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Introduction
Ternary and quaternary semiconductors provide a natural way of 

tuning the desired band gap and flexibility to control other material 
parameters, by changing the relative composition of the pure elements 
in the alloy. A special group of ternaries includes the families I-III-
VI2 and I-III5-VI8 [1,2]. The most studied of the first class of alloys are 
Ag(In,Ga)(Te,Se)2 [3-5], which crystallize in the non-centrosymmetric 
chalcopyrite structure. This is because these compounds appear as 
promising candidates for infrared nonlinear optical devices, and solar 
cells applications [6,7]. On the other hand, semiconductors of the family 
I-III5-VI8 with tetragonal or orthorhombic structure depending on the
ion of group III, not only have band gaps suitable for optimum energy
conversion solar cells, but also thermoelectric properties useful for
applications in waste-heat recovery, air conditioning, and refrigeration 
[8]. Hence, the study of the physical properties of these semiconductor 
compounds for useful devices, offer the possibility for newer materials
developments, especially of many quaternary compounds. More
recently, we have paid attention on the crystalline structure and
lattice parameters of the quaternary alloys Ag(In1-xGax)5Te8 [9].
This is because these quaternary compounds are expected to exhibit
intermediary optical, electrical, and thermal response between the
ternaries AgIn5Te8 and AgGa5Te8. On the other hand, it is known that
Ag(In,Ga)5Te8 is easily obtainable because at these concentrations, the
constituent elements melt congruently at relatively low temperatures
[10]. This information is also of importance, since the electronic and
other physical properties for applications may also depend on the
growth conditions.

The structure and properties of semiconductor materials are 
closely related to the morphology and grain size. Understanding 
this relationship is critically important to many industrial processes. 
Furthermore, a look inside a grain can give us information on the 
hierarchy of microstructure  in the materials. The main purpose of 
this work is to study the structural properties and morphology of the 
semiconductor AgIn4GaTe8. Our samples were prepared by direct 
fusion of stoichiometric mixture of constituent elements, and then the 
crystalline structure, lattice parameters, and crystallite size determined by 
x-ray diffraction (XRD). In addition, the morphology of the sample and 
grain size were determined using Scanning Electron Microscopy (SEM). 

This paper is organized as follows: in Section II we provide a brief 
description of the sample preparation and characterization methods. 
In Section III the experimental results and their analysis are presented. 
A summary of the main results from this study is presented in Section 
IV.

Experimental
Polycrystalline ingots of AgIn4GaTe8 were prepared by direct fusion 

of the stoichiometric mixture of the elements of at least 5N purity, 
following the synthesis program sketched in Figure 1, and according to 
the phase diagrams reported for the pseudo-binaries Ag2Te-In2Te3 [11], 
and Ag2Te-Ga2Te3 [12]. The samples were synthesized inside evacuated 
quartz ampoules (≈ 10-6Torr). To minimize the risk of explosion due 
to exothermic reaction between the group III element and Te, the 
ampoules were heated in a vertical furnace very slowly at 5°C /h up to 
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Figure 1: Diagram used for synthesize the quaternary semiconductor 
AgIn4GaTe8.
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reflections in both phases (any hkl), so we assume a simple-tetragonal 
and simple-orthorhombic lattices, respectively. The complete XRD 
data of AgIn4GaTe8 obtained from our analysis are summarized in 
Tables 1 and 2.

Crystallite and grain size

The grain size is often related to the full width half maximum 
(FWHM) of the diffraction pattern, by means of the well-known 
`Scherrer formula [14],

θ
λβ

cosL
K

= ,                                    (1)

where β  is the FWHM in rads, K=2[ln(2)/π]1/20.93 is a constant related 
to the grain shape, λ is the X-ray wavelength in Å, L the average size of 
the crystallites in Å, and θ  the Bragg angle in degrees. Unfortunately, 

858°C. Kept at this temperature for 48 h, the samples were rocked at 
regular intervals to achieve a homogeneous mixing of the liquid phase 
of the reacting mixture, and then cooled to room temperature at a rate 
of 5°/h.

Powder X-ray diffraction measurements were performed using 
a diffractometer Bruker D8 Focus with the CuK characteristic line 
(1.5405 Å) in the Bragg-Brentano geometry. The patterns were 
collected in the range 10° ≤ 2θ ≤ 70° with a step size of 0.02 and step 
time of 40 sec. The diffraction spectrum was then analyzed by using 
the program WINPLOTR. The microstructure was imaged using a 
scanning electron microscope (SEM) QUANTA 200FEG microscope, 
with acceleration potential of 15.0 KeV, and magnifications 16000X 
and 60000X.

Results and Analysis
Crystalline structure 

The X-ray diffraction pattern of AgIn4GaTe8 is shown in Figure 
2. Our analysis reveals the presence of at least two different phases. 
A tetragonal phase (Figure 2a), with unit cell parameters a=6.070 Å, 
c=12.224 Å, c/a=2.0138, and a secondary phase (Figure 2b) taking 
place in the orthorhombic structure with unit cell parameters a=6.274 
Å, b=10.793 Å, c=14.498 Å. Although in a recent work we have shown 
that polycrystalline Ag(In1-xGax)5Te8 may exhibit a single tetragonal 
structure for all x values [9], the presence of these two phases in 
AgIn4GaTe8 is not surprising, since other authors have report that the 
ternary AgGa5Te8 can crystallize in both tetragonal and orthorhombic 
structure [8,13]. The unit cell parameters obtained for the tetragonal 
phase in our sample depart from the values a=6.1503 Å, c=12.329 Å, 
and c/a=2.0046, reported for single-tetragonal AgIn4GaTe8 [9]. This 
represents a change in the unit cell volume of about 0.034%. It is 
also noted that there are no restrictions on the order of the allowed 
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Figure 2: Powder X-ray diffraction pattern of polycrystalline AgIn4GaTe8. Two 
phases were indexed: (a) tetragonal, and (b) orthorhombic.
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Figure 3: Plot of the FWHM, 2/1∆ , of the XRD profile as a function of θ. The 
solid lines are theoretical values calculated with equation (2).

hkl 2obs(°) 2θcalc(°) d(Å)
110 20.725 20.675 4.2824
112 25.334 25.333 3.5129
103 26.348 26.321 3.3798
004 29.210 29.199 3.0549
200 29.369 29.402 3.0387
104 32.780 32.782 2.7299
211 33.796 33.792 2.6501
114 35.997 36.047 2.4929
105 39.682 39.713 2.2696
108 62.644 62.643 1.4818
226 62.862 62.839 1.4772

Table 1: Powder XRD data of AgIn4GaTe8 obtained for the tetragonal phase in 
polycrystalline AgIn4GaTe8.

hkl 2obs(°) 2θcalc(°) d(Å)
0 2 0 16.410 16.412 5.3975
0 0 1 39.582 39.606 2.2750
1 1 1 41.018 41.008 2.1986
2 0 1 41.571 41.595 2.1707
4 4 0 41.693 41.697 2.1646
0 5 0 41.812 41.813 2.1587
2 2 1 45.004 44.999 2.0127
7 2 0 46.940 46.954 1.9341
4 5 0 49.100 49.081 1.8540
1 7 0 60.172 60.317 1.5342
5 4 1 62.172 62.206 1.4919
0 6 1 66.213 66.189 1.4103
1 6 2 66.574 66.542 1.4035
10 2 0 66.769 66.757 1.3999

Table 2: Summary of the data obtained from the Jeffries planimetry.
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accompanied by strain anisotropy induced by crystallite dislocations 
along the different directions in the specimen.

In Figure 4 we present SEM images of AgIn4GaTe8. These 
micrographs reveal a very rough surface exhibiting relatively large 
grains. Furthermore, many of the grains are faceted. The grain size 
was estimated from these images using the Jeffries planimetric method 
of ASTM E112 standard [18]. The procedure consists in superimpose 
test circles of different radii over the microstructure, and then count 
the grains completely inside, Nin, and those grains intersected by the 
circumference, Nintersected (Figure 4c). The grain size is then given by

ln( )

ln2

NAG = ,                  (4)

where NA is the number of grains per mm2 given by

( )0.5 int secN f N NA in er ted= + ,                (5)

f = M2/A is the Jeffries multiplier, M is the magnification, and A is 
the area of the circle. Several counts were performed within test circles 
of radii 50, 65, 75, and 185 mm, over the 16000X image. The results 
obtained from this planimetric process are resumed in Table 3. From 
these data we have determined an average grain size, G, of the order of 
∼ (6.38 ± 0.30)µm. This value is larger than the crystallite sizes obtained 
from the XRD analysis. Then, according to our results, each of these 
grains is composed of several tetragonal and orthorhombic crystallites, 
with different sizes distributed along all directions, and crystallite 
dislocations within the grain. This picture is illustrated in Figure 5.

Although further work is needed in other to understand the 
relationship between crystalline structure and the morphology of 
Ag(In1-xGax)5Te8, the results presented here are important for possible 
applications of these materials in many semiconductor processes.

Summary
Powder XRD and SEM techniques were used to study the structural 

properties and morphology of polycrystalline AgIn4GaTe8, prepared by 

this method is unreliable estimating grain size, because the assumption 
that the crystallite size matches the grain size is not always valid at the 
microscale. A grain may be made up of several different crystallites. 
In this case, the size effects could be overwhelmed by an anisotropic 
microstructure. 

In Figure 3 we show a plot of the FWHM, β , of the XRD profile 
as a function of θ, for each phase. The values of β  were determined 
assuming a Gaussian diffraction line, with FWHM given by the 
equation [15]

( ) 22
2

2 tan4
cos instL
K βθε

θ
λβ ++






= ,                 (2)

where instβ  is the instrumental contribution to the FWHM, %) an 
anisotropy constant due to the microstrains, which is dependent on 
the density of dislocations and crystallite size variations [16]. The 
instrumental broadening is parametrized from a reference silicon data 
using the Caglioti´s formula [17] 

2 2tan tan ,inst U V Wβ θ θ= + +                    (3)

where U,V, and W, are scalars. Equation (2) is also referred in the 
literature as a modified form of the Scherrer formula. With this, we are 
able to compute the strain/size effects as different sources of broadening 
for each phase, independently. The solid curves in Figure 3 are least-
square fits of the experimental data with equation (2). A reasonable 
agreement is obtained for crystallite sizes of the order of Ltetra ≅ 2960 
Å= 296 nm, and Lortho ≅ 4350 Å= 435 nm, and anisotropy constants 
εtetra≅ 0.063% and εortho≅ 0.04%. This behavior is generally observed in 
polycrystalline specimens with anisotropic microstructure. For such a 
material, the crystallite size is an anisotropic quantity: the crystallite 
size is different along different crystalline directions, and then, an 
anisotropic size broadening occurs. This size fluctuation is usually 

 

(a)                                                      (b) 
 

 

 (c) 

Figure 4: SEM images of AgIn4GaTe8, with magnifications (a) 16000X, and (b) 
60000X. Pannel 4(c) shows a test circle used in the planimetric measurements.

 

Figure 5: Schematic illustration of the microstructure of AgIn4GaTe8. 

R(mm) A(mm2) Nin Nintersected G(µm)
185 107466.5 40 22 6.0
75 17662.5 33 23 6.3
65 13097.5 27 18 6.5
50 7850 19 13 6.7

Table 3: Powder XRD data of AgIn4GaTe8 obtained for the orthorhombic phase in 
polycrystalline AgIn4GaTe8.
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direct fusion of the stoichiometric mixture of the elements. The XRD 
patterns showed the coexistence of a tetragonal and an orthorhombic 
phase. How the coexistence of two coherent crystalline phases affect 
the physical properties of this system still a matter of further systematic 
research. The experimental FWHM of the diffraction lines as functions 
of the diffraction angle, display a behavior consistent with a modified-
type Scherrer´s equation, involving microstrains due to an anisotropic 
crystallite size together with crystallite dislocations. This strain/size 
effect is particularly strong in the tetragonal phase. The average grain 
size, determined from Jeffries planimetry on the SEM micrographs, 
was larger than the crystallite size obtained from the XRD patterns. 
This is an indicative that the grains in this material are made-up of 
several crystallites. Finally, we emphasize that our discussion is mainly 
qualitative and in the context of previous results reported in I-III5-VI8 
semiconductors, and may be taken as a mean of calling attention to the 
amount of interesting new physics that need further experimental and 
theoretical investigation in quaternary Ag(In1-xGax)5Te8 alloys.
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