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Introduction
Most regression models are performed by assuming conditional 

independence of observations in the presence of specified model 
parameters. With regard to survival data, an individual’s event 
time T is generally assumed to follow a univariate distribution, with 
heterogeneity of event occurrences primarily accounted for by the 
effect of a number of measurable individual or contextual factors [1-6]. 
In certain circumstances, however, failure times are correlated even in 
the presence of specified model parameters, so that the independence 
hypothesis can be violated. Such internally clustered survival data 
are generally referred to as survival time data with unobserved 
heterogeneity. Empirical examples of the multivariate survival data 
structure include repeated events [1,7], twin survival patterns [8,9], 
the occurrence of vision loss in the left and right eyes [10], parental 
history of a given disease on the incidence in the offspring [11], and 
mortality of married couples at older ages [12]. Because observations 
may be clustered by unobserved heterogeneity, the application of 
standard survival models can result in biased parameter estimates and 
an erroneous model-based prediction.

Over the years, statisticians and other quantitative methodologists 
have developed a variety of statistical models to handle survival time 
data with unobserved heterogeneity. Nevertheless, there is a lack of 
consensus regarding how to apply these survival models in different 
situations. Most of the survival models on unobserved heterogeneity are 
built upon biomedical settings characterized by the randomized clinical 
trial design with small sample size or by a lack of measureable predictors 
on survival processes. As a result, these methodologically advanced 
techniques are relatively unfamiliar to researchers of other disciplines 
who base their analyses on observational data. For example, given the 
complexity of social events, social scientists often perform regression 
analysis in the context of a conceptual model, specifying various causal 
associations as guided by existing theories or specific research interests. 
Large-scale survey data are regularly collected and used in empirical 
analyses to ensure the statistical power in constructing and estimating 
a complex causal model. Given such a unique perspective, techniques 

borrowed from biostatistics must be verified, evaluated, and modified 
before they can be utilized effectively in those applied sciences. The 
statistical models handling survival data with unobserved heterogeneity 
are no exception.

In this article, four families of regression modeling on survival 
time data with unobserved heterogeneity are described and compared: 
the Andersen and Gill [13] approach, the robust sandwich variance 
estimator [14], the hazard model with individual frailty [15,16], and 
the retransformation method [17]. Other survival models in this regard 
are more or less the extensions of the above four families. The focus 
of this study is placed upon the applicability of these survival models 
in analyzing large-scale survey data. For this reason, an empirical 
illustration is provided on the application of the aforementioned survival 
models, using data of a large-scale longitudinal, multidisciplinary, and 
U.S. population-based survey.

Multivariate Survival and Hazard Functions
In the multivariate survival data, lifetime variables T1, T2,…., Tq 

are associated within a specific level-2 unit i with q ≥ 2. According to 
probability theory, the multivariate cumulative distribution function 
(c.d.f.) over a series of time (t1, …., tq), denoted by F(t1, …., tq), is

( ) ( )Pr1 1 1 q,...., ,....,q qF t t T t T t= ≤ ≤ .			    (1)

Defined as the probability that no event occurs from time 0 to time 
series (t1, …., tq), the multivariate survival function, denoted by S(t1, 
…., tq), is

*Corresponding author: Xian Liu, DoD Deployment Health Clinical Center, Walter 
Reed National Military Medical Center, Bethesda, MD 20889, USA, E-mail:
Xian.Liu@usuhs.edu

Received March 31 2014; Accepted April 25, 2014; Published April 30, 2014

Citation: Liu X (2014) Survival Models on Unobserved Heterogeneity and their 
Applications in Analyzing Large-scale Survey Data. J Biomet Biostat 5: 191. 
doi:10.4172/2155-6180.1000191

Copyright: © 2014 Liu X. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Survival Models on Unobserved Heterogeneity and their Applications 
in Analyzing Large-scale Survey Data
Xian Liu*
DoD Deployment Health Clinical Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA

Abstract
In survival analysis, researchers often encounter multivariate survival time data, in which failure times are correlated 

even in the presence of model covariates. It is argued that because observations are clustered by unobserved 
heterogeneity, the application of standard survival models can result in biased parameter estimates and erroneous 
model-based predictions. In this article, the author describes and compares four methods handling unobserved 
heterogeneity in survival analysis: the Andersen-Gill approach, the robust sandwich variance estimator, the hazard 
model with individual frailty, and the retransformation method. An empirical analysis provides strong evidence that in 
the presence of strong unobserved heterogeneity, the application of a standard survival model can yield equally robust 
parameter estimates and the likelihood ratio statistic as does a corresponding model adding an additional parameter 
for random effects. When predicting the survival function, however, a standard model on multivariate survival time data 
can result in serious prediction bias. The retransformation method is effective to derive an adjustment factor for correctly 
predicting the survival function.
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( ) ( )1 1 1, , Pr , ,, q q qS t .... t T t .... T t .= > > 		               (2)

It may be mentioned that when q>1, F and S are no longer 
complementary of each other.

Likewise, the multivariate density function, given its intimate 
association with the survival function, is given by
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The marginal hazard functions at time t for q members of a given 

cluster, denoted by {λ1(t), …., λq(t)}, are given by
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The hazard rates for the members of a cluster are associated because 
they share some common characteristic. Therefore, it is plausible to 
assume that for those clustered members, one’s failure time predicts 
that of another, and so is the reverse. Given this assumption, a common 
random effect within a cluster, regularly denoted by a multiplicative 
term θ, can be specified to indicate the extent to which {T1, …., Tq} are 
associated. Varying over clusters, θ is a random effect between clusters, 
but it is fixed within a cluster. If θ=1 within a cluster, the marginal 
hazard rates {λ1(t), …., λq(t)} are independent of each other thus 
suggesting the absence of an association between {T1, …., Tq}. If θ>1, the 
failure times for the q members are positively associated; and neglect of 
this term can lead to biased parameter estimates on the hazard rate due 
to the violation of the independence hypothesis. When the condition 
θ>1 is considered in a statistical model, observations within the cluster 
are thought to be conditionally independent, so that more efficient 
parameter estimates can be derived. The scenario θ<1 is a condition 
that rarely occurs in reality, so that it is not discussed in this study.

Assuming that all members of a given cluster share the same 
θ, then this within-cluster fixed effect can be factored out from the 
specification of multivariate processes. For example, the multivariate 
survival function can be mathematically written by

( ) ( ) ( )
1

1 1 1 1....,  ,...,  d .... ,....,  d .
q

, q q q qt t
S t t f u t u f t u uθ

∞ ∞
= ∫ ∫ 	                    (5)

 In Equation (5), the joint survival function is simply expressed 
as the product of q marginal survival functions multiplied by θ. As 
a consequence, the correlation of any two survival times within the 
cluster is under control if θ is known.

In the multivariate regression analysis, much of the between-clusters 
random effect θ is statistically addressed by specifying theoretically 
related covariates. More technically, θ can be parameterized by a 
parameter vector θ. If the elements specified in θ can fundamentally 
explain the association among survival times {T1, …., Tq}, there is no 
sufficient space remaining for supporting further parameterization in 
residuals. Consequently, the baseline hazard rates are conditionally 
independent thus can be viewed as following a univariate distribution. 
Many researchers contend, however, that the hazard rates for some 
members may be associated because they share some genetically 

common but unobservable characteristic. If observed covariates do not 
considerably reflect the information of such unobserved factors, the 
parameter estimates can be statistically inefficient and inconsistent.

Andersen-Gill Model
Given flexibility of the counting process formulation and the 

powerful martingale theory [1,4], counting processes are used in much 
of the literature of statistical modeling on survival time data with 
unobserved heterogeneity. In this system, the hazard function for a 
level-1 unit j at time t, given an underlying hazard function λ0 is

( ) ( ) ( )t exp0 ,j tλ λ ′= jZ β 			                  (6)

Where β is a M×1 vector of regression parameters, and the covariate 
vector Zj represents covariates for observation j.

Andersen and Gill [13] consider it statistical feasible under certain 
conditions to extend the above specification to the regression analysis 
on the intensity of a repeated event, which follows a multivariate 
distribution of T within an individual. From parameter estimates 
obtained from maximizing the complete or the partial likelihood 
function, the integrated intensity processes, denoted by Λ(t) in counting 
processes, can be obtained by a linear interpolation between failures 
times:

( ) ( )
( ) 
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T t
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l t
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∑ ∑ Z
R

β
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where δj is the 0/1 (1=event, 0=censored) censoring indicator and R(ti) 
is the risk set at a specific survival time.

Equation (7) is flexible to permit multiple events up to time t as its 
computation is not restricted to a single event. Let ( ){ }, 0i iN N t t≡ ≥  be 
the number of observed events experienced over time t for individual 
i with ( )0 0iN =  and the sample paths, or trajectory, of the counting 
process be right continuous step functions. Then, as an alternative 
definition in terms of counting processes, a joint likelihood function 
L(β, Λ) is proposed to model the intensity rate given the past event 
history:

( ) ( ){ } ( ) ( ) 0exp0 d E d  d , t it t N t t t tλ λ− ′ = =  Z ZF β                   (8)

where β0 is the true parameter vector. The term Ft- is the σ-algebra 
generated from the process history prior to t about survival, censoring, 
and covariates; substantively, it indicates what has been experienced in 
terms of counting processes before a given observed time. The covariate 
vector Z(t) is defined as time-dependent for reflecting the influences of 
previous events on future recurrences. So, in the context of repeated 
events, an individual is a cluster and ( )i t′Z  represents j′Z .

If Z(t) reflects information of clustering, the regression coefficient β 
can be flexibly estimated over the multivariate survival data of repeated 
events. Let the count Y denote the number at risk just at t for failing in 
an infinitesimal interval (t, t+dt), and 

1

n
ii

N N
=

=∑  is the risk set 

for the occurrence of each jump (the first and the recurrent events). 
Then, the partial likelihood for n independent triples ( ){ }, ,i i iN Y tZ , 
where i=1,….,n, is analogous to the standard Cox formulation but using 
a different terminological system. After some algebra, the log partial 
likelihood function can be written by

( ) ( ) ( ) ( ) ( ) ( ) 
0 0

1 1

d log exp  d , 
n nt t

p i i i i
i i

Log L u N u Y u u N u
= =

 ′ ′ = −    
∑ ∑∫ ∫Z Zβ β β         (9)
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Given score function ( ) ( )1log / ,...., logp p ML L /β β
′

= ∂ ∂ ∂ ∂U β , the total 

score statistic at time t is
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where the second term within the brace represents the expected 
covariate vector over a given risk set:

( )
( ) ( ) ( )

( ) ( )
, 1

1

exp
.

exp

n

i i i
i

i n

i i
i

Y u u u
u

Y u u

=

=

′  
=

′  

∑

∑

Z Z
Z

Z

β
β

β 

In the martingale theory, dN(t) is a submartingale [1,4], and 
therefore, the score function with respect to β0 can be expressed in terms 
of a function of martingales:

( ) ( ) ( ){ } ( )0 , ,
0

1

 d , 
n t

i i
i

t u u M u
=

= −∑∫U Z Zβ β 		              (11)

where

( ) ( ) ( ) ( ) ( )0 00
exp  d

t

i i i iM t N t Y u u uΛ′ = −  ∫ Z β

is the difference over (0, t) between the observed number of events 
for individual i and the expected value of the cumulative intensity rate 
derived from a regression model.

Given Equation (11), the score function can be conveniently 
expressed in terms of a permutation test based on residuals computed 
for the regression on covariates, rather than on the regression 
coefficients [18]. The {M1(.),….,Mn(.)} series are defined as martingales 
if the Mi(t) increment in any t is independent and if any two Mi, Mi’ 
at any t, where i≠i’, are uncorrelated with each other. A differentiated 
martingale, in many ways, behaves like an ordinary residual of linear 
regression models with mean 0 and without autocorrelation [1]. 
Statisticians have developed the martingale central limit theorem for 
mathematically proving the stochastic property in martingales [1,4,19]. 
While mathematically complex in its derivation, the martingale 
central limit theorem literally states that when jumps of a martingale 
converge to a multivariate normal distribution, its trajectory tends to an 
asymptotically transformed Wiener process with mean 0 and variance-
covariance V(t). Therefore, in the Andersen-Gill model the correlation 
of repeated events is reflected in Z(t), and consequently, {M1(.),….,Mn(.)} 
series are conditionally independent.

Provided that {M1(.),….,Mn(.)} are martingales, the Fisher 
information matrix, denoted by I(β,t) and defined as the minus second 
partial derivatives of the log partial likelihood function with respect to 
β, can be readily derived by using the standard procedure. Andersen 
and Gill [13] proved that statistically, the process ( )0

ˆn -β β   tends 
to converge in probability to a normal vector with mean 0 and the 
covariance matrix ( ),1 ˆ t−I β   for large samples. If this inference holds, 
the score, the Wald, and the likelihood ratio test statistics are well 
defined under the null hypothesis that all regression coefficients be zero.

The Andersen-Gill model stipulates that the large sample behavior 
follows if the correlation of repeated events is reflected in covariates 
and the semi-parametric baseline hazard function. The specification 
of time-dependent covariates or theory-based interaction terms can 
considerably mitigate correlation of clustered data thereby making 
potential dependence of residuals insignificant. Technically, the 
Andersen-Gill intensity rate model does not differ significantly from a 
standard Cox model [20]. Therefore, if its underlying hypothesis holds, 
the Andersen-Gill approach on repeated events can be applied to all 

types of survival data with unobserved heterogeneity, as long as the 
specified fixed effects and the underlying hazard function reflect much 
of unobserved heterogeneity.

The Robust Sandwich Variance Estimator
According to Andersen and Gill [13], the observed Fisher 

information matrix given β̂ , denoted by ( ),ˆˆ tI β , tends to converge 
in probability to the nonsingular deterministic matrix. Given this 
statistical property, the asymptotic limit of ( )ˆ −β β  is 0 as long as 
censoring is independent of Z [21]. Therefore, the point estimates of 
regression coefficients in the Andersen-Gill approach or the standard 
Cox model are asymptotically unbiased, even with the existence of 
strong unobserved heterogeneity in failure times [22].

Wei, Lin, and Weissfeld [14] contend, however, the joint distribution 
of the score function ( ) ( )1 1, ,,...., q qn n∞ ∞ U Uβ β   cannot be statistically 
viewed as local martingales if correlation among failure times exists. 
Because of the condition  ( )cov , 0j jM M ′ ≠ in the presence of unobserved 
heterogeneity, where j ≠ j´, the martingale central limit theorem does 
not apply to the series {M1,…,Mq}. As a result, the inverse of the observed 
information matrix   does not provide an adequate variance estimator 
of β̂ . A robust covariance matrix for ( ) ( )1 1, ,,...., q qn n∞ ∞ U Uβ β  is 
thus needed to account for covariance in   for satisfying the condition  

( ) ( ), N 0,k k kn V ∞ →  
U β β . Accordingly, WLW have developed 

the robust sandwich variance estimator for addressing unobserved 
heterogeneity in correlated survival data.

The robust sandwich variance method does not specify the 
pattern of dependence among correlated failure times, either; rather, 
it constructs a robust variance-covariance estimator externally to 
account for the within-clusters covariance thus yielding consistent and 
asymptotically normal parameter estimates. Let

( ) ( ) ( )-1

1

ˆ ˆ ˆˆ , 
n

i i
i

n
=

′
= ∑  U UΣ β β β 			                (12)

where, in the context of repeated events, i represents cluster i (i=1, …., 
n), Σ̂  is the score statistic variance estimator, and ( )i

U β  consists 

of  ( ) ( ){ }1 ,....,i iq
 U Uβ β . Then the asymptotic covariance matrix of the 

estimated regression coefficients is given by

( ) ( ) ( ) ( )-1 -1ˆ ˆ ˆ ˆˆ ˆ ˆˆ .=V I Iβ β Σ β β 			             (13)

Equation (13) is the so-called “sandwich” variance estimator. 
As a result of such an adjustment, the random vector ( )0

ˆn -β β  is 
asymptotically normal with mean 0 and a covariance matrix that can 
be estimated by ( )ˆV̂ β  [21], from which the valid Wald score can be 
derived for testing the null hypothesis on β̂ . As both β̂  and ( )ˆI β  
can be obtained from the standard Cox model, this robust variance 
estimator does not involve additional statistical inference as long as 
the underlying clustering factor can be identified. Therefore, the robust 
“sandwich” variance estimator is an external method only dealing with 
the standard error estimation, not for the parameter estimation. Given 
its attachment to the standard Cox model and flexibility to adjust for 
the biased variance matrix, this “sandwich” approach has tremendous 
appeal in biostatistics [5]. When the Andersen-Gill model is correctly 
specified, however, correlation among failure times is much mitigated 
thus leading to the condition ( ) ( )-1ˆ ˆˆ ˆ≈V Iβ β . If this approximation 
holds, the use of the sandwich variance estimator becomes unnecessary.

Hazard Models with Individual Frailty
Some methodologists attempt to analyze correlated survival 
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data by defining a quantity termed “frailty,” a convenient notion 
used most frequently by mathematical biologists and demographers 
[16,23]. Here, frailty may refer to a broad range of dimensions, such 
as genetic predisposition, physiological senescence parameters, 
economic capability, family history of disease, and the like [24,25]. In 
the frailty theory, individuals in a random sample have different levels 
of frailty, and the frailer ones tend to die sooner than do the others. 
Consequently, the existence of an unobserved “frailty” effect can alter 
patterns of general mortality and mortality differences. There are 
numerous reports in recent years that age-specific mortality rates of 
different subpopulations cross in ways that are unanticipated [26-28]; 
biological explanations of this phenomenon are based on the frailty 
theory assuming the intersecting mortality functions to represent 
heterogeneous populations that differ in frailty [16,29]. 

The original frailty model assumes a heterogeneous lifetime pattern 
to address the latent frailty effect [15,16,23]. Specifically, the unobserved 
frailty factor can be represented by an unobservable random effect, 
which impacts the baseline hazard function multiplicatively:

( ) ( ) ( )exp0 , i i it z t tλ λ ′ =  Z β 			                (14)

where zi is the frailty score for individual i (individual here is the level-1 
unit), with values varying around the grand mean of this variable. Hence, 
the frailty model specified by Equation (14) is basically a random-effects 
proportional hazard model. This model has tremendous appeal because 
the hazard function with frailty is expressed as the regular proportional 
hazard model plus a multiplier representing the random disturbances. 
Given the nonnegative nature of the hazard rate, an individual z is 
also nonnegative, presumed to follow a given parametric distribution. 
Conditional on the random effect z and other specified parameters, 
survival times are assumed to be independent of each other, so that 
more efficient estimates of β can be derived.

The distribution of the random effect z determines how a frailty 
factor affects the value of the hazard rate. Vaupel et al. [16] recommend 
that given its flexible mathematical properties, a gamma distribution 
should be used to reflect frailty at birth, with parameters η and v, where 
η>0 is the scale parameter and v>0 is the shape parameter. The mean 
and variance of the gamma distribution are well defined, given by

( )E ,  vz
η

= 					                 (15a)

( ) 2var    .  vz
η

= 					                (15b)

Equation (14) specifies a conditional hazard model as it 
parameterizes the conditional distribution of T given  and the 
observed covariates. As the frailty effect is unobserved, researchers 
generally desire estimates of covariates’ effects on the hazard rate of 
specific subgroups. Therefore, it is perhaps more appropriate to specify 
the gamma-distributed frailty model in terms of the marginal mean, 
given by

( ) ( ) ( ) ( )
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Z
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β
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		              (16)

 

where the error distributional function F is the cumulative density 
function.

If both gamma parameters are free, the frailty model is not 
identifiable [1]; therefore the mean of z’s must be set at one by imposing 
the conditions that η=v and var(z)=1/v=1/η. There are a variety of Bayes-
type techniques for approximating the integral of the likelihood over 
the frailty effect, such as the expectation-maximization estimator [30] 
and the Gaussian quadrature algorithm [31]. While these estimators 
sometimes yield different parameter estimates on the hazard function, 
in non-pathological cases such differences are generally negligible.

Some scientists [12,15,24] comment on the use of a gamma 
distribution for the frailty factor z. Despite its mathematical 
attractiveness given its simple densities, the gamma distribution has 
some specification weaknesses [15,18]. Aalen [15] suggests that the 
nature of the frailty effect must be derived from biological knowledge 
and theoretical assumptions about the known risk factors the frailty 
factor represents. He provides an example in terms of the effect of 
blood pressure and serum cholesterol on the incidence of myocardial 
infarction among middle aged men, contending that both factors are 
approximately normally distributed with some skewness to the right. It 
follows that the relative risk due to these factors should be approximately 
lognormally distributed.

Taking log values on both sides of equation (14) gives rise to

( ) ( ) ( ) ( )

( ) ( )
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0

log log  log

log  ,   

i i i

i i

 t t t z

t t

λ λ

λ ε

′   = + +   

′ = + + 

Z

Z

β

β

 

where ( )0log tλ    can be viewed as the intercept in the linear predictor, 
and εi is log(zi). If z is lognormally distributed, then ε is normally 
distributed with mean 0 and variance σ2, thereby leading to a typical 
generalized linear regression model with a normally distributed error 
term.

Given a transformed error term with normal distribution, the mean 
and variance of the frailty factor z are

( )
2 2

E exp  exp exp ,
2 2

 σ σε ε
   

  = + =    
   

		              (18)

and

( ) ( ) ( ){ }

( )

2 2

2 2

var exp exp 2 exp 2 exp

exp 2 exp . 

  

=  

ε ε σ σ

σ σ

   = −   

 − 

                           (19)

Obviously, the lognormal specification for the frailty factor is a 
more convenient, parsimonious choice than a gamma distribution if the 
lognormal distribution of the random term is reasonably assumed. In 
the frailty theory, however, the assertion of lognormality is considered 
empirically too strong given the impact of the “survival of the fittest” 
process.

The various frailty models have proven an efficient, valid statistical 
perspective to handle unobserved heterogeneity in many occasions. 
Sometimes, the applications of frailty models may encounter certain 
specification problems in analyzing large-scale survey data [18]. The 
multiplicative effect of the unobserved frailty factor, independently 
drawn from a parametric distribution, is assumed to be orthogonal 
to inferences about other parameters. In reality, an individual’s 
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frailty should be closely interacted with observed factors, and some 
researchers even use an observable covariate as the proxy for measuring 
an individual’s level of frailty [32]. When the risk set at a given observed 
failure time contains a decent number of individuals with covariates 
scaled at many levels, unobserved heterogeneity from the latent 
“frailty” factor can be considerably reflected in the fixed effects and the 
underlying hazard function thereby making the addition of a random 
term statistically redundant [2,33]. Given these arguments, research 
into large sample behavior of frailty models is ongoing.

Retransformation Method
Although parameterization of random effects does not necessarily 

impacts the estimation of model parameters, it does not mean that 
the standard proportional hazard model yields robust and consistent 
estimators on nonlinear predictions given the existence of unobserved 
heterogeneity. Random disturbances cannot be overlooked in predicting 
the hazard or the survival function. First, we cannot assume that the 
error term is zero for each observation, which implies an exact linear 
dependence of unobserved heterogeneity on the covariate vector Z. 
Second, it is equally misleading to assume that the expected value of the 
error term in a linear predictor is zero when predicting the hazard rate. 
Consider, for example, the case of a lognormal distribution: when one 
retransforms a normal distribution of random errors to a lognormally 
distributed function, the expected value of the multiplicative random 
effect is not unity given the properties of a lognormal distribution. Even 
if the true parameters β are known, the function λ0(t)exp(Z′β) is not the 
correct estimate of E[λ(t)], such that

( ) ( ) ( ) ( ) ( ) ( )0 0E  exp E exp  exp .t t t t tλ λ ε λ′ ′       = ≠       Z Zβ β

 Equations (18) and (19) specify basic properties of a lognormal 
distribution. In those equations, σ2 is the mean square error; and its 
mode, median and moments all have the same functional form [34]. 
Whereas the median of exp(ε) is simply exp[E(ε)] that implies a 
multiplicative effect of one, the positive skewness of the lognormal 
distribution mandates that the median lies below the mean, with 
equality holding if and only if σ2 = 0. Thus, neglect of retransforming the 
error term in estimating any log-linear equation with a reduced form 
leads to a median function, rather than a mean function. Consequently, 
unbiased and consistent quantities on the log(hazard) cannot be 
retransformed into unbiased and consistent quantities on the hazard 
rate without considering retransformation of random components.

Provided that ε is normally distributed and uncorrelated with 
λ0(t) and Z, the expected value of the hazard rate given unobserved 
heterogeneity can be written by
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where Φ=exp(σ2/2) is an adjustment factor in the mean for the 
retransformation in the hazard function assuming ε to be normally 
distributed with mean zero and variance σ2.

While the hazard rate is unobservable, the variance of random 

errors can be either derived from a likelihood function integrated 
over the individual-level random effect or estimated externally. In 
the literature of generalized linear mixed models, there is a variety of 
approximation methods proposed to derive Bayes-typed parameter 
estimators given random effects [35-37]. Though generally working 
well in longitudinal data analysis, these integration techniques are 
often found ineffective in analyzing large-scale survival data given the 
specification of an underlying stochastic process in T [2,38]. Thus, the 
external perspective seems to be a more appropriate choice for nonlinear 
predictions. Among the external approaches in this area, the most 
popular method is perhaps the “threshold concept” approach [39]. In 
the logistic regression, random errors are assumed to follow a standard 
logistic distribution with mean 0 and variance π2/3, while for a probit 
regression random errors are assumed to follow a standard normal 
distribution with mean 0 and variance 1. This approach, however, is 
not practicable for survival models because all hazard models, no 
matter how many covariates are considered, would have exactly the 
same variance of random disturbances. As McCullagh and Nelder [40] 
comment, the assumption of a continuous latent distribution is a rough 
model requirement, though providing a useful concept for generalized 
linear modeling.

Another convenient approach to obtain the expected value of 
random errors uses the empirical data. Specifically, the researcher can 
recognize the predicted hazard rates obtained from a “full” model as an 
unbiased and consistent set of λi to calculate s2, a sample estimate for σ2. 
If random errors in a well-specified full model are truly ignorable after 
appropriate justification, Φ can be approximated from the standard 
formula on variance between the full model and a corresponding 
reduced-form equation [17]. In performing this approach, a fraction of 
random disturbances from omitting one or more significant predictors 
may be absorbed into the intercept. As a result, the intercept needs to be 
fully specified in the calculation of Φ. Consequently, the Cox model and 
the partial likelihood estimator are inappropriate for the application of 
this method.

When the assumption of normality for ε cannot be satisfied, 
the factor [exp(σ2/2)] is not the correct adjustment in the mean for 
retransformation from the logarithmic scale to the untransformed 
hazard rate, so that this estimator can lead to incorrect nonlinear 
predictions of the hazard rate. In this situation, Duan’s [41] smearing 
estimate can be applied.

First, assuming the vector Z to have full rank and ε is not normally 
distributed, we have
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where Ψ is the multiplicative random effect exp(ε).

When the error distribution function F is unknown, this cumulative 
density function F can be replaced by its empirical estimate n̂F , referred 
to as the smearing estimate [41]:
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the original AHEAD sample for the analysis.

Measures

This illustration uses Wave I data (baseline survey) and the survival 
data in a four-to-five year period. Time of death is recorded for those 
who died between the Wave I interview and December 31, 1997. Of 
2,000 Wave I respondents, 332 were identified dead during the interval. 
For each of the deceased in this four-to-five year observation period, 
the duration in months from Wave I interview to the time of death is 
recorded. Other respondents are right censored.

The AHEAD survey acquires detailed information on a number of 
domains, including demographic characteristics, health status, health 
care use, disability, retirement plans, and health and life insurance. 
Given a relatively short observation period, all covariates considered 
in this empirical illustration are time-independent variables with their 
values fixed at Wave I survey. Veteran status, the main explanatory 
variable in this illustration, is measured as a dichotomous variable 
(veteran=1, nonveteran=0), named “VET” in the statistical analysis. 
Over 90 percent of veterans in the dataset served in the military during 
World War II.

The control variables include age, gender, educational attainment, 
and marital status. The time-independent assumption on marital status 
might lead to some bias in estimating its effect. Other explanatory 
variables, however, are either stable over time (veteran status, gender, 
and educational attainment) or change simultaneously with time 
(age) thus not posing any threats to the validity of time-independent 
hypothesis. In particular, age is defined as the actual years of age 
reported by respondents at the time of the Wave I survey. As the 
starting age of the data is 70 years, this variable is rescaled to be 
centered at age 70 (actual age–70), termed AGE_70 in the analysis. 
Given the theoretical hypothesis on the trend of mortality convergence 
and crossover between older veterans and nonveterans, an interaction 
term is created between Vet and Age_70. Statistically, the specification 
of this interaction can absorb massive information on heterogeneous 
selection of survival.

Gender is indexed as a dichotomous variable (women=1, men=0), 
and educational attainment, an approximate proxy for socioeconomic 
status, is measured as the total number of years in school, assuming the 
influence of education on mortality to be a continuous process [43]. 
Lastly, marital status is specified as a dummy variable, with currently 
married=1, else=0. For analytic convenience without loss of generality, 
these three control variables are all rescaled to be centered at sample 
means, termed Female_cnd, Educ_cnd, and Married_cnd, respectively. 
Empirically, the mean of a dichotomous variable indicates the likelihood 
or propensity of being in the group coded 1; it can also be understood as 
the expected proportion in the population a random sample represents.

The effects of two health factors–physical health conditions and 
mental disorders–on the hazard function are closely examined in the 
preliminary data analysis. While their effects on the hazard rate are 
very strongly statistically significant in the presence of other covariates, 
in this example these two health factors are purposefully excluded 
from the final hazard model. Therefore, there is definitely additional 
clustering in the survival data, even in the presence of the six covariates 
considered.

Table 1 displays the mean (or proportion), the standard deviation, 
and the coding scheme of each original covariate and the names of the 
centered variables.

where β̂  can be obtained by employing the maximum likelihood 
procedure without considering unobserved heterogeneity given the 
martingale central limit theorem [7,13,14].

A consistent estimate of the hazard rate given covariate vector Z can 
be obtained by
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where Y is the vector of covariates incorporated in the full model but 
not in the reduced-form model, α is the vector of regression coefficients 
for Z in the full model, and γ is the vector of regression coefficients for 
Y in the full hazard model. Analytically, Equations (23) and (24) are 
meant to estimate an unknown error distribution by the empirical c.d.f. 
of the estimated regression residuals. This “smearing” effect does not 
completely eliminate bias when the true distribution of random errors 
is unknown; but the overall prediction bias is negligible if a large sample 
is used to find a nonparametric distribution. This nonparametric 
retransformation method predicts the longitudinal health data 
accurately [38,42].

Illustration
In this illustration, an empirical example is provided on mortality 

differences between American older veterans and nonveterans. The 
observation range is a four-five year interval from 1993/94 to the end 
of 1997. Given a single data set, the applicability of various survival 
models on unobserved heterogeneity is assessed and examined.

Data

The data used for the analysis come from the Survey of Asset and 
Health Dynamics among the Oldest Old (AHEAD). This longitudinal 
survey is a nationally representative investigation of older Americans 
conducted by the Institute for Social Research (ISR), University of 
Michigan, as a supplement to the Health and Retirement Study. The 
Wave I of the AHEAD survey was conducted between October 1993 
and April 1994. A sample of individuals age 70 or older (born in 
1923 or earlier) was identified throughout the HRS screening of an 
area probability sample of households in the nation. This procedure 
identified 9,473 households and 11,965 individuals in the target area 
range. The Wave I respondents have been followed by telephone every 
second or third year, with proxy interviewing designed for those 
deceased between two successive surveys. By now, AHEAD survey 
registers nine waves of investigation in 1993, 1995, 1998, 2000, 2002, 
2004, 2006, 2008, and 2010. As a longitudinal, multidisciplinary, and 
U.S. population-based study, AHEAD provides a highly representative 
and reliable data base for the survival analysis of older Americans age 
70 or older. Survival information throughout the follow-up waves has 
been obtained by a link to the data of National Death Index (NDI). 
Given the purpose of illustration, I randomly select 2,000 persons from 
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Survival models on unobserved heterogeneity

The removal of two statistically significant predictor factors from 
the hazard model guarantees that survival data in the regression analysis 
are conditionally dependent. In this illustration, four hazard models are 
applied–the standard proportional hazard (PH) regression, two frailty 
models, and the retransformation method–with an attempt to compare 
their capabilities for addressing unobserved heterogeneity. The robust 
sandwich variance estimator is not considered in the illustration 
because, given the present dataset, this method does not modify the 
variance estimates considerably.

Most regression models handling unobserved heterogeneity are 
designed by parameterizing random effects in order to accomplish 
conditional independence among observations. Because the 
retransformation method requires the specification of a complete 
likelihood function, the Weibull proportional hazard model is used 
with the addition of a term for individual-level random effects. The 
adjusted Weibull model is given by

( ) ( ) ( )1
0 0,  exp log ,  λ λ λ − ′ = + 



Z Zpt z p t zβ 	             (25)

where, within the construct of the Weibull hazard model, λ0 is 
the scale parameter, p  is the shape parameter, and z represents the 
random effect. The vector Z in this analysis contains the six covariates 
mentioned earlier. Empirically, the Weibull hazard model often 
derives identical estimates of covariates’ regression coefficients as does 
the Cox model [44], so that the application of the Cox model would 
generate the same fixed effects. With the addition of a random effect 
term, the adjusted Weibull hazard function no longer possesses the 
proportional and monotonic properties. In this illustration, however, 
the quality of the parameter estimates is the major concern, so is the 
potential impact of the random effect, so that the shape of a baseline 
distributional function is not of interest. The arbitrarily assumed 
random effect is not considered in the standard proportional hazard 
model assuming unobserved heterogeneity to be statistically accounted 
for by incorporating theoretically relevant covariates.

The crucial part of creating a frailty model is to select a specific 
distributional function for the frailty effect z. In this analysis, two frailty 
models are fitted with random effects integrated into the likelihood 
function: (a) the Weibull hazard model with random variable z assumed 
to be lognormally distributed, and (b) the Weibull hazard model with 
z assumed to have a gamma distribution. In fitting the second frailty 
model, the mean of z’s is set at one given the condition that η=v and 
var(z)=1/v, as conventionally applied.

	 In performing the retransformation method, normality is 

assumed for the random effects in the linear predictor; and the coefficient 
Φ is estimated externally thereby not impacting the estimation of other 
parameters. The full model, used to calculate empirically-based random 
errors, considers eight covariates–the aforementioned six explanatory 
variables–plus the two omitted health factors.

The operational objective of this illustration is three-fold: first, to 
examine whether the likelihood function integrated over the random 
effect is statistically effective in fitting the Weibull hazard model. Here, 
the model chi-square criterion, given the likelihood ratio statistic, is 
used to test the null hypothesis that the addition of a random term 
does not fit the AHEAD survival data significantly better than does the 
standard PH model. The second objective is to know whether the hazard 
model with a gamma distributed random effect fits the data significantly 
better than does the model with a lognormal distribution, also using the 
model chi-square criterion on the null hypothesis. The last operational 
objective is to assess whether the retransformation method yields a 
statistically significant smearing estimate for nonlinear predictions. 
For strengthening this last procedure, two predicted survival curves are 
compared for older persons age 85, one generated from the standard 
Weibull hazard model and one from the retransformation method. 
Because veteran status is used as a major independent variable, 
those survival curves are created for older veterans and nonveterans 
separately. Given an equal sample size for the estimation of each model, 
the degree of freedom can be well specified, so that these comparisons 
can be conducted effectively.

The standard Weibull survival function at time t is

( ) ( ) ˆˆ ˆ, exp - exp  .  ′=   


 Z Z pS t p tβ 			               (26)

In the retransformation method, the survival function, assuming 
random effects in the linear predictor to be normally distributed, is 
given by

( ) ( ) ( ) ˆˆ ˆˆ ˆ, exp - exp log . Φ Φ  ′= +    


 Z Z pS t p  tβ, 	               (27)

 All four models are fitted using the SAS PROC NLMIXED 
procedure. Theoretical implications can be summarized by examining 
different sets of parameter estimates, the model fit statistics, and the 
predicted survival functions.

Results
Table 2 summarizes the results derived from the four hazard rate 

models on the AHEAD data. The first hazard model in the table is the 
regression specifying a number of fixed effects without a random term, 
assuming unobserved heterogeneity to be completely accounted for by 
the fixed effects. The next two hazard models are the Weibull functions 
fitted by maximizing an approximation to the likelihood integrated 
over the unobserved random effect, distributed either as a lognormal 
or as a gamma function. The fourth model is the Weibull regression 
with the smearing effect estimated externally to the maximization of 
the likelihood function.

The estimated regression coefficients in the first two models are 
almost identical, with trivial differences only in some of the standard 
error estimates and p-values. In both models, the regression coefficient 
of veteran status is negative, while that of the interaction term between 
veteran status and age is positive, which, combined, suggest a typical 
pattern of mortality convergence and crossover between older veterans 
and nonveterans, and the subsequent excess mortality among older 
veterans. The effect of veteran status is considered statistically significant 

Explanatory
Variable

Mean or 
proportion

Standard
deviation

Coding
Scheme

Variable name
in analysis

Veteran status 
(proportion)

0.19 – 1=veteran, 
0=nonveteran

Vet

Age (mean) 75.79 6.59 Actual number of 
years from birth

Age_70

Female 
(proportion)

0.67 – 1=yes, 0=no Female_cnd

Education
(mean)

11.11 3.55 Actual years 
attending school

Educ_cnd

Currently married 
(proportion)

0.55 – 1=yes, 0=no Married_cnd

Note: In the analysis, age_70=(actual age–70); the rest of the covariates, except 
vet, are mean-centered variables. 
Table 1: Mean or proportion, standard deviation, coding scheme of covariates: 
Older Americans (n=2,000).
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given the statistical significance of the interaction term. The variance of 
the normally distributed random effect, not exactly reported in Table 2, 
is 0.000006, so that the mean frailty effect with a lognormal distribution 
is exp(0.000006/2)=1.000003. Obviously, the integration of a log-
normally distributed random term to the likelihood function does not 
impact the estimation of the parameters at all given the specification 
of a flexible baseline hazard function. More important, the value of 
-2×( log likelihood ratio), distributed as χ2 with 1 degree of freedom 
on the null hypothesis, remains unchanged after the addition of the 
random effect, highlighting the statistical redundancy of this arbitrarily 
assumed random term in this particular data set.

Compared to the first two models, the third Weibull model, 
assuming gamma distributed random effects, derives different 
parameter estimates. First, the random effect parameter var(z) is 
statistically significant (0.6421; t=10.80, p<0.0001). Second, the 
estimate of the Weibull shape factor is considerably increased, 1.915, 
compared to 1.265 obtained from the first two models given the 
specification of a different scale factor. Third, absolute values of the 
regression coefficients are much elevated, thanks to the increased 
amount of the shape parameter. Compared to the frailty model with a 
lognormal distribution, this statistical model generates no gain in the 
model fit because the difference in the value of -2×(log likelihood) is 
negative (4246.7 versus 4250.9). According to the statistical criterion 
that less is better with regard to this statistic, the frailty model with a 
gamma distribution does not improve the model fit compared to the 
first two models. Consequently, the null hypothesis that the integration 
of a random effect in the likelihood does not significantly improve the 
estimation of the hazard model cannot be rejected. There are some 
more refined model fit indices for handling complex data structures, 
such as Akaike’s information criterion (AIC) and Bayesian information 
criterion (BIC); in the present comparisons, however, using another 
model fit statistic would probably generate the same conclusion given 
an equal sample size for these models. 

Clearly, the integration of an arbitrarily assumed random term to 
the likelihood function is not statistically supported in this example, 
as the flexible, monotonic Weibull baseline function and the fixed 
effects absorbs substantial information of the random effects. Thus, the 
retransformation method, an external approach to generate unbiased 
estimates of functionals of the regression parameters when random 
effects are present, can serve as an alternative for estimating the random 
effects. The last two columns of Table 2 display the results of the fourth 

hazard model. As Φ is estimated empirically, other parameter estimates 
and the model fit statistic are exactly the same as those estimated for the 
standard PH model. The value of Φ is 1.271, very strongly statistically 
significant.

Figure 1 plots the evolution of the survival functions predicted 
from the standard proportional hazard model and the retransformation 
method, respectively. In Panel A, which compares the predicted survival 
curves among older nonveterans, there is a distinct and systematic 
separation between the two curves. At each time point following the 
origin of time, the predicted probability of survival obtained from 
the standard hazard model is considerably higher than from the 
retransformation method. In Panel B, the two survival curves decline 
more sharply thereby indicating faster mortality acceleration among 
older veterans than among nonveterans; however, the separation 
between the two predicted curves remains the same as in Panel A. The 
substantive meaningfulness of such separations is governed by the 
statistical significance of Φ derived from the retransformation method.

Conclusions
This study displays that parameterization of random effects in the 

hazard model does not necessarily function effectively for capturing 
unobserved heterogeneity in analyzing large-scale survey data. 
According to Andersen and Gill [13], if correlation in survival data is 
reflected in the covariates, the large sample behavior follows thereby 
making the parameter estimates asymptotically unbiased. The flexibility 
of the baseline hazard function in the parametric Weibull or the semi-
parametric Cox model can usually mitigate the impact of unobserved 
heterogeneity and therefore loose the assumption on the frailty term. 
Occasionally, serious bias in the variance estimator of β̂  arises while 
the point estimates are asymptotically unbiased; in such situations, the 
variance-covariance estimates can be easily adjusted by applying the 
robust sandwich variance estimator. Even so, the standard PH model 
can result in serious prediction bias. In the illustration presented in this 
study, for example, inherent random disturbances exist in survival data 
due to removal of two theoretically important, statistically significant 
predictor factors. As the two frailty models are not shown to be effective 
for capturing the effect of additional clustering, the application of the 
retransformation method is useful for deriving an adjustment factor for 
nonlinear predictions of lifetime processes.

It must be emphasized that the results displayed in this study 

Covariate & other Standard PH model Lognormal frailty model Gamma frailty model Retransformation method
Statistics coefficient Hazard ratio coefficient Hazard ratio coefficient Hazard ratio coefficient Hazard ratio
Veteran status -0.241 0.786 -0.241 0.786 -0.392 0.676 -0.241 0.786
Age_70 0.064*** 1.066 0.064*** 1.066 0.101*** 1.106 0.064*** 1.066
Vet × Age_70 0.046** 1.047 0.046* 1.047 0.082* 1.085 0.046** 1.047
Female_cnd -0.556*** 0.573 -0.556*** 0.573 -0.911*** 0.402 -0.556*** 0.573
Educ_cnd -0.016 0.985 -0.016 0.985 -0.027 0.973 -0.016 0.985
Married_cnd -0.168 0.846 -0.168 0.846 -0.286 0.751 -0.168 0.846
Intercept -7.092*** -7.092*** -11.493*** -7.092***

Random effect 0.000 0.642*** 0.480***

Mean frailty score 1.000 1.000 1.271
Shape coefficient 1.265*** 1.265*** 1.915*** 1.265***

-2 log likelihood 4246.70 4246.70 4250.9 4246.70

Note: The parameter “shape” is tested by ( p~ –1.0)/SE.   * 0.05<p<0.10; **0.01<p<0.05; ***p<0.01. 
Table 2: Results of four hazard rate models on the mortality of older Americans between 1993 and 1997: Fixed-effects and frailty models (n=2,000).
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do not suggest that frailty models, particularly the model with a 
gamma distribution, are not useful. The results presented above just 
demonstrate that for this particular example with this particular data 
set, the application of two frailty models does not significantly improve 
the quality of parameter estimates and the likelihood ratio statistic 
when random effects are present. Under different patterns regarding 
unobserved heterogeneity and other factors such as sample size, the 
performance of the four models may differ significantly. In behavioral 
science, empirical data often come from large-scale observational 
surveys, from which a large quantity of variables are available for the 
specification of complex conceptual frameworks. If a theoretical model 
is correctly specified for guiding data analysis, the impact of unobserved 
heterogeneity on parameter estimates can be immensely mitigated 
by specified fixed effects thereby making additional parameterization 
redundant [2,13,33,38]. Here, the desirable large-sample behavior 
is effective because a stochastic time-to-event process, particularly 
in the Cox model, can largely wash out the impact of unobserved 
heterogeneity [2]. In these occasions, the incorporation of an additional 
frailty factor in the PH model is not supported by large-sample theory 
[18] therefore is misspecified. Such a statistical advantage is usually 
not pertinent in biomedical studies, which regularly use survival data 
either of a small sample size or with a lack of measurable variables. In 
those situations, the frailty theory and its attaching models are highly 
valuable for addressing unobserved heterogeneity. The example given 
in this study does not derive general directives by using a single data 
set, and some other empirical works show that ignoring unobserved 
heterogeneity can lead to incorrect estimates. Therefore, ignorability of 
random effects in the survival model must be carefully assessed and 
justified from situation to situation, using the likelihood ratio test or 

other more refined statistical criteria. Large scale simulation is needed 
to investigate general patterns of unobserved heterogeneity under 
different conditions.
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