ISSN:2155-9538 Open Access

Stimuli-responsive Nanocarriers for On-demand Drug Delivery

Aissa Correia*

Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden

Introduction

The development of efficient and targeted drug delivery systems is a cornerstone of modern medicine, offering the potential to enhance therapeutic efficacy while minimizing side effects. Traditional drug delivery methods often face significant limitations, such as the inability to control the precise release of drugs at the desired site or time, leading to issues like off-target effects, low bioavailability and drug resistance. To overcome these challenges, there has been a growing interest in stimuli-responsive nanocarriers, which are engineered to release therapeutic agents in response to specific environmental triggers, such as changes in pH, temperature, light, or the presence of particular biomarkers. Stimuli-responsive nanocarriers, often referred to as "smart" drug delivery systems, are designed to respond to specific cues within the body, enabling precise, on-demand release of drugs at the targeted site of action. These nanocarriers are typically made of biocompatible and biodegradable materials, such as liposomes, micelles, or polymeric nanoparticles, which can be tailored to react to particular stimuli in the body. This means that drugs can be released at precisely the right moment and in the correct amount, depending on the specific therapeutic needs of the patient. For instance, in cancer therapy, a nanocarrier can be engineered to release chemotherapy drugs only when it reaches the tumor site, thereby sparing healthy tissue from the toxic effects of the drug. Alternatively, external triggers like ultrasound, magnetic fields, or light can be used to control drug release in a more precise manner, offering even greater control over the timing and location of drug delivery [1].

Description

Stimuli-responsive nanocarriers represent a cutting-edge approach to drug delivery that leverages the unique properties of nanotechnology to improve therapeutic outcomes. Unlike conventional drug delivery methods that rely on the systemic administration of drugs, these "smart" nanocarriers are engineered to release therapeutic agents only when triggered by specific internal or external stimuli. This targeted release mechanism ensures that drugs are delivered precisely to the intended site of action, thereby enhancing their efficacy and minimizing side effects. The foundation of stimuli-responsive nanocarriers lies in their ability to respond to various environmental factors, such as pH, temperature, light, magnetic fields, or the presence of specific enzymes or biomolecules. The concept is inspired by the body's natural responses to stimuli, such as the acidic environment of tumors or the enzyme activity in the gastrointestinal tract, which are exploited to create carriers that respond specifically to those changes. One of the primary types of stimuliresponsive nanocarriers is pH-sensitive carriers, which release their drug payload in response to changes in pH levels. The human body is composed of regions with distinct pH values and many pathological conditions, including tumors, infections and inflamed tissues, exhibit altered pH levels compared to

*Address for Correspondence:Aissa Correia, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden, E-mail: correia.aissa@gothenberg.sw

Copyright: © 2025 Correia A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01 April, 2025, Manuscript No. jbbs-25-165629; Editor Assigned: 03 April, 2025, PreQC No. P-165629; Reviewed: 15 April, 2025, QC No. Q-165629; Revised: 22 April, 2025, Manuscript No. R-165629; Published: 29 April, 2025, DOI: 10.37421/2155-9538.2025.15.473

normal healthy tissues. For example, cancerous tumors are often more acidic than surrounding healthy tissue due to the rapid growth of cancer cells and altered metabolism. This localized drug release not only enhances therapeutic efficacy but also reduces systemic side effects, a common drawback of traditional chemotherapy treatments [2].

Another popular category of stimuli-responsive nanocarriers is temperaturesensitive carriers, which respond to changes in temperature to trigger the release of encapsulated drugs. The temperature of the body can vary in different tissues or be influenced by external factors, such as fever or the application of heat. In certain cancer treatments or during localized therapy, temperature-sensitive nanocarriers can release their drug payloads when exposed to the slightly elevated temperature at the site of infection or inflammation, providing more precise and controlled drug release. These systems are also useful for hyperthermia therapies, where localized heat is applied to tumors to make the cancer cells more sensitive to treatments. Redoxsensitive nanocarriers utilize the difference in oxidative potential between healthy and diseased tissues. Diseased tissues, such as tumors or infected cells, often exhibit a higher concentration of Reactive Oxygen Species (ROS) or reduced glutathione (GSH), which can be used as a trigger for the release of drugs. These carriers are particularly useful for targeting oxidative stressrelated diseases, offering a mechanism for controlled drug release based on the redox status of the tissue. Furthermore, enzyme-responsive nanocarriers exploit the presence of specific enzymes that are either overexpressed or uniquely present in certain tissues. This approach offers an additional layer of precision, as the drug release is directly linked to the enzymatic activity in the diseased area [3].

Light-responsive nanocarriers are an emerging category of external stimuliresponsive systems. These carriers are engineered to release their payload when exposed to specific wavelengths of light, such as Ultraviolet (UV) or Near-Infrared (NIR) light. The advantage of light-responsive systems is that light can be precisely controlled in both space and time, allowing for non-invasive, localized activation of drug release. This is particularly advantageous for applications like gene therapy or cancer treatment, where drugs can be delivered directly to the tumor site after being activated by light, sparing surrounding healthy tissues from unnecessary exposure. External physical stimuli, such as magnetic fields or ultrasound, are also being explored as triggers for drug release. Magnetic nanoparticles, for example, can be manipulated using external magnetic fields, allowing for both targeted delivery and controlled release at specific sites. Similarly, ultrasound waves can be used to apply localized mechanical stress to nanocarriers, promoting drug release in a controlled manner at targeted locations. Traditional drug administration typically results in systemic drug distribution, with much of the drug reaching healthy tissues and causing unwanted side effects. Biocompatibility and biodegradability are crucial factors in the design of stimuli-responsive nanocarriers. The choice of material also influences the release kinetics, stability and shelf life of the nanocarriers and must be tailored for specific therapeutic applications [4].

Another significant advantage of stimuli-responsive nanocarriers is their ability to enable personalized medicine. By tailoring the design of the nanocarrier to respond to specific disease characteristics or patient needs, treatments can be customized to maximize therapeutic outcomes. In chronic diseases such as diabetes, stimuli-responsive nanocarriers can provide

controlled release of insulin in response to fluctuating blood sugar levels, improving disease management and enhancing patient quality of life. Despite the remarkable potential of stimuli-responsive nanocarriers, several challenges remain in their development and clinical translation. One of the key obstacles is ensuring consistent and reproducible drug release in complex biological environments. The body's internal conditions, such as temperature fluctuations, pH changes and enzymatic activity, can vary, which can affect the performance of the nanocarriers. Furthermore, the scalability of these systems for mass production must be addressed to ensure that they can be manufactured efficiently and affordably for widespread clinical use. Regulatory approval and clinical validation are additional hurdles, as these advanced systems must undergo extensive testing to demonstrate their safety and efficacy before they can be used in routine clinical practice [5].

Conclusion

In conclusion, stimuli-responsive nanocarriers represent a promising and innovative approach to on-demand drug delivery. These "smart" systems provide enhanced control over drug release, offering the potential for highly targeted, localized therapy with fewer side effects. By responding to specific physiological cues or external triggers, these nanocarriers can transform how drugs are delivered, making treatments more effective and personalized. As research advances and the challenges of reproducibility, scalability and regulatory approval are overcome, stimuli-responsive nanocarriers are poised to become a powerful tool in the future of medicine, enabling more precise, efficient and safer therapeutic interventions.

Acknowledgment

None.

Conflict of Interest

None.

References

- Lee, Eun Seong, Kyung Taek Oh, Dongin Kim and Yu Seok Youn, et al. "Tumor pH-responsive flower-like micelles of poly (L-lactic acid)-b-poly (ethylene glycol)-b-poly (L-histidine)." J Control Release 123 (2007): 19-26.
- Andreas, Kristin, Radostina Georgieva, Mechthild Ladwig and Susanne Mueller, et al. "Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking." *Biomaterials* 33 (2012): 4515-4525.
- Chen, Xiaojie, Jiafeng Zou, Ke Zhang and Jingjing Zhu, et al. "Photothermal/matrix metalloproteinase-2 dual-responsive gelatin nanoparticles for breast cancer treatment." Acta Pharm Sin B 11 (2021): 271-282.
- Chow, Edward Kai-Hua and Dean Ho. "Cancer nanomedicine: From drug delivery to imaging." Sci Trans Med 5 (2013): 216rv4-216rv4.
- Fan, Li, Jingnan Yang, Ken Cham-Fai Leung and Chaojun Song, et al. "Noninvasive real-time monitoring of local drug release using nano-Auabsorbed self-decomposable SiO 2 carriers." Nanoscale 10 (2018): 15332-15338.

How to cite this article: Correia, Aissa. "Stimuli-responsive Nanocarriers for On-demand Drug Delivery." *J Bioengineer & Biomedical Sci* 15 (2025): 473.