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Introduction
The studies for the insurer’s risk management incentives under the 

financial distress have a long history, and many elegant results have 
been established. Opler and Titman [1], Briys and De Varenne [2], Ma 
et al. [3] and the references therein. A solvency model in the presence 
of costs of financial distress has been introduced in references [4-6]. 
Based on the Markov-modulated market [7], the solvency ratio model 
is further discussed in Xia et al. [8].

In this paper, we will using the pricing formula for European 
options to study the insurer’s solvency ratio, as we know, in 1973, Black 
and Scholes [9] provided the famous pricing formula for European 
options under the assumptions that the risk-free bond price 0 : [0, ]∈tS t T  
and the price of the stock 1: [0, ]∈tS t T are described as
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where r, µ, σ; are constants called risk-free interest rate, expected 
return rate and volatility of the stock respectively, W={Wt: t ∈ [0,T]} is 
a standard Brownian motion on a probability space (Ω, ,), T is called 
maturity (0 < T < ∞). However, in real markets the expected return rate 
and the volatility usually are not constants but they can vary with time 
[10,11]. Thus, following their work, many authors discussed various 
option pricing problems under the more general model

1 1 1µ σ= +t t t tdS S dt S dW ,

where {µt : t ∈ [0,T]} and {σt : t ∈ [0,T]} are two given stochastic processes 
with some integrable conditions, and the risk-free bond is described as
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where rt is deterministic interest rate function on [0,T] with 0
0 1=S  and 

0
< ∞∫

T

tr dt . The pricing theory of Shreve [11] options shows that, if 
the market is arbitrage-free and complete, there exists a unique risk 
neutral martingale measure  defined by
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such that for any contingent claim η at time T, the value of η at any time 
t ∈ [0; T ) is given by

,

and, in particular, the current price is
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where the notation  is the expectation with respect to the probability
measure .

Lévy processes are processes with stationary and independent 
increments and are thus, in a way, generalizations of a Brownian 
motion. Unlike the latter, their increments are not normally distributed, 
the distribution of their increments belong to the wide class of infinitely 
divisible distributions. Lévy processes can be decomposed as the sum 
of three independent processes. One component is linear deterministic, 
the second a Brownian motion and the third a pure jump process.

Lévy processes have recently become an object of interest in finance 
modeling because they have diffusion-like and jump properties at the 
same time [12,13]. In finance, as well as in insurance, this has been 
achieved by adding extra components into the model. In finance, large 
fluctuations are incorporated via a jump process and in insurance small 
fluctuations are incorporated via diffusion. Lévy processes account for 
both types of structures.

Because of Lévy´ models provide a better fit to empirical asset price 
distributions that typically have fatter tails than Gaussian ones, and 
can reproduce volatility smile phenomena in option prices. It has been 
shown by Cont et al. [14] and Bjork et al. [15], that Lévy processes 
are relevant in mathematical finance, in particular in model of stock 
prices. Pricing the continuously sampled geometric average options in 
exponential Lévy models is easy and quite straightforward [16].

Following in reality, the prices of assets depend on Lévy processes, 
and then because of the relation between the insurer’s solvency ratio 
and the prices of assets, it is interesting to discuss the insurer’s solvency 
ratio model with Lévy´ processes. The dynamic model of solvency ratio 
with Lévy process in the presence of financial distress cost is addressed 
in this paper. By using the options pricing formula on a stock whose 
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price processes are modeled by a Lévy process, which is introduced in 
Cont et al. [14] and Sato [17], we obtain the expected present value of 
shareholders’ terminal payoff. The model extends the existing results. 
The arrangement of the paper is as follows. 

Insurer’s Solvency Ratio Model with Lévy Process
Since the variability in financial outcomes is costly when a 

corporation operates in an environment with frictional costs, the risk 
management strategies depend on the nature of the frictional costs. In 
general, there are essentially three sources of frictional capital costs: tax 
asymmetry, costs of financial distress and agency costs. In the insurance 
industry, an insurer experiences an additional two costs of corporate 
risk: cost of double taxation and cost of regulatory restrictions [5]. This 
article investigates the strategies of an insurer’s risk management in the 
presence of financial distress costs.

We suppose that there is no claim payment made other than at 
the end of the period. AT denotes the value of the company assets and 
LT the value of company liabilities at the end of a period T, ΛT :=AT/
LT is called an insurer’s solvency ratio. b is a pre-specified threshold 
(financial distress (FD) barrier). If the terminal value of the solvency 
ratio exceeds b (i.e., ΛT>b), then the insurer is financially healthy. 
An insurer becomes financially distressed if the terminal value of 
the solvency ratio falls below b (i.e., ΛT ≤ b). In the state of the FD, 
the insurer experiences deadweight loss proportional to the terminal 
value of assets AT with the proportional coefficient (1 - w), w ∈ [0, 1). 
Further, if the net terminal value of assets under the FD costs exceeds 
the terminal value of liabilities, i.e., wAT > LT or ΛT > 1/w, then we call 
the insurer is financially distressed but solvent; in contrast, when wb<1 
or b<1/w, we call the insurer is insolvent.

In sum, there are three different economic states of an insurer: 
financially healthy; financially distressed and solvent; insolvent.

Assume that at time t the value of the insurer’s solvency ratio Λt is 
driven by a Lévy process. Under the original measure , dynamics of 
Λt is

( ) ( )( )
1

( ) ( ) , , 0,µ σ λ
∞Λ

− Λ Λ −

 Λ =Λ + + − ≥  ∫t t td t dt t dW y N dy dt m dy dt t           (1)

where µΛ(t) denotes mean rate of return, σΛ(t) the volatility of Λt, 
both are deterministic. ( ),0Λ ≤ ≤tW t T  is a Brownian motion on a filted 
probability space (Ω, , (t), ). N(dy, dt) is a homogeneous Poisson 
measure for Poisson process (Nt, (U j)j≥1), λm(dy) is the compensator of 
N(dy, dt), λ is the intensity of a Poisson process Nt, m(dy) is probability 
measure of square-integrable and independent identically distributed 
random variables (U j)j≥1 with U j > -1. Let also (Wt)t≥0, (Nt)t≥0 and (Uj)j≥1be 
independent of each other.

The expected present value of shareholders’ terminal payoff is 
defined by
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 is a deterministic riskless interest rate.

Now a risk-neutral measure  is defined as
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where δt = (r(t) - µΛ(t))/σΛ(t). Thus, we have
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By Girsanov’s theorem Karatzas et al. [18] and Rogers et al. [19] the 
process 

0
ˆ δΛ Λ= −∫

t

t t sW W ds  is a -Wiener process. We suppose that 
( )

0
0 ( ),0

µ∫= ≤ ≤
t

L s ds

tL L e Z t t T  where µL(t) is deterministic. Then for any 

function of the terminal value of ΛT, we get

Therefore, we have
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For our aim, we can set ( )= Λ >b TP b  as known.

Hence, under the risk-neutral measure  dynamics of Λt is
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Results
Now, we give a useful lemma appeared in Terence [20] and Xiong 

[21].

Lemma 1: Under the risk-neutral measure , if the stock price S = (St) 
follows
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1
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 = + + −  ∫t t tdS S r t dt t dW y N dy dt m dy dt ,

Where Wt denotes a standard Brownian motion on a filted probability 
space (Ω,, (t), ),σ(t) is deterministic. Then for the European call 
option with the cost function (ST - K)+, we have

,
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= ∫  is the cumulative normal distribution 

function.

Theorem 1: The dynamics of Λt is given in (1). Then, under above 
conditions, the expected present value of shareholders’ terminal payoff 
is given. 

( )0 1+ − bL w bP ,                 (2)

Where

,
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By Lemma 1, we deduce

,

.

Similar to discussion in reference [4], we know µL(t) = r(t). Hence 
we have

( )0
( )

0 0 1 21∫=  + −  

T
r s dsS RV L e wC w C ,

from which (2) is derived. The proof is complete.

Corollary 1: When an insurer becomes financially distressed, i.e., 
ΛT ≤ J, then the expected present value of shareholders’ terminal payoff 
is given by

.

Remark: When w=0, the insurer losses all terminal value of assets 
AT, we say the insurer is bankruptcy. At this time, ΛT ≤ b, ΛT → 0, and 
LT → ∞, we can easily prove that 0 0S RV = .

Conclusion
This paper mainly introduces the insurer’s solvency ratio model 

with Lévy processes in the presence of financial distress cost, where 
an insurer’s solvency ratio is characterized by a Lévy process. By the 
option pricing formula for a Lévy process, the expected present value 
of shareholders’ terminal payoff is explicitly provided.
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