

# Structure-based Design of Small Molecule Inhibitors Targeting SARS-CoV-2 Proteins

Weidi Otalora\*

Department of Epidemiology, Zhengzhou University, Zhengzhou, China

## Introduction

The emergence of the novel coronavirus, SARS-CoV-2, in late 2019 and its subsequent global spread, has caused an unprecedented public health crisis, leading to millions of deaths worldwide and overwhelming healthcare systems. As the causative agent of COVID-19, SARS-CoV-2 has highlighted the urgent need for effective antiviral therapeutics to mitigate the spread of the disease and reduce the severity of symptoms in infected individuals. While vaccines have proven to be a powerful tool in preventing the spread of the virus, the rapid mutation of SARS-CoV-2 and the rise of variants of concern (such as Delta, Omicron and others) have made it clear that vaccines alone will not be sufficient to control the pandemic in the long term. This has spurred an intense global effort to develop antiviral drugs that can directly target the virus and interfere with its replication cycle, preventing the virus from causing severe illness or spreading further. Among these, the main protease (Mpro), the papain-like protease (PLpro), the spike protein (S) and the RNA-dependent RNA polymerase (RdRp) are critical to the virus's ability to replicate and infect host cells. These proteins have been identified as potential drug targets for antiviral therapy and structure-based design approaches offer a means to develop highly specific inhibitors that can block their function, thereby halting viral replication [1].

## Description

The main protease (Mpro) of SARS-CoV-2 is a highly conserved enzyme that plays a pivotal role in the processing of the viral polyprotein. After the virus enters a host cell, it synthesizes a large polyprotein that must be cleaved into functional viral proteins to enable replication and assembly. Mpro is responsible for this critical cleavage process, making it an attractive target for small molecule inhibitors. In fact, one of the first therapeutics to receive Emergency Use Authorization from the U.S. Food and Drug Administration (FDA) for treating COVID-19, the drug Paxlovid, is a protease inhibitor targeting Mpro. The papain-like protease (PLpro) is another viral enzyme that has attracted attention as a drug target. PLpro is involved in processing the viral polyprotein as well, but it also plays a role in modulating the host immune response by inhibiting the host's antiviral defense mechanisms. PLpro cleaves host cell proteins that are essential for the host's innate immune system, thus enabling the virus to evade detection. Inhibition of PLpro could not only block viral replication but also enhance the host immune response, providing a dual benefit in treating SARS-CoV-2 infections. Much like Mpro, the structure of PLpro has been elucidated and its active site has been targeted for the development of specific inhibitors [2].

Another crucial protein for SARS-CoV-2 replication is the RNA-dependent RNA polymerase (RdRp). RdRp is responsible for the replication of the viral

RNA genome inside the host cell. This protein is essential for the virus to produce new viral RNA, which is then translated into viral proteins. Structure-based drug design relies on a deep understanding of the 3D structures of these viral proteins and the interactions between the proteins and potential inhibitors. Techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy have enabled researchers to obtain high-resolution structures of key viral proteins, providing a detailed view of the binding sites that are critical for their activity. In silico methods, such as molecular docking and molecular dynamics simulations, further allow researchers to predict how small molecules can interact with these targets and identify promising compounds for development. By analyzing these structures, researchers can design small molecules that specifically bind to the active sites or allosteric sites of viral proteins, blocking their function without interfering with host cell machinery. This approach ensures the development of highly specific inhibitors that are more likely to be effective and less likely to cause off-target effects or toxicity [3].

One of the key advantages of structure-based drug design is the ability to optimize small molecules for high specificity and potency. Through iterative cycles of design, synthesis and testing, researchers can refine inhibitors to enhance their binding affinity for viral proteins and improve their pharmacokinetic properties. Structure-based design also allows for the identification of potential resistance mechanisms, as it provides insights into the molecular interactions between the inhibitor and its target. This can be particularly important for viruses like SARS-CoV-2, which can rapidly mutate and develop resistance to antiviral drugs. By anticipating potential mutations that could affect drug efficacy, researchers can design inhibitors that are less likely to be thwarted by viral evolution. The rapid development of structure-based inhibitors for SARS-CoV-2 has already led to several promising candidates entering clinical trials. The availability of high-resolution structures for SARS-CoV-2 proteins has also facilitated the development of broad-spectrum antiviral agents that may be effective against multiple variants of the virus [4].

However, challenges remain in the design of small molecule inhibitors for SARS-CoV-2. The rapid emergence of new variants, such as the Delta and Omicron strains, has raised concerns about the efficacy of existing therapeutics. Variants with mutations in the spike protein, Mpro and other key viral enzymes may be able to evade current antiviral drugs, necessitating the continuous design of new inhibitors that can overcome these mutations. Furthermore, the potential for side effects and toxicity associated with antiviral drugs remains a concern. As with all drug development, a careful balance must be struck between efficacy and safety to ensure that these therapies can be used effectively in diverse patient populations. AI and ML algorithms can analyze vast amounts of structural data, predict binding affinities and simulate the interactions between potential inhibitors and viral proteins more efficiently than traditional methods. These technologies enable researchers to rapidly identify promising compounds from large virtual libraries, thereby accelerating the drug discovery process. Moreover, AI-driven approaches can predict potential side effects and toxicity, further streamlining the drug development process. As AI and ML technologies continue to evolve, they are poised to play an increasingly critical role in the identification and optimization of small

\*Address for Correspondence: Weidi Otalora, Department of Epidemiology, Zhengzhou University, Zhengzhou, China, E-mail: otalora.weidi@zhengzhou.cn

Copyright: © 2025 Otalora W. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01 April, 2025, Manuscript No. mcr-25-165735; Editor assigned: 03 April, 2025, PreQC No. P-165735; Reviewed: 15 April, 2025, QC No. Q-165735; Revised: 22 April, 2025, Manuscript No. R-165735; Published: 29 April, 2025, DOI: 10.37421/2161-0444.2025.15.772

molecule inhibitors against SARS-CoV-2 and other emerging viral threats, offering a more efficient and precise approach to drug discovery in the future [5].

## Conclusion

In conclusion, the design and synthesis of small molecule inhibitors targeting SARS-CoV-2 proteins using structure-based drug design represents a powerful approach to combating COVID-19. By targeting critical viral enzymes, such as Mpro, PLpro, RdRp and the spike protein, researchers can develop highly specific antiviral agents that block the virus's ability to replicate and infect host cells. The use of advanced techniques in structural biology and computational modeling has significantly accelerated the identification of potential drug candidates and several promising inhibitors are already in clinical development. As new variants of SARS-CoV-2 continue to emerge, structure-based drug design will remain a key strategy in the fight against COVID-19, offering hope for effective treatments that can help control the pandemic and reduce its impact on global health.

## Acknowledgment

None.

## Conflict of Interest

None.

## References

1. Vithani, Neha, Michael D. Ward, Maxwell I. Zimmerman and Borna Novak, et al. "SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential." *Biophys J* 120 (2021): 2880-2889.
2. Gomes, Joao Pedro Agra, Larissa de Oliveira Rocha, Cintia Emi Yanagibashi Leal and Edilson Beserra de Alencar Filho. "Virtual screening of molecular databases for potential inhibitors of the NSP16/NSP10 methyltransferase from SARS-CoV-2." *J Mol Struct* 1261 (2022): 132951.
3. Hui, David S., Esam I. Azhar, Tariq A. Madani and Francine Ntoumi, et al. "The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China." *Int J Infect Dis* 91 (2020): 264-266.
4. Zhuo, Lin-Sheng, Ming-Shu Wang, Jing-Fang Yang and Hong-Chuang Xu, et al. "Insights into SARS-CoV-2: Medicinal chemistry approaches to combat its structural and functional biology." *Top Curr Chem* 379 (2021): 23.
5. Sheahan, Timothy P., Amy C. Sims, Shuntai Zhou and Rachel L. Graham, et al. "An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice." *Sci Transl Med* 12 (2020): eabb5883.

**How to cite this article:** Otalora, Weidi. "Structure-based Design of Small Molecule Inhibitors Targeting SARS-CoV-2 Proteins." *Med Chem* 15 (2025): 772.