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Introduction
In this paper, we considered the solution of initial value problems 

for general third order ordinary differential equations of the form

y′″=f (t, y, y′, y″), y(t0)=y0, y′(t0)=y1, y″(t0)=y2.                  (1)

Where t, y, f∈R.

The numerical and theoretical studies of eqn. (1) have appeared in 
literature severally. The direct approach for solving this type of ordinary 
differential equations have been studied and appeared in different 
literatures [1-7]. This direct approach has demonstrated advantages 
over the popular approach (reduction to system of first order approach) 
in terms of speed and accuracy [8,9]. Many authors have focused on 
direct solution of general second order ivps of odes of the form

y″=f (t, y, y′)                (2)

Majid et al. [10] proposed two point four step direct implicit block 
method for the solution of second order system of ordinary differential 
equations (ODEs), using variable step size. The method estimated the 
solutions of initial value problems at two points simultaneously by using 
four backward steps but with lower order of accuracies. Akinfenwa 
[11] presented ninth order hybrid block integrator for solving second
order ordinary differential equations. In the paper, the proposed block
integrator discretizes the problem using the main and the additional
methods to generate system of equations. The resulting system was
solved simultaneously in a block-by-block fashion but the order of
accuracies is low compare to the order of the method. The authors
came up with direct implementation of predictor-corrector methods
[3,4,7]. The authors emphasized the need to develop the same order
of accuracy of the main predictors and that of the correctors to ensure
good accuracy of the method. The order of accuracies in these works
improved significantly compare to the existing methods with lower
order of their main predictors.

Attempts have also been made by these scholars [12-14,6,7,15]. 
Olabode [13] proposed a 5-step block scheme for the solution of special 
type of eqn. (1). The order of accuracy in Olabode et al. [13] improves 
more than that of Olabode et al [13]. Awoyemi et al. [6], developed a 
four-point implicit method for the numerical integration of third order 
ODEs using power series polynomial function [16]. Kuboye and Omar 

[7] proposed numerical solution of third order ordinary differential
equations using a seven-step block method to improve on Awoyemi
et al. [6] and Olabode [13] which are of lower order of accuracy.
Furthermore, a symmetric hybrid linear multistep method of order
six having two off-step points for the solution of eqn. (1) directly was
presented by Obarhua and Kayode [15].

To improve on the study of Obarhua and Kayode [15] a symmetric 
of two-step four-point hybrid method for the solution of third order 
initial value problems of ordinary differential equations directly 
is therefore proposed using the combination of power series and 
exponential function as the approximate basis function [17].

Derivation of the Method
This research work considers the derivation of 2-step 4-point 

hybrid method for the solution of general third order initial value 
problems of ordinary differential equations. The approach is to solve 
eqn. (1) directly without reducing it to a system of first order differential 
equation. A combination of power series and exponential function is 
used as the basis function for eqn. (1). The approximate solution eqn. 
(1) and the resulting differential systems are respectively given as
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Where r and s are the number of interpolation and collocation 
points respectively.

The third derivative of eqn. (3) as compared with eqn. (1) gives
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This research considers a symmetric hybrid continuous linear multistep method for the solution of general 
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Collocating eqn. (4) at only the grid points, tn+j , j=0(1)2, and 

interpolating (3) at both grid and off-grid points, tn+j
10 2
3

j  =  
 

, leads 

to the following system of equations.

At=b                        (5)

where t=[λ0...λ8]
T; b=[yn…fn+2]
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ψ=j (j–1) (j–2) as j=5,6.

Solving eqn. (5) for λj′s and substituting back into eqn. (3), with 
some manipulation yields, a linear multistep method with continuous 
coefficients in the form:
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Taking k=2, the coefficients αj(t) and βj(t) are expressed as function 

of 1nt tv
h

+−
=  as follows:
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Evaluating eqn. (7) at v=1 gives the discrete method: 

( )
3

2 5 4 2 1 2 1
3 3 3 3

256 395 395 256 28 1856 28 .
39 39 39 39 9477n n n n nn n n n

hy y y y y y f f f+ + +
+ + + +

= − + − + + − +     (8)

The first and second derivatives of eqn. (8) are:
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Applying the truncation error formula in Awoyemi et al. [6], 
associated with eqn. (6) by the difference operator eqn. (9) to determine 
the order and error constant of the methods:
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Where y(x) is assumed to be continuously differentiable of high 
order. Therefore, expanding eqn. (11) in Taylor’s series and comparing 
the coefficient of h to give the expression

L [ y(x):h]=c0y (x)+c1hy′(x)+c2h
2 y′(x)+…+cph

p y(p)(x)+…+cp+3h
p+3 

y(p+3)(x)                    (12)

The linear operator L and the associated methods are said to be 
of order P if  c0=c1=c2=…=cp=…=cp+2=0, cp+3≠0 cp+3. is equal to the 
error constant. For the purpose of this work, expanding methods (8), 
(9) and (10) in Taylor’s series and comparing the coefficient of h gives 
both methods of order p=6 and error constant, cp+3=3.633772 × 10-6, 
cp+3=1.1804754 × 10-3 and cp+3=1.029201 × 10-4 respectively.

Equations (8-10) are of order six, symmetric, consistent, low error 
constants and capable of handling oscillatory problems.



Citation: Kayode SJ, Obarhua FO (2017) Symmetric 2-Step 4-Point Hybrid Method for the Solution of General Third Order Differential Equations. J 
Appl Computat Math 6: 348. doi: 10.4172/2168-9679.1000348

Page 3 of 4

Volume 6 • Issue 2 • 1000348J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Implementation of the Method
To implement the implicit linear 2-step 4-point discrete scheme eqn. 

(8) and its first and second derivatives eqns.(9) and (10), respectively, 
the following symmetric explicit schemes and their derivatives are also 
developed by the same procedure for the evaluation of yn+2, y′n+2 and y″n+2. 
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p=6 cp+3=3.107634 × 10-7.
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p=6, cp+3=9.0 × 10-6.
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p=6, cp+3=1.35 × 10-4.

The methods eqns. (13), (14) and (15) are of order p=6 and error 
constant, cp+3=3.107634 × 10-7, cp+3=9.0 × 10-6 and cp+3=1.35 × 10-4 
respectively.

Other explicit schemes were also generated to evaluate other 
starting values and Taylor’s series was used to evaluate the values for 
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Numerical experiments

Three third order problems out of which one is linear and two are 
non-linear with exact solutions are solved with our method to test the 
effectiveness and its accuracy.

Problem 1:  y′″=–ex, y (0)=1, y′(0)=–1, y″(0)=3, h=0.1

Theoretical solution: y(x)=2+2x2–ex.

Table 1 shows the maximum absolute error of our predictor-
corrector method and that of Olabode [13] block method for Problem 
1. It reveals that the new method performed creditably well than that of 
Olabode [13] of higher order.

Problem 2: 
1(2 ), (0) 1, (0) , (0) 0, 0.1.
2

y y xy y y y y h′′′ ′ ′′ ′ ′ ′′= + = = = =

Theoretical solution: 
1 2( ) 1 ln .
2 2

xy x
x

+ = +  − 
In Table 2, y-exact, the 

y-computed, the errors of the new method and the time(s) of iteration 
for Problem 2 are shown.

Problem 3: y′″=– y)4, y (1)=–1, y′(1)=–1, y″(1)=–2. h=0.05.

Theoretical solution: 
1( )

2
y x

x
=

−
Table 3 shows the y-exact, the y-computed, and the errors of the 

new method and the time of iteration for Problem 3.

Conclusion
This paper has produced 2-step 4-point hybrid method for direct 

solution of higher order ordinary differential equations. The method 
developed is symmetric, consistent and convergent which can handle 

x yexact ycomputed Error in Olabode, (2009), p=7, 
k=5

Error in new scheme, 
p=6, k=2

0.1 0.9148290819243523 0.9148290819245347 7.56477e-11 1.82410e-13
0.2 0.8585972418398302 0.8585972418415010 2.60170e-10 1.67078e-12
0.3 0.8301411924239970 0.8301411924299984 5.76003e-10 6.00142e-12
0.4 0.8281753023587299 0.8281753023735897 8.41270e-10 1.48598e-11
0.5 0.8512787292998718 0.8512787293299923 1.00013e-09 3.01205e-11
0.6 0.8978811996094913 0.8978811996633331 1.09051e-09 5.38418e-11
0.7 0.9662472925295238 0.9662472926178395 1.07048e-09 8.83157e-11
0.8 1.0544590715075328 1.0544590716435931 1.49247e-09 1.36060e-10
0.9 1.1603968888430511 1.1603968890429206 3.15695e-09 1.99870e-10
1.0 1.2817181715409554 1.2817181718237693 4.45905e-09 2.82814e-10

Table 1: The numerical solution of our methods of order 6 compared with the method of Olabode, (2009), of order 7.

x yexact ycomputed Error in new scheme, p=6, k=2 Time(s)
0.1 1.0500417292784914 1.0500418242095606 9.49E-08 0.0027
0.2 1.1003353477310756 1.1003366644736043 1.32E-06 0.0248
0.3 1.1511404359364668 1.1511460842057299 5.65E-06 0.0256
0.4 1.2027325540540821 1.2027483597246535 1.58E-05 0.0261
0.5 1.2554128118829952 1.2554482979429176 3.55E-05 0.0266
0.6 1.3095196042031119 1.3095893044089619 6.97E-05 0.0272
0.7 1.3654437542713962 1.3655690060595540 1.25E-04 0.0278
0.8 1.4236489301936017 1.4238603658481614 2.11E-04 0.0283
0.9 1.4847002785940517 1.4850413496636110 3.41E-04 0.0288
10 1.5493061443340548 1.5498382025385242 5.32E-04 0.0293

Table 2: Numerical solution and errors for problem 2.
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x yexact ycomputed Error in new scheme, p=6, k=2 Time(s)
1.05 1.0526315789473684 1.0526315779293796 1.017989e-09 0.0291
1.10 1.1111111111111112 1.1111110853730750 2.573804e-08 0.0313
1.15 1.1764705882352944 1.1764704664689964 1.217663e-07 0.0316
1.20 1.2500000000000002 1.2499996375184190 3.624816e-07 0.0320
1.25 1.3333333333333337 1.3333324687923525 8.645410e-07 0.0323
1.30 1.4285714285714290 1.4285696093065769 1.819265e-06 0.0325
1.35 1.5384615384615392 1.5384579871365800 3.551325e-06 0.0328
1.40 1.6666666666666676 1.6666600337776776 6.632889e-06 0.0332
1.45 1.8181818181818195 1.8181697022691894 1.211591e-05 0.0335
1.50 2.0000000000000018 1.9999779695058428 2.20E-05 0.0338

Table 3: Numerical solution and errors for problem 3.

oscillatory type of problems. The numerical tests results obtained were 
compared with block method of Olabode [13] which was found to 
perform favorably than the existing method. 
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