
ISSN:2155-9538 JBBS, an open access journal Regenerative MedicineJ Bioengineer & Biomedical Sci

Research Article Open Access

Keywords: Regenerative medicine; Cell therapy; Biomaterials;
Bioactive molecules; Regenerative Pharmacology; Organ regeneration 

Introduction
There is a wide gap between the number of patients suffering from 

diseased and injured organs that need to be replaced and the organs 
available for transplantation. The supply/demand ratio of organs is 
worsening yearly as the population ages and the number of new cases 
of organ failure increase [1]. In response to this need, Regenerative 
Medicine has been developed as a new science with the goal of 
constructing biological substitutes and harnessing the body’s ability 
to self-heal in an attempt to restore and maintain normal function in 
diseased and injured tissues [1]. According to the US National Academy 
of Sciences report, approximately 128 million people in the United 
States alone might benefit from regenerative medicine approaches to 
their diseases [Organ Donation Opportunities for Action, Committee 
on Increasing Rates of Organ Donation, www.nap.edu]

In 1999, William Haseltine, the Scientific Founder and Chief 
Executive Officer of Human Genome Sciences, coined the term 
‘regenerative medicine’ bringing cell transplantation, tissue engineering, 
stem cells, and nuclear transfer under one defining field [2]. National 
Institutes of Health (NIH) authors suggest that “the long-term promise 
of regenerative medicine is a world where there is no donor organ 
shortage, where victims of spinal cord injuries can walk, and where 
weakened hearts are replaced” [3]. The process of regenerating body 
parts may require cells, natural or artificial scaffolding materials, 
bioactive molecules such as growth factors, or a combination of all 
three elements [4]. In this review, we provide information about the 
components required for organ and tissue regeneration as well as the 
promise and complications associated with this new science.

Cell based Therapy

The use of cells in tissue bioengineering has become a reality with 
recent developments in stem cell biology [5]. There is a continuum 
of cells within the body with the ability to self-renew, differentiate 
and produce mature progeny consisting of both non renewing 
progenitors and terminally differentiated effector cells [6]. They can be 
classified according to their differentiation potential into pluripotent, 
multipotent, oligopotent and unipotent cells. 

Embryonic stem cells: Embryonic stem (ES) cells are currently 
the only known natural pluripotent stem cell. Human embryonic stem 
cells have been shown to differentiate into cells representing all three 
embryonic germ layers. For example, ES cells have been differentiated 

in vitro into dermal and neuronal cells, indicating ectodermal 
differentiation potential [7-10]. Blood, cardiac, cartilage, endothelial, 
and muscle cells have been derived from ES cells, indicating 
mesodermal differentiation [11-13]. Pancreatic cells have been derived 
from ES cells, indicating endodermal differentiation [14].  As further 
evidence of their potential pluripotency, embryonic stem cells can 
form embryoid bodies, which are cell aggregations that contain all 
three embryonic germ layers while in culture, and can form teratomas 
in vivo [15]. 

New stem cell technologies such as somatic cell nuclear transfer and 
reprogramming are now available to convert partially or completely 
differentiated cells back to their embryonic routes. An advantage 
of these technologies is the potential of using autologous cells, thus 
overcoming the problem of immune rejection common with ES cells.

Somatic Cell Nuclear Transfer (SCNT): includes removal of an 
oocyte nucleus in culture, followed by its replacement with a nucleus 
derived from a somatic cell of a patient resulting in Embryonic Stem 
cells that are genetically identical to the source [16,17]. Nuclear transfer 
was used to clone a sheep named Dolly in 1997 [18]. This type of cloning 
is known as reproductive cloning where the blastocyst is implanted into 
the uterus of a female to produce an infant that identical to the donor. 
However its use for human applications is prohibited in most countries. 
Another type of cloning is therapeutic cloning which is used to generate 
only Embryonic Stem (ES) cell lines genetically similar to their sources. 
This technique doesn’t involve implantation of the blastocyst into a 
uterus. Instead blastocysts are allowed to grow till 100 cell-stages to 
obtain ES cells [19-21]. While potentially useful, SCNT technology 
still must overcome major hurdles to become clinically relevant. These 
include induced chromosomal abnormalities [22], inadequate supply 
of human oocytes, remaining ethical issues and low efficiency(0.7%) 
[23]. The low efficiency of SCNT is because the majority of embryos 
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Abstract
There is a wide gap between the number of patients requiring organ and tissue replacement and the organs available 

for transplantation. Regenerative Medicine holds the promise of narrowing this gap using cell therapy, bioengineering 
organs and harnessing the body’s ability to self-heal. This review describes progress made in the basic components 
of Regenerative Medicine (collecting and expanding cells, selecting appropriate biomaterials for their scaffolding, and 
employing bioactive molecules to aid in cell migration differentiation and growth) and identifies both gaps in knowledge 
and challenges in execution requiring further research.
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derived from cloning don’t survive after implantation [24]. In other 
words, multiple nuclear transfers must be performed to produce 
one live offspring. To improve cloning efficiency, modifications are 
required in the steps of nuclear transfer such as enucleation, activation 
of oocytes, and cell cycle synchronization between donor and recipient 
cells [25].

Reprogramming: involves production of induced pluripotent 
stem (IPS) cells from adult somatic cells without the use of embryos. 
The major advantage of this approach is that generated cells would be 
genetically identical to the somatic cells and would avoid the complex 
ethical issues of manipulating embryos. This technique was first 
described by Takahashi and Yamanaka in 2006, who reported that 
the expression of a set of four genes (Klf4, Sox-2, Oct 3/4, and c-Myc) 
transformed mouse somatic (fibroblast) cells back into a pluripotent-
like state [26]. Okita then showed that retrovirus-mediated transfection 
of the same four genes could generate human IPS cells that are similar 
to human ES cells in morphology, proliferation potential, gene 
expression, and surface markers [27]. Of the four genes transferred 
during IPS cells initialization, the concern was with the existence of 
c-Myc specifically which is an oncogene, would lead to carcinogenesis. 
There was additional concern that using a retrovirus as the vector for 
gene transfer may increase the possibility of tumor formation after its 
insertion into a genome [28]. Thus, there remain obstacles facing IPS 
technology before it can be translated into clinical use [29].

To address some of these obstacles, researchers are working on a 
technology called direct conversion to differentiated cells. Using this 
technology, IPS cells are produced using transfer of 4 genes in one 
batch. A first report described differentiation of pancreatic exocrine 
cells into β-like cells secreting insulin by transfer of three genes (Ngn3/
Pdx1/MafA) [30]. Later reports showed that transferring Asc11/
Brn2/Myt11 into fibroblasts can induce functional neurons [31] and 
myocardial cells can be induced by transferring Gata4/Tbx5/Baf60c 
into mouse mesodermal cells [32].

Fetal-derived stem cells: A potential alternate source of stem 
cells is from fetal tissues. Cells derived from umbilical cord have 
been used as an alternative source of stem cell since 1988 [33]. The 
blood remaining in the umbilical vein following birth contains a rich 
source of hematopoietic stem and progenitor cells that have been used 
successfully as allogeneic donor sources to treat a variety of pediatric 
genetic, hematologic, immunologic, and oncologic disorders [34-36]. 
Fresh cord blood is also a promising source of non-hematopoietic stem 
cells. Among others, it contains endothelial cells, MSCs and unrestricted 
somatic stem cells [37-39]. Primitive stromal cells can be isolated from 
umbilical cord Wharton’s jelly and can be differentiated into different 
cells like osteoblasts, chondrocytes, adipocyte, and neurocytes [40, 41]. 

Amniotic fluid and the placenta are known to contain multiple 
partially differentiated cell types derived from the developing fetus. 
Cells derived from amniotic fluid and placenta have shown many 
advantages such as quick availability, less risk of immunogenicity, 
higher compatibility rates, less risk of infections and tumor formation. 
They do not require the destruction of human embryos for their 
isolation and thus avoid the controversies associated with the use of 
human embryonic stem cells. Therefore, this source of stem cells has 
been proposed as a good candidate to be used in cellular therapy and 
regenerative medicine. [42]. In an initial study, De Coppi et al. isolated 
stem cell populations from these sources, called amniotic fluid stem 
cells (AFS) [42] that express embryonic and adult stem cell markers. 
The undifferentiated stem cells expand extensively without feeders 
and double every 36 hours. Unlike human ES cells, the AFS cells did 

not form tumors in vivo. Lines maintained for over 250 population 
doublings, retained long telomeres and a normal karyotype. AFS cells 
were broadly multipotent. Clonal human lines verified by retroviral 
marking were induced to differentiate into cell types representing 
each embryonic germ layer, including cells of adipogenic, osteogenic, 
myogenic, endothelial, neuronal, and hepatic lineages. In this respect, 
they meet a commonly accepted criterion for pluripotent stem cells, 
without implying that they can generate every adult tissue. Examples 
of differentiated cells derived from AFS cells and displaying specialized 
functions include neuronal lineage (secreting the neurotransmitter 
L-glutamate or expressing G-protein-gated potassium (GIRK) 
channels), hepatic lineage cells (producing urea), and osteogenic 
lineage cells (forming tissue-engineered bone) [43]. It is estimated that 
a bank of 100, 000 specimens could potentially supply 99% of the US 
population with near perfect genetic match for transplantation. This 
represents approximately 1% of the amniocentesis samples collected 
each year. As such, a bank may be easier to create than with other cell 
sources, since there are approximately 4.5 million births per year in the 
USA [42]. 

Placental tissue itself also contains stem/progenitor cell populations. 
Mesenchymal stem cells from the placenta have been considered for 
use in autologous grafts for fetuses and newborns. Additionally, MSCs 
may be useful for in utero transplantation in case of genetic disorders 
without immunologic rejection by the recipient [44, 45]. 

Adult stem cells: Adult stem cells, especially hematopoietic stem 
cells, are some of the most widely studied cell types in Regenerative 
Medicine [46]. Adult bone marrow include two well defined 
populations of stem cells: hematopoietic stem cells (HSCs) that give rise 
to all mature lineages of blood; and mesenchymal stem cells (MSCs) 
which differentiate into bone, cartilage, muscle and fat [47]. HSCs are 
already used to restore hematopoietic function after chemotherapy, 
and cancer irradiation, as well as treatment of certain hematologic and 
autoimmune diseases [48]. MSCs are currently used in clinical trials for 
treatment of bone fractures and arthritis [49, 50]. MSCs were originally 
described by Friedentstein and colleagues 40 years ago as adherent 
cells with a fibroblast-like appearance capable of differentiating into 
osteocytes, chondrocytes, adipocytes and myocytes [51, 52]. Although 
they were initially defined by their ability to differentiate into cells of 
mesodermal origin, recent studies revealed that they can differentiate 
into cells of all three germ layers [53]. They are described as MHC II 
negative cells, lacking co stimulatory molecules as CD40, CD80 and 
CD86, which allow their allogenic transplantation with no immune 
rejection [54]. MSCs have been successfully isolated from different 
tissues including: periosteum, bone marrow, liver, skeletal muscle, hair 
follicle and amniotic fluid [55-58]. To date, no cell receptors or markers 
have been found to be specific for MSCs [59]. The International Society 
of Cryotherapy has put three criteria for MSCs: (1) plastic adherence of 
isolated cells in culture, (2) expression of cluster differentiation (CD) 
markers such as CD105, CD90 and CD73 in >95% of culture with 
absence of markers including CD34, CD19, CD14, CD45 and human 
leukocyte antigen-DR (HLA-DR) in >95% of culture, and (3) ability to 
differentiate into adipocytes, chondrocytes and osteocytes [60]. MSCs 
need to be expanded ex vivo to obtain the sufficient numbers required 
for use in different clinical applications [61]. Numerous factors affect 
MSCs behavior including culture parameters such as cell confluence, 
nutrition level, oxygen level, number of passages and plastic surface 
quality [62].

Within the past decade, adult stem cell populations have been 
found in many adult tissues other than the bone marrow and the 
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gastrointestinal tract, including the brain [63, 64], skin [65], and muscle 
[66]. These cells are thought to serve as the primary repair entities for 
their corresponding organs [67]. The advantage of adult stem cells 
resides in the fact that they can be obtained in an autologous manner 
and used in the patient without rejection. In one such use, Atala et al. 
[68] engineered human bladders for patients with neurogenic bladder 
disease requiring cystoplasty. Urothelial and muscle cells obtained 
from bladder biopsies were grown and expanded in culture. Cells 
were then seeded on a biodegradable bladder-shaped scaffold. After 
46-month follow up, the new bladders showed improved function, 
compliance, and capacity. In a recent study, it was found that these 
urothelial cells may be derived from the urine [69], thus simplifying 
collection techniques. 

Limitations to adult stem cells may reduce their clinical utility. In 
some cases, it is difficult to isolate cells because of their low numbers in 
the adult tissue. Such cells are often selected by Fluorescent Activated 
Cell Sorting (FACS) or Magnetic Activated Cell Sorting (MACS) against 
surface markers specific to the stem cell of interest [70]. However, 
sometimes there is no known marker [23] specific for a type of stem 
cell, so these methods cannot be used. Also, not all human cells can be 
isolated or grown easily in vitro, including those from ectodermal or 
endodermal sources. Importantly, stem cell populations also tend to 
decrease with age and disease – just when they are needed most. Before 
stem cells can be used as any type of clinical therapy, strict guidelines 
must be established to ensure the quality of the cells, the specificity of 
differentiation, and the assessment of mixed phenotypes [23]. 

Biomaterials
Biological tissues are composed not only of cells, but also 

extracellular matrix - which is known to have a dynamic and functional 
role in providing cell growth factors and producing chemokines that 
attract cells to the site of regeneration [29]. They also provide a three-
dimensional space for either seeded or native cells to incorporate into 
new tissues [71].

Biomaterials can be defined as any natural or synthetic substance that 
incorporates or integrates into a patient’s tissues during the treatment. 
The ideal compound should be inert, sterile, non carcinogenic, 
mechanically durable, should cause no inflammatory or immune 
reaction, be inexpensive, easy to use and withstand modification by 
body tissues. The purpose of a biomaterial is to perform, supplement, 
or replace a natural function that is attenuated or lost [72]. Thus, 

the rate of degradation of scaffolds used for tissue engineering is an 
important factor for timely maintenance of biomechanical properties, 
while allowing resorption of the material when a new matrix has 
developed [73].

Classification of biomaterials 

A summary of classification of biomaterials can be found in Table 
1. Generally, biomaterials used for engineering tissues and organs 
are classified into three classes: naturally derived materials, such 
as collagen [74] and alginate [75]; acellular tissue matrices, such as 
bladder submucosa and small-intestinal submucosa (SIS) [76-78]; and 
synthetic polymers, such as polyglycolic acid (PGA), poly-lactic acid 
(PLA), and poly (- lactic-co-glycolic acid) (PLGA) [79,80]. 

Collagen is the most abundant structural protein in the body 
and can be purified from both animal and human tissue following 
enzymatic treatment and salt/acid extraction and salt/acid extraction 
[74]. Collagen evokes minimal and antigenic responses [74], and has 
been approved by the U.S. Food and Drug Administration (FDA) for 
many types of clinical applications [81]. Alginate is a polysaccharide 
isolated from seaweed and has been used as a vehicle for injected cells 
and as a matrix for cell immobilization [75]. Recently these natural 
materials have been used as “bio-inks” in a newly developed bio-
printing technique based on inkjet technology. Using this technology 
these scaffold materials can be printed into a desirable scaffold shape 
that can provide three dimensional construct [82,83]. Inkjet printing 
has been used to print living cells in a defined pattern [83] and also 
to construct a desired scaffold shape using a specific arrangement of 
cells, growth factors and extracellular matrix [84,85]. These constructs 
can be implanted in a host to provide a structural backbone for a new 
tissue or organ [1]. Organ printing using the inkjet technology has been 
used to form tubular vascular like structures in a process referred to 
as “directed tissue self-assembly” where the individual tissue spheroids 
are bioprinted in a pre-designed pattern and upon their fusion, a 
tubular structure is formed [86].

Another approach to bioengineering is the use of decellularized 
tissue matrices. They are collagen rich matrices prepared by removing 
cellular components from tissues. They possess the required 
biocompatibility [87,88] and are known to degrade slowly upon 
implantation where they are usually replaced and remodeled by 
ECM proteins synthetized and secreted by transplanted or ingrowing 
cells [89,90]. Acellular tissue matrices have been used to support cell 

Category Polymer Application
Natural Proteins Collagen collagen-scaffolds seeded with myoblasts used to repair skeletal muscle defects 

[156],  and collagen hydrogel used in cartilage tissue engineering [157]
Fibronectin Fibronectin scaffolds used to enhance neural stem cell transplantation into the 

injured brain [158]
Fibrin glue Used in skin tissue engineering [159] and as scaffolds for neuronal differentiation 

of adult stem cells derived from adipose tissue and skin [160]
Polysaccharides Chitosan Used for dental pulp regeneration [161] and cartilage tissue engineering [162]

Alginate Hydrogel used as synthetic extracellular matrix materials [163]
Hyaluronic acid Used in bone regeneration [164]

Acellular tissue matrices Bladder submucosa Used in urological tissue engineering [165]
Small intestinal submucosa (SIS) Used in urological tissue engineering [166]

Synthetic polymers Polyglycolic acid (PGA) Used in vascular tissue engineering [167] and neo cartilage formation [168]
poly-lactic acid (PLA) Used in bone regeneration [169]
poly-lactic-co-glycolic acid) (PLGA) Used in bone regeneration [170]

Table 1: Classification of biomaterials.
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ingrowth and regeneration of genitourinary tissues including urethra 
and bladder [76,91]. However, despite many advantages, there are 
concerns about the use of decellularized materials, including the 
possible presence of infectious agents, variability among preparations, 
and the inability to completely specify and characterize the bioactive 
components of the material [92]. 

Synthetic polymers can be manufactured with controlled properties 
of strength, ultrastructure and degradation rate [1] in a way that meet 
demands of the host tissue. However they can lead to inflammatory 
reaction depending on the chemical and physical structure of the 
implant, amount of material and surface of the contact-area with the 
host [93,94]. Simple polymers, while providing architectural support 
for neo-tissue development, do not adequately mimic the complex 
interactions between adult stem and progenitor cells and the ECM 
that promotes functional tissue regeneration. New applications in 
regenerative medicine will benefit from interactive ‘‘smart’’ biomaterials 
that serve to orchestrate cell attachment and growth, as well as tissue 
morphogenesis [92].

Smart biomaterials are semi-synthetic biomaterials that can 
combine the advantages of both the synthetic materials (mechanical 
strength, controlled degradation rate) and that of natural materials 
(ability to provide proliferation signals, cellular invasion and specific 
cell recognition) [95]. Often, these scaffolds incorporate bioactive 
[96] and signaling molecules as cells adhesion peptides [92], growth 
factors [97,98] and cytokines [99] that can modulate and control cell 
behavior. Sahni and colleagues investigated the natural binding affinity 
of fibroblast growth factor-2 (FGF-2), a fibrous protein formed during 
wound healing processes. Their results showed that FGF-2 stimulated 
the growth and proliferation of endothelial cells [100]. West and 
colleagues studied the effect of b-FGF loaded into hydrogel scaffolds 
on smooth muscle cell (SMC) behavior. The b-FGF gradient hydrogels 
increased smooth muscle cell proliferation by approximately 41% and 
migration by approximately 15% [101]. Vascular endothelial growth 
factor (VEGF) is an angiogenic protein capable of regulating new blood 
vessel formation [102]. The influence of VEGF on cell behavior was 
studied by Zisch et al. [102] in a study that showed increased migration 
and cell survival of endothelial cells within polyethylene glycol (PEG)-
peptide hydrogels. Fan and coworkers proposed the incorporation 
of epidermal growth factor (EGF) into a synthetic polymer matrix 
material to increase cell survival and found that [98] surface-exposed 
EGF promoted cell attachment to the matrix material and increased 
mesenchymal stem cell spreading and survival when compared with 
media containing solubilized EGF. While potential very useful, the 
clinical application of these smart biomaterials is still limited because 
few were approved for human use and this delayed their translation 
into clinical practice [92].

Organ-Regeneration / Regenerative Pharmacology
Cell therapy and organ/tissue bioengineering offer the promise of 

cures for a multitude of diseases and disorders while helping solve the 
organ transplantation shortage. However, ex vivo expansion of cells and 
engineered tissues and organs are limited by the length of preparation, 
the cost, the availability of high quality cell sources, immunosuppression 
complications, ethical and religious considerations and complex 
regulatory approval. Increasing knowledge of how cells are attracted 
to damaged tissues and acknowledgement of the limitations of cell-
based therapies has led to increasing interest in the concept of organ-
regeneration as an approach for tissue repair. Organ-regeneration 
includes a variety of technologies for enhancing the body’s intrinsic 

capacity for self-healing [103]. Development of smart biomaterials is, 
in fact, an example of developing a scaffold that stimulates the body’s 
ability to self-heal using the biomaterial as the signaling mechanism. 

Regenerative Pharmacology is the application [104] of 
pharmacological sciences to accelerate, optimize and characterize 
these processes. The grand challenge for regenerative pharmacology is: 
1) to utilize integrative pharmacology (studies done on whole animals 
in vivo and ex vivo) to obtain better knowledge about mechanisms of 
tissue regeneration and repair [105], 2) to improve localized delivery of 
therapeutic drug concentrations to the specific tissue [106], and 3) to 
combine the formal studies to create a new generation of drug therapy 
that does not have a symptomatic treatment of disease only, but extend 
to be a curative therapy [104].

The general approach to organ-regeneration is to stimulate the 
exit of reparative cells from their nitche to enter the blood stream and 
travel, or move by ameboid action, to a site of injury. Once at the injury 
site, they then differentiate into the cells needed to repair the tissue 
[107]. The navigational cues can include chemokines such as monocyte 
chemotactic protein-1 (MCP-1), stromal-derived factor-1α (SDF-
1α), angiogenic molecules such as vascular endothelial growth factor 
(VEGF), transforming growth factor-β (TGF-β), and interleukin-8 
(IL-8). Once at the site, smart biomaterials can be used to further help 
engraft and differentiate the cells [107]. This approach has been used 
for tooth and periodontal regeneration [108-110]; musculoskeletal 
regeneration [111,112]; and cardiovascular disease [113-116]. 

While this approach has exciting possibilities, it also has its 
limitations. For this approach to work there is a need to have a keen 
appreciation of the cell trafficking mechanisms of the cells needed for 
repair. Cell sources needed for repair may decline with age and disease. 
A multi-cue approach may be needed to stimulate cells to leave their 
nitche, travel, migrate, differentiate and engraft in the damaged tissue. 

An example of multiple signaling strategy is the use of both SDF-
1α and substance P. SDF-1α has been shown to recruit mesenchymal 
(MSCs) [117] and hematopoietic (HSCs) stem cells to injured tissues 
through CXCR4 (SDF-1 receptor) expression [118]. A new and 
innovative delivery method, in which combined systemic and local 
delivery of multiple factors (substance P and SDF-1α) was used to 
enhance recruitment of endogenous stem cells into implanted scaffolds 
by inducing balanced cell infiltration. Substance P injection increases 
the number of host stem cells in the body’s stem cell pool and SDF-1α 
enhances the recruitment of these host stem cells into the implanted 
scaffolds via local release from the scaffolds [96]. Results showed 
that delivery of both factors from PLLA/gelatin scaffolds increased 
recruitment of stem cell-like cells to help in situ tissue regeneration 
[96].

Another aspect of regenerative pharmacology is preconditioning 
of stem cells prior to transplantation in order to augment their defense 
mechanisms against oxidative stress/membrane damage and further to 
encounter the inflammatory reaction caused by the host environment 
[119]. Preconditioning of stem cells could enhance the expression 
of survival signaling molecules, microRNAs, and trophic factors for 
intracrine, autocrine, and paracrine effects on cytoprotection [120]. 
For example, Atorvastatin, a commonly used drug in lowering the 
level of cholesterol in blood has been shown to improve cardiac micro-
environments created by acute myocardial infarction (AMI) and 
reperfusion, thus facilitating the survival and differentiation of in vivo 
implanted mesenchymal stem cells (MSCs) [121]. Lipopolysaccharide 
(LPS) enhanced survival of engrafted MSCs and their efficacy of 
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transplantation in a rat model of acute myocardial infarction [122]. 
Yao et al. reported that LPS preconditioning improved the survival of 
MSCs by promoting expression of vascular endothelial growth factor 
(VEGF) and Phosphoinositide 3-kinase (PI3K) and its downstream 
target serine/threonine kinase (Akt) in infarcted myocardium [122]. 
VEGF has a potent angiogenic function, stimulates endothelial 
cell proliferation, delays cell senescence, suppresses apoptosis and 
promotes survival of various cells [123, 124]. Also, activation of PI3K/
Akt-dependent signaling has been shown to prevent cardiac myocyte 
apoptosis and protect the myocardium from acute myocardial 
infarction [125, 126]. 

Clinical applications of regenerative medicine in organ 
engineering

A summary of clinical applications of Regenerative Medicine are 
shown in Table 2. Some of these studies have already been reviewed. 
However, studies are being performed all over the world to develop 
cell types, tissues and organs for clinical applications [68,127-129]. In 
the following section we provide a brief overview [1] of the progress 
in tissue engineering of some structures. Tissues include, but are not 
limited to:

Bladder and urethra

The first successful tissue engineered bladder was transplanted by 
Atala et al. [68] in 1999 for patients with neurogenic bladder. Eight 
weeks after initial bladder biopsy, urothelial and muscle cells obtained 
from the biopsy were cultured and seeded on a biodegradable bladder 
shaped scaffold. The scaffold was anastomosed to the stump of the 
native bladders with omental coverage to enhance angiogenesis. This 
study included seven patients and showed [68] increased bladder 
compliance and longer dry periods. Urethral regeneration has been 
used successfully in both animal models and recently in human beings. 
Woven meshes of PGA without cells [79, 130] or with cells [131] have 
been used to regenerate urethras in various animal models. Non seeded 
scaffolds are able to replace short segments (less than 1 cm) of urethral 
defects while very large defects, up to 30 cm, can be successfully treated 
using cell seeded scaffolds to avoid risk of stenosis and urethral stricture 
formation [1]. In 2004 bioengineered urethras were successfully 
implanted in patients having severe urethral stenosis [127].

Kidney

Although the kidney was the first successful transplanted organ 
[132], current modalities to replicate kidney in laboratory is not 
satisfactory because the renal tissue is very complex with unique 
structural and cellular heterogeneity. Isolated renal cells may not result 
in structural remodeling and can’t be implanted in large volumes due 
to limited oxygen and nutrient supply [1]. The feasibility of achieving 
renal cell growth and in vivo reconstitution using regenerative medicine 
techniques is under investigation and need continued research and 
studies before being applied in human beings.

Blood Vessels

Tissue engineered vascular grafts have been constructed using 
biodegradable scaffolds seeded with autologous cells in dog and 
sheep models [133,134]. The clinical application of this approach has 
been initiated with autologous constructs used to replace stenosed 
pulmonary artery which showed no evidence of graft obstruction seven 
months post-transplantation [128]. 

Heart 

Various types of stem cells have been investigated for possibility of 
injection into a small damaged area of [129] a patient’s heart instead 
of performing invasive surgical procedure. However the injectable 
therapies are inefficient due to cell loss and lack of cell engraftment. 
Newer methods involve the use of engineered patches seeded with 
cells to replace the damaged areas [129]. These techniques might be 
promising but still need further research. In cases of heart failure [1] 
bioengineered hearts could be ideal. Recently Ott et al. [135] constructed 
novel heart using decellularized cadaveric hearts. After seeding heart 
cells in a bioreactor system [135] that mimics physiologic conditions, 
the construct was able to perform pumping action of a normal heart.

Liver

Cell transplantation has been suggested as alternative therapy to 
liver transplantation in cases of liver failure. This is based on the fact 
that liver cells have high great regenerative capacity in vivo. Different 
techniques have been proposed to expand liver cells including 
identification of growth factors to help cell proliferation and the use 
of specialized media and culture on scaffolds within special bioreactors 
[136]. Perfusion decellularization technique [137] has been recently 
used to seed stem cells and mature hepatocytes on decellularized liver 
in various animal models [138,139]. Because of the high demand and 
low availability of livers for transplantation, this area of research will 
continue to be of high importance in the field of Regenerative Medicine. 

Skin

Skin regeneration remains a complex challenge, but offers the 
possibility of much needed treatment for injured and burned patients 
[140]. Normal regeneration of the skin is achieved through stem cell 
differentiation within the epidermis and the hair follicle. Stem cells have 
capacity to differentiate into keratinocytes and open a new perspective 
on the healing of different types of skin disorder including severe 
burns, chronic leg ulcers, skin cancer, alopecia, and acne [142,143]. 
The continued advancement of iPS cell reprogramming technology 
offers a promising approach to replace large amounts of damaged skin 
with autologous cells. Conversely, the efficiency of iPS generation was 
recently found to be markedly improved with the use of keratinocytes 
compared to fibroblasts [144].

Organ Advances of tissue engineering
Bladder First successful tissue engineered bladder transplanted by 

Atala et al. [68]
Urethra First successful bioengineered urethra by Atala [127]
Blood vessels First implantation of bioengineered vessel (pulmonary ar-

tery) by Shinoka et al. [128]
Heart Ott et al. [135] constructed novel heart in vitro using decel-

lularized cadaveric hearts seeded with cells
Bone Marcacci et al. [147] used 100% hydroxyapatite porous 

ceramic scaffolds seeded with MSCs to treat fracture non-
union in patients with good outcome.
Horwitz et al [150] used gene marked donor marrow-derived 
MSCc to treat 6 children with severe osteogenesis imper-
fecta with good results in 5 patients.

Cartilage tissues Yoshikawa et al. [155] reported two case studies of inter-
vertebral disc regeneration therapy using marrow mesen-
chymal cell transplantation with good results after 2 years 
follow up.
Autologous chondrocyte implantation (ACI) were used for 
treatment of knee articular cartilage defects with numerous 
successful case report studies [152,153]

Liver Tissue engineering of liver organoids in vitro by groups of 
Uygun et al. [171], and Baptista et al. [172]

Table 2: Recent advances of tissue engineering in different organs.



Citation: Badra S, Williams JK (2012) Strategies for Regenerative Medicine. J Bioengineer & Biomedical Sci S2:008.  doi:10.4172/2155-9538.S2-008

Page 6 of 10

ISSN:2155-9538 JBBS, an open access journal J Bioengineer & Biomedical Sci Regenerative Medicine

References

1. Atala A (2009) Engineering organs. Curr Opin Biotechnol 20: 575-592.

2. Hasetine W (1999) A brave new medicine. A conversation with William 
Haseltine.. Interview by Joe Flower. Health Forum J 42: 28-30.

3. www.nih.gov/about/researchresultsforthepublic/Regen.pdf 

4. Orlando G, Wood KJ, Stratta RJ, Yoo JJ, Atala A, et al. (2011) Regenerative 
medicine and organ transplantation: past, present, and future. Transplantation 
91: 1310-1317.

5. Orlando G, Baptista P, Birchall M, De Coppi P, Farney A, et al. (2011) 
Regenerative medicine as applied to solid organ transplantation: current status 
and future challenges.Transpl Int 24: 223-232.

6. Mitterberger M, Pinggera GM, Marksteiner R, Margreiter E, Fussenegger M, 
et al. (2008) Adult stem cell therapy of female stress urinary incontinence. Eur 
Urol 53: 169-175.

7. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, et al. (2001) Neural 
progenitors from human embryonic stem cells. Nat Biotechnol 19: 1134-1140.

8. Schuldiner M, Eiges R, Eden A, Yanuka O, Itskovitz-Eldor J, et al. (2001) 
Induced neuronal differentiation of human embryonic stem cells. Brain Res 
913: 201-205.

9. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) 
Effects of eight growth factors on the differentiation of cells derived from human 
embryonic stem cells. Proc Natl Acad Sci U S A 97: 11307-11312.

10. Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA (2001) In vitro 
differentiation of transplantable neural precursors from human embryonic stem 
cells. Nat Biotechnol 19: 1129-1133.

11. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA (2001) 
Hematopoietic colony-forming cells derived from human embryonic stem cells. 
Proc Natl Acad Sci U S A 98: 10716-10721.

12. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, et al. (2001) Human 
embryonic stem cells can differentiate into myocytes with structural and 
functional properties of cardiomyocytes. J Clin Invest 108: 407-414.

13. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial 
cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 99: 
4391-4396.

14. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, et al. (2001) Insulin 
production by human embryonic stem cells. Diabetes 50: 1691-1697.

15. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, et al. 
(2000) Differentiation of human embryonic stem cells into embryoid bodies 
compromising the three embryonic germ layers. Mol Med 6: 88-95.

16. Brambrink T, Hochedlinger K, Bell G, Jaenisch R (2006) ES cells derived 
from cloned and fertilized blastocysts are transcriptionally and functionally 
indistinguishable. Proc Natl Acad Sci U S A 103: 933-938.

17. Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, et al. (2004) Mice cloned 
from olfactory sensory neurons. Nature 428: 44-49.

18. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring 
derived from fetal and adult mammalian cells. Nature 385: 810-813.

19. Hwang WS, Roh SI, Lee BC, Kang SK, Kwon DK, et al. (2005) Patient-specific 
embryonic stem cells derived from human SCNT blastocysts. Science 308: 
1777-1783.

20. Simerly C, Dominko T, Navara C, Payne C, Capuano S, et al. (2003) Molecular 
correlates of primate nuclear transfer failures. Science 300: 297.

21. Hwang WS, Ryu YJ, Park JH, Park ES, Lee EG, et al. (2004) Evidence of a 
pluripotent human embryonic stem cell line derived from a cloned blastocyst. 
Science 303: 1669-1674.

22. Hochedlinger K, Jaenisch R (2003) Nuclear transplantation, embryonic stem 
cells, and the potential for cell therapy. N Engl J Med 349: 275-286.

23. Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem 
Cell Rev 4: 3-11.

24. Solter D (2000) Mammalian cloning: advances and limitations. Nat Rev Genet 
1: 199-207.

Bone

Recent advances in stem cell research have prompted development 
of cell based therapies for bone repair and treatment of metabolic 
bone diseases [145]. Despite the advances in orthopedic surgery, 
some fractures don’t heal properly resulting in either delayed union 
or nonunion, prolonged hospital stay and increased cost. Cell based 
therapy for fracture repair in cases of nonunion are currently receiving 
considerable attention [145]. Autologous bone marrow derived 
pluripotent MSCs have been seeded onto 100% hydroxyapatite 
macroporous ceramic scaffolds and used in treatment of four patients 
with diaphyseal segmental defects in a tibia, humerus and ulnar 
fractures [146,147]. In all patients follow up 6-7 years after surgery 
showed good integration of the implants and recovery of limb function.

Osteogenesis imperfecta (OI) is a group of inherited disorders of 
connective tissue characterized by bone fragility where there is a genetic 
defect resulting in abnormal type I collagen production and leading to 
osteopenia, multiple fractures and severe bone deformities [145]. An 
initial clinical trial was conducted in three infants with severe forms of 
OI. They were transplanted with whole marrow from normal matched 
individuals. Results demonstrated that two patients had an increase 
in total body mineral content, increase in growth and reduction in 
fracture rates 3 months after cell transplantation [148,149]. Later, 
Horwitz et al. [150] used gene marked donor marrow-derived MSCc 
to treat 6 children with severe OI. Each child received 2 infusions of 
allogenic cells. Five patients out of six showed engraftment in bone, 
marrow stroma and increase in growth velocity during 6 months after 
infusion.

Cartilage tissues
Clinical results of autologous chondrocyte implantation (ACI) for 

treatment of knee articular cartilage defects have been encouraging. 
Numerous case-series reports show positive effectiveness with follow 
up for more than 10 years postoperatively [151,152]. By 2003, more 
than 15,000 patients had undergone ACI worldwide [153] and is now 
considered the frontline treatment for defects larger than 2 cm2 [154].

Studies have also been done to regenerate damaged intervertebral 
discs using cultured marrow mesenchymal cells. Yoshikawa et al. [155] 
reported two case studies of intervertebral disc regeneration therapy 
using marrow mesenchymal cell transplantation. MSCs were collected 
from the ilium of each patient and cultured using medium containing 
autogenous serum. Then pieces of collagen sponge containing 
autologous MSCs were grafted percutaneously to degenerated 
intervertebral discs. Two years after surgery radiograph and computed 
tomography showed improvements in both patients and symptoms 
were relieved.

Conclusion
Regenerative medicine holds the promise of regenerating and 

engineering body organs in the future where there will be no sufficient 
organs available for transplantation. The process of regenerating body 
parts may require cells, scaffolding materials, bioactive molecules such 
as growth factors, or a combination of all three elements. Although 
advances have been made in the clinical applications of regenerative 
medicine, translation of tissue engineering to the patient in need of 
organ replacement requires more effort. None-the-less, progress will 
continue to be made and someday Regenerative Medicine may provide 
the answer to all those needing replacement tissues and organs. 
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