfields on the (4, 2)-dimensional supermanifold, automatically implies the (anti-)BRST invariance of the 4D
Lagrangian density defined in terms of 4D local fields taking their values on a 4D flat Minkowskian spacetime
manifold.

4 (Anti-)BRST symmetry transformations for Dirac fields: gauge invariant condition

Unlike the superfields Bμ(x, θ, θ̄),F(x, θ, θ̄), F̄(x, θ, θ̄) that form a vector supermultiplet (cf. the previous section),
the fermionic matter superfields Ψ(x, θ, θ̄) and Ψ̄(x, θ, θ̄) (which are the generalizations of the 4D matter Dirac
fields ψ(x) and ψ̄(x) of the Lagrangian density (2.1) onto the (4, 2)-dimensional supermanifold) do not belong to
any supermultiplet. Thus, it appears that there is no connection between the superfields (Bμ,F , F̄) and the matter
superfields (Ψ(x, θ, θ̄), Ψ̄(x, θ, θ̄)). However, there is one gauge invariant relationship in which the matter superfields
do ‘talk’ with the super gauge connection Ã(1) of (3.1). We exploit this relationship and impose the following GIR
on the matter superfields

Ψ̄(x, θ, θ̄)
[
d̃+ ieÃ

(1)
(h)

]
Ψ(x, θ, θ̄) = ψ̄(x)

(
d+ ieA(1)

)
ψ(x). (4.1)

The r.h.s. of the above equation is a U(1) gauge (i.e. (anti-)BRST) invariant quantity because it is connected with
the covariant derivative.

The relationship (4.1) is interesting on the following grounds. First, it is a gauge (i.e. (anti-)BRST) invariant
quantity. Thus, it is physical in some sense. Second, it will be noted that, on the l.h.s. of (4.1), we have Ã(1)

(h)

which is derived after the application of HC5. Thus, HC of the previous section and GIR of our present section (cf.
(4.1)) are intimately connected. In fact, the explicit form of Ã(1)

(h)
= dxμB(h)

μ + dθF̄(h) + dθ̄F(h) is such that the
whole expansion of (3.5) is going to play a very decisive role in the determination of the exact nilpotent (anti-)BRST
symmetry transformations for the matter fields in the language of the (anti-)ghost fields and matter fields themselves.

To find out the impact of the above restriction, we have to expand the matter superfields along the Grassmannian
θ and θ̄ directions of the (4, 2)-dimensional supermanifold as follows

Ψ(x, θ, θ̄) = ψ(x) + iθb̄1(x) + iθ̄b2(x) + iθθ̄f(x), Ψ̄(x, θ, θ̄) = ψ̄(x) + iθb̄2(x) + iθ̄b1(x) + iθθ̄f̄(x), (4.2)

where ψ(x) and ψ̄(x) are the 4D basic Dirac fields of the Lagrangian density (2.1) and b1, b̄1, b2, b̄2, f, f̄ are the
secondary fields which will be expressed in terms of the basic fields of the Lagrangian density (2.1) due to the
above GIR (4.1). In the limit (θ, θ̄) → 0, we retrieve our basic 4D local fields ψ and ψ̄ and bosonic (b1, b2, b̄1, b̄2)

and fermionic (ψ, ψ̄, f, f̄ ) degrees of freedom do match in the above expansion. This is consistent with the basic
requirements of a true supersymmetric field theory.

The explicit computation of the l.h.s. of GIR (4.1) and its subsequent comparison with the r.h.s., yields the
following relationship between the secondary fields and the basic fields of the theory (see [13] for details)

b1=−eψ̄C, b2=−eCψ, b̄1=−eC̄ψ, b̄2=−eψ̄C̄, f=−ie[B + eC̄C]ψ, f̄=+ieψ̄[B + eCC̄]. (4.3)

The insertions of the above values into the expansion of the matter superfields (4.2), lead to the following explicit
expansions

Ψ (G)(x, θ, θ̄) = ψ(x) + θ
(− ieC̄ψ(x)

)
+ θ̄

(− ieCψ(x)
)
+ θθ̄

[
e(B + eC̄C)ψ(x)

]
≡ ψ(x) + θ

(
sabψ(x)

)
+ θ̄

(
sbψ(x)

)
+ θθ̄

(
sbsabψ(x)

)
,

Ψ̄ (G)(x, θ, θ̄) = ψ̄(x) + θ
(− ieψ̄(x)C̄

)
+ θ̄

(− ieψ̄(x)C
)
+ θθ̄

[− eψ̄(x)(B + eCC̄)
]

≡ ψ̄(x) + θ
(
sabψ̄(x)

)
+ θ̄

(
sbψ̄(x)

)
+ θθ̄

(
sbsabψ̄(x)

)
.

(4.4)

5 The HC is basically a gauge covariant restriction for the discussion of the non-Abelian gauge theory. It, however, reduces to a GIR for the
Abelian U(1) gauge theory.
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The superscript (G) on the above superfields denotes the fact that they have been obtained after the application of
the GIR (cf. equation (4.1)).

It is very interesting to note, at this stage, that the GIR (cf. (4.1)) on the matter superfields leads to

(i) the exact and unique derivation of the nilpotent (anti-)BRST symmetry transformations for the matter fields
ψ(x) and ψ̄(x), and

(ii) the geometrical interpretation for the (anti-)BRST symmetry transformations as the translational generators
along the Grassmannian directions θ and θ̄ of the above supermanifold. As a consequence, we obtain the
analogue of the equation (3.6), as

Lim
θ→0

∂

∂θ̄
Ω̃(G)(x, θ, θ̄) = sbΩ(x), Lim

θ̄→0

∂

∂θ
Ω̃(G)(x, θ, θ̄) = sabΩ(x), (4.5)

where Ω̃(G)(x, θ, θ̄) stands for the expansions (4.4) for the matter superfields, obtained after the application of
the GIR (4.1). The generic field Ω(x) stands for the 4D matter Dirac fields ψ(x) and ψ̄(x).

There is an interesting consequence due to our expansion in (4.4). It is straightforward to check that the following
equation

Ψ̄ (G)(x, θ, θ̄)Ψ (G)(x, θ, θ̄) = ψ̄(x)ψ(x), (4.6)

is automatically satisfied. This observation implies, ultimately, that the equation (4.1) can be re-expressed as

Ψ̄ (G)(x, θ, θ̄)
[
d̃+ ieÃ

(1)
(h)

−M
]
Ψ (G)(x, θ, θ̄) = ψ̄(x)

(
d+ ieA(1) −m

)
ψ(x). (4.7)

Physically, the above restriction implies that the total Dirac part of the Lagrangian density (2.1) (i.e. L(d)) remains
unaffected due to the presence of the Grassmannian variables on the (4, 2)-dimensional supermanifold, on which,
our 4D interacting U(1) gauge theory (with Dirac fields) has been generalized. The above observation implies that
the super Lagrangian density for the Dirac fields, using GIR (4.1) and super expansion (4.4), can be written as

L̃(d) = Ψ̄ (G)(x, θ, θ̄)
(
iγMD

(h)
M −m

)
Ψ (G)(x, θ, θ̄) ≡ L(d), (4.8)

where γM ’s are some non-trivial generalization of the 4× 4 Dirac matrices γμ to the (4, 2)-dimensional superman-

ifold and γMD
(h)
M is defined as6

γMD
(h)
M = γμ

(
∂μ + ieB(h)

μ

)
+ Cθ

(
∂θ + ieF̄(h)

)
+ Cθ̄

(
∂θ̄ + ieF(h)

)
. (4.9)

Here the superfields B(h)
μ ,F(h) and F̄(h) are the expanded form of equation (3.5) that have been obtained after the

application of HC.
It is straightforward to capture now the (anti-)BRST invariance (i.e. s(a)b[ψ̄(iγ

μDμ −m)ψ] = 0) of the Dirac
part of the Lagrangian density (2.1) in the language of the superfields. This can be expressed as follows

sbL(d) = 0 ⇐⇒ Lim
θ→0

∂

∂θ̄
L̃(d) = 0, sabL(d) = 0 ⇐⇒ Lim

θ̄→0

∂

∂θ
L̃(d) = 0. (4.10)

5 Nilpotent and anticommuting (anti-)BRST charges: superfield formulation

It is straightforward to check that the total Lagrangian density (2.1) transforms, under the (anti-)BRST symmetry
transformations (cf. (2.2) and (2.3)), as

sabLb = ∂μ
[
B∂μC̄

]
, sbLb = ∂μ

[
B∂μC

]
. (5.1)

The Noether (anti-)BRST conserved currents Jμ
(a)b

(i.e. ∂μJ
μ
i = 0, i = b, ab), that ensue due to the above symmetry

transformations, are

Jμ
ab = B∂μC̄ − Fμν∂νC̄ − eψ̄γμC̄ψ, Jμ

b = B∂μC − Fμν∂νC − eψ̄γμCψ, (5.2)

6 The (4, 2)-dimensional representation γM ≡ (γμ, Cθ, Cθ̄) serves our purpose in equation (4.9). HereCθ andCθ̄ are fermionic in nature
and they reduce to zero in the limit (θ, θ̄) → 0. The exact form of Cθ and Cθ̄ is not essential for our purposes because, irrespective of
their form, we obtain (∂θ + ieF̄(h))Ψ (G) = 0 and (∂θ̄ + ieF(h))Ψ (G) = 0 when (4.9) is inserted into (4.8) for the verification of the
equality (see, also, [13] for more details).
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which lead to the derivation of the following conserved charges

Qab =

∫
d3x

[
B ˙̄C − ḂC̄

]
, Qb =

∫
d3x

[
BĊ − ḂC

]
. (5.3)

In the derivation of the above simple expressions for Q(a)b as well as in the proof of the conservation of currents,
the following equations of motion

∂μF
μν = ∂νB + eψ̄γνψ, �C = �C̄ = �B = 0,

iγμ(∂μψ) = mψ + eγμAμψ, i(∂μψ̄)γ
μ = −mψ̄ − eψ̄γμAμ,

(5.4)

that emerge from the Lagrangian density (2.1), have been exploited.
To understand the nilpotency and anticommutativity of the (anti-)BRST charges, we have to express them in

terms of the superfields that have been obtained after the application of the HC and GIR (cf. (3.5) and (4.4)). For
instance, it can be checked that the (anti-)BRST charges can be written as

Qb = i
∂

∂θ̄

∂

∂θ

(∫
d3x

[
B(h)
0 F (h)

])
, Qab = i

∂

∂θ̄

∂

∂θ

(∫
d3x

[
B(h)
0 F̄ (h)

])
. (5.5)

The above expressions immediately imply (cf. (3.8)–(3.11))

∂

∂θ̄
Qb = 0,

∂

∂θ
Qb = 0,

∂

∂θ̄
Qab = 0,

∂

∂θ̄
Qab = 0, (5.6)

because of the fact that ∂θ∂θ̄ + ∂θ̄∂θ = 0 and ∂2θ = ∂2
θ̄

= 0. In the language of the (anti-)BRST symmetry
transformations (cf. (3.6) and (4.5)), we have

sbQb = 0, sabQb = 0, sbQab = 0, sabQab = 0, (5.7)

which imply the nilpotency (i.e. Q2
(a)b = 0) and anticommutativity (i.e. QbQab + QabQb = 0) properties of

the conserved (anti-)BRST charges because sbQb = −i{Qb, Qb} = 0, sabQb = −i{Qb, Qab} = 0, sabQab =

−i{Qab, Qab} = 0, sbQab = −i{Qab, Qb} = 0, etc. It is interesting to point out that the (anti-)BRST charges (5.5)
can be equivalently expressed as

Qab = i

∫
d3x

∫
d2θ

[
B(h)
0 F̄ (h)

]
, Qb = i

∫
d3x

∫
d2θ

[
B(h)
0 F (h)

]
, (5.8)

where we have adopted d2θ = dθ̄dθ. Ultimately, the above expressions imply the following interesting relationships

isbsab
[
A0C̄

]
= B ˙̄C − ḂC̄, isbsab

[
A0C

]
= BĊ − ḂC, (5.9)

which establish the (anti-)BRST invariance of the (anti-)BRST charges.
The BRST charge Qb, expressed in (5.5), can be also written in the following two distinctly different ways,

namely;

Qb = iLim
θ→0

∂

∂θ̄

∫
d3x

[
˙̄F (h)F (h) − iB(h)

0 B(x)
]
≡ i

∫
d3x

∫
dθ̄
[
˙̄F (h)F (h) − iB(h)

0 B(x)
]
,

Qb = −iLim
θ̄→0

∂

∂θ

∫
d3x

[
Ḟ (h)F (h)

]
≡ −i

∫
d3x

∫
dθ
[
Ḟ (h)F (h)

]
.

(5.10)

The above expressions demonstrate the followings

(i) the nilpotency property because ∂2θ = ∂2
θ̄
= 0,

(ii) the (anti-)BRST invariance of the BRST charge Qb because of the validity of (5.6) as well as the sanctity of the
following expressions

Qb = i

∫
d3xsb

[ ˙̄CC − iA0B
]
=⇒ sbQb = 0, Qb = −i

∫
d3xsab

[
ĊC

]
=⇒ sabQb = 0, (5.11)

(iii) the anticommutativity property because sabQb = −i{Qb, Qab} = 0. Thus, we note that the nilpotency and anti-
commutativity properties of the BRST charge becomes quite simple in the language of the superfield formulation
when QED is considered on the (4, 2)-dimensional supermanifold.
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In exactly similar fashion, we can express the anti-BRST charge as

Qab = −iLim
θ̄→0

∂

∂θ

∫
d3x

[
Ḟ (h)F̄ (h) + iB(h)

0 B(x)
]
≡ −i

∫
d3x

∫
dθ
[
Ḟ (h)F̄ (h) + iB(h)

0 B(x)
]
,

Qab = iLim
θ→0

∂

∂θ̄

∫
d3x

[
˙̄F (h)F̄ (h)

]
≡ i

∫
d3x

∫
dθ̄
[
˙̄F (h)F̄ (h)

]
.

(5.12)

The above expressions automatically imply the validity of relations quoted in (5.6). In other words, the (anti-)BRST
charges (and their corresponding symmetry transformations) are always found to be absolutely anticommuting and
nilpotent of order two within the framework of our present superfield approach to BRST formalism (as far as QED
with Dirac fields is concerned).

6 Conclusions

In our present endeavor, we have concentrated on the (anti-)BRST invariance of the Lagrangian density of a 4D
interacting U(1) gauge theory with Dirac fields. As in our earlier work [15] on the 4D free (non-)Abelian 1-form
gauge theories (having no interaction with matter fields), we find that the Grassmannian independence of the super
Lagrangian densities (that are expressed in terms of the superfields obtained after the application of the HC and GIR)
is a sure guarantee that the corresponding 4D Lagrangian density would respect the nilpotent (anti-)BRST symmetry
invariance.

In the language of the geometry on the (4, 2)-dimensional supermanifold, if the translation of the super
Lagrangian densities along

(i) the θ̄-direction of the above supermanifold (without any translation along the θ-direction) is zero, the corre-
sponding 4D Lagrangian density would possess the nilpotent BRST invariance,

(ii) the θ-direction of the above supermanifold (without any shift along the θ̄-direction) is zero, there will be
nilpotent anti-BRST invariance for the 4D Lagrangian density of the theory, and

(iii) the θ- and θ̄-directions (one followed by the other; either ways) is zero, there would be existence of the (anti-
)BRST symmetry invariance together for the 4D Lagrangian density of the theory.

We have been able to show in our present work (as well as in our earlier works [7,8,9,10,11,12,13,14,15]) that
the nilpotent internal (anti-)BRST symmetry transformations s(a)b for the 4D theories are very intimately connected
with the translational generators (∂θ, ∂θ̄) along the Grassmannian directions of the (4, 2)-dimensional supermanifold.
Thus, one of the key features of our superfield approach to BRST formalism is the sure guarantee that the nilpotency
(i.e. s2(a)b = 0) and the anticommutativity (ie. sbsab + sabsb = 0) properties would always be satisfied by the
(anti-)BRST symmetry transformations s(a)b.

We have already noted that, the above specific features are the integral ingredients of our superfield approach to
BRST formalism because the translational generators (∂θ, ∂θ̄) always obey the nilpotency property (∂2θ = 0, ∂2

θ̄
= 0)

as well as the anticommutativity property (i.e. ∂θ∂θ̄+∂θ̄∂θ = 0). We have been able to shed more light on it through
the (anti-)BRST charges when we have expressed them in terms of the superfields and translational generators (see,
Section 5). The anticommutativity and nilpotency ensue automatically.

The important geometrical consequences of these GIRs on the matter superfields (cf. (4.1) and (A.1) below) are
as follows

(i) the Grassmannian independence of the Dirac part of the super Lagrangian density (L̃(d)) due to the application
of (4.1), and

(ii) the Grassmannian independence of the kinetic energy term for the U(1) gauge superfield and the super
Lagrangian density L̃(d) due to the application of the GIR (A.1) (see the appendix below).

In fact, the GIR (A.1) (see the appendix below) on the matter superfields provides a generalization of the HC
because it leads to results that are obtained due to the application of HC and GIR (4.1) separately.

One of the highlights of our present investigation is the simplicity and beauty that have been brought in for the
(anti-)BRST invariance of the Lagrangian density of the 4D interacting U(1) gauge theory within the framework of
the superfield approach to BRST formalism. It is nice to point out that our present work has already been generalized
to

(i) the case of interacting Abelian U(1) gauge theory where there is coupling between the gauge field and complex
scalar fields [17], and

(ii) the case of the interacting 4D non-Abelian gauge theory (with Dirac fields) which happens to be more general
than our present theory [16].
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We have also devoted time on the nilpotent (anti-)BRST as well as the nilpotent (anti-)co-BRST invariance of the
4D free Abelian 2-form gauge theory in the Lagrangian formalism [5]. It would be interesting endeavor to capture
the nilpotent (anti-)BRST (as well as (anti-)co-BRST) invariance of the 4D (non-)Abelian 2-form (and still higher
form gauge theories) within the framework of the superfield approach to BRST formalism. These are some of the
issues that are presently under investigation.

Appendix A (Anti-)BRST transformations for all the fields from a single GIR on matter superfield

In this appendix, we concisely recapitulate some of the key points connected with the derivation of the results of Sections 3 and 4 from a
single GIR on the superfields, defined on the (4, 2)-dimensional supermanifold [15]. This GIR also owes its origin to the (super) covariant
derivatives but, in a form, that is quite different from (4.1). The explicit form of this GIR is

Ψ̄(x, θ, θ̄)D̃D̃Ψ(x, θ, θ̄) = ψ̄(x)DDψ(x), (A.1)

where D̃ andD are the covariant derivatives defined on the (4, 2)-dimensional supermanifold and 4D flat Minkowski spacetime manifold,
respectively7. These are defined as follows

D̃ = d̃+ ieÃ(1), D = d+ ieA(1), d = dxμ∂μ, A(1) = dxμAμ, (A.2)

where all the quantities, in the above, have been taken from the earlier Sections 3 and 4. For instance, equations (3.1), (3.3) and (4.2) have
been used.

The above restriction is a GIR on the superfields (defined on the above supermanifold) because of the fact that the r.h.s. of (A.1) is

ψ̄DDψ =
ie

2
(dxμ ∧ dxν)ψ̄Fμνψ ≡ ieψ̄F (2)ψ. (A.3)

It is straightforward to check that the above quantity is U(1) gauge invariant. A noteworthy point, at this stage, is that the r.h.s. is a 2-form
with the differentials (i.e. dxμ ∧dxν) in the spacetime variables only. However, the l.h.s. of the equation (5.1) contains all the differential
2-forms in terms of the superspace variables. It is obvious that all the coefficients of the differentials in the Grassmannian variables of the
l.h.s. will be set equal to zero.

It has been clearly demonstrated in our earlier work [15] that the outcomes of the above equality in (A.1) (i.e. GIR) are the
relationships that we have already obtained separately and independently in (3.4) and (4.3). Thus, the expansions of the superfields,
ultimately, reduce to the forms which can be expressed in terms of the appropriate (anti-)BRST symmetry transformations s(a)b as
quoted in the key equations (3.5) and (4.4).

It is obvious, from our above discussions, that the total (anti-)BRST invariant Lagrangian density (2.1), defined in terms of the local
fields (taking their values on the 4D flat spacetime manifold), can be recast in terms of the superfields (defined on the (4, 2)-dimensional
supermanifold) by adding super Lagrangian densities given in equations (3.7) and (4.8) as

L̃T = L̃(1,2,3)
(g)

+ L̃(d). (A.4)

Now the nilpotent (anti-)BRST invariance of the Lagrangian density (2.1) can be expressed as (4.10) with the replacement: L̃(d) → L̃T .
Finally, we conclude that the Grassmannian independence of the super Lagrangian density encodes the (anti-)BRST invariance of the 4D
Lagrangian density.
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