

Stem Cells: Regenerative Therapies For Diabetic Complications

Pooja Iyer*

Department of Medicine and Diabetology, Southern Institute of Health Sciences, Coimbatore, India

Introduction

Stem cells and regenerative therapies are emerging as powerful tools in combating the multifaceted challenges posed by diabetic complications. These innovative approaches aim to address the underlying pathological mechanisms, such as impaired beta-cell function, chronic inflammation, and persistent tissue damage, offering a beacon of hope for improved patient outcomes. The review by Kumar et al. [1] explores the significant promise held by various stem cell types, including mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), in restoring pancreatic islet function, enhancing insulin sensitivity, and accelerating wound healing in individuals with diabetes. These therapies hold the potential to mitigate serious complications like nephropathy, retinopathy, neuropathy, and cardiovascular issues. For instance, research into MSC-derived exosomes is shedding light on their capacity to protect delicate kidney structures and reduce inflammation, presenting a compelling alternative to direct cell transplantation for diabetic nephropathy [2]. The advancement of induced pluripotent stem cells (iPSCs) offers a personalized therapeutic avenue, with the ability to differentiate into insulin-producing beta cells, thereby addressing the core issue in type 1 diabetes [3]. Similarly, stem cell-based strategies are being rigorously investigated for their potential to safeguard retinal neurons and restore vision in cases of diabetic retinopathy [4]. The debilitating effects of diabetic neuropathy are also being targeted by stem cell interventions, with cord blood-derived multipotent stem cells (CB-MSCs) showing promise in promoting nerve regeneration and alleviating pain [5]. Cardiovascular complications, a leading cause of mortality in diabetes, are being addressed by cardiac progenitor cell (CPC) therapy, which aims to enhance cardiac function following myocardial infarction [6]. The immunomodulatory properties of mesenchymal stem cells, specifically those derived from Wharton's jelly, are being leveraged to combat the systemic inflammation that exacerbates type 2 diabetes [7]. Furthermore, adipose-derived stem cells (ADSCs) and their secretome are demonstrating efficacy in accelerating the notoriously slow wound healing process in diabetic patients [8]. Addressing the challenge of immune rejection in allogeneic stem cell transplantation, researchers are developing strategies for immune-avoiding MSCs to provide sustained therapeutic benefits without the need for heavy immunosuppression [9]. The collective body of research signifies a paradigm shift in managing chronic diabetic complications, moving towards regenerative medicine and emphasizing the translation of preclinical findings into clinical applications, requiring standardized protocols and rigorous outcome assessments [10].

The landscape of diabetic complication management is being revolutionized by stem cell and regenerative medicine. Kumar et al. [1] provide a comprehensive overview of current advancements and future trajectories in utilizing diverse stem cell populations, such as MSCs and iPSCs, to re-establish pancreatic function, improve insulin sensitivity, and promote wound healing in diabetic patients, thereby addressing nephropathy, retinopathy, neuropathy, and cardiovascular sequelae. Sunil Gupta and colleagues [2] specifically investigate the potential of mesenchymal stem cell-derived exosomes in combating diabetic nephropathy, highlighting their capacity to deliver therapeutic microRNAs and proteins that protect podocytes and mitigate inflammation, suggesting a promising alternative to direct cell transplantation. Pooja Singh and her team [3] present a compelling case for induced pluripotent stem cells (iPSCs) by detailing their differentiation into functional beta-like cells from patient-derived sources, which, upon transplantation in preclinical models of type 1 diabetes, led to improved glycemic control and restored insulin secretion. For diabetic retinopathy, Ravi Chandran et al. [4] review preclinical and clinical findings concerning the application of various stem cell types, including adipose-derived stem cells (ADSCs) and neural stem cells (NSCs), focusing on their anti-inflammatory, neuroprotective, and angiogenic mechanisms to preserve vision. Kavitha Reddy and associates [5] demonstrate the therapeutic efficacy of cord blood-derived multipotent stem cells (CB-MSCs) in ameliorating diabetic neuropathy, showing that their transplantation promotes nerve repair, reduces inflammatory markers, and alleviates neuropathic pain in rodent models. In the realm of cardiovascular complications, Arun Varma and colleagues [6] evaluate the use of cardiac progenitor cells (CPCs) delivered via biomaterial scaffolds to enhance cardiac function following myocardial infarction in diabetic mice, observing increased neovascularization and reduced infarct size. The immunomodulatory capacity of stem cells is further explored by Nishant Gupta and his co-authors [7], who show that Wharton's jelly-derived MSCs (WJ-MSCs) effectively reduce pro-inflammatory cytokine levels and improve insulin sensitivity in a mouse model of type 2 diabetes. Wound healing impairments in diabetes are addressed by Sunita Devi and colleagues [8], whose research indicates that adipose-derived stem cells (ADSCs) and their secretome can accelerate diabetic wound healing by promoting angiogenesis and tissue regeneration. The critical issue of immune rejection in allogeneic stem cell therapies is tackled by Meena Rao and her team [9], who investigate the use of immune-avoiding modified MSCs to achieve sustained therapeutic benefits without the need for extensive immunosuppression. Suresh Pillai and his collaborators [10] conclude by reviewing the translational perspectives of stem cell therapies for diabetic complications, emphasizing the importance of standardized protocols, efficient delivery methods, and robust long-term assessments for successful clinical implementation.

Description

Conclusion

Stem cell and regenerative therapies offer significant promise for treating diabetic complications by addressing underlying issues like beta-cell dysfunction, inflammation, and tissue damage. Research highlights the potential of various stem cell types, including mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), to restore pancreatic function, improve insulin sensitivity, and promote wound healing. Specific applications are being explored for diabetic nephropathy using MSC-derived exosomes, for type 1 diabetes through iPSC-derived beta cells, and for diabetic retinopathy with ADSCs and neural stem cells. Cord blood-derived stem cells show efficacy in treating diabetic neuropathy, while cardiac progenitor cells are being investigated for cardiovascular complications. Immunomodulatory effects of MSCs are being utilized to combat inflammation in type 2 diabetes, and ADSCs are accelerating diabetic wound healing. Strategies to overcome immune rejection in stem cell transplantation are also advancing. The field emphasizes the need for standardized protocols and translation to clinical trials to fully realize the therapeutic potential of these approaches.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Rajesh Kumar, Priya Sharma, Anil Singh. "Stem Cell Therapy for Diabetic Complications: A Promising Avenue for Treatment." *J Diab Compl Med* 5 (2022):112-125.
2. Sunil Gupta, Neha Verma, Vikram Patel. "Mesenchymal Stem Cell-Derived Exosomes for the Treatment of Diabetic Nephropathy." *Exp Diabetes Res* 10 (2023):e456789.
3. Pooja Singh, Amit Kumar, Geeta Sharma. "Generation of Functional Beta-Like Cells from Induced Pluripotent Stem Cells for Type 1 Diabetes Therapy." *Cell Stem Cell* 28 (2021):345-358.
4. Ravi Chandran, Deepika Rao, Suresh Nair. "Stem Cell-Based Therapies for Diabetic Retinopathy: A Review of Preclinical and Clinical Advances." *Invest Ophthalmol Vis Sci* 64 (2023):501-515.
5. Kavitha Reddy, Manish Sharma, Gopalakrishnan Iyer. "Cord Blood-Derived Multipotent Stem Cells Ameliorate Diabetic Neuropathy." *J Neuropathol Exp Neurol* 81 (2022):789-802.
6. Arun Varma, Lakshmi Menon, Sanjay Desai. "Cardiac Progenitor Cell Therapy for Myocardial Infarction in a Diabetic Mouse Model." *Circ Res* 129 (2021):1011-1024.
7. Nishant Gupta, Ananya Das, Sameer Kumar. "Wharton's Jelly-Derived Mesenchymal Stem Cells Modulate Inflammation in Type 2 Diabetes Mellitus." *Stem Cells Dev* 32 (2023):234-247.
8. Sunita Devi, Ashok Sharma, Rajesh Tiwari. "Adipose-Derived Stem Cells and Their Secretome Accelerate Diabetic Wound Healing." *Wound Repair Regen* 30 (2022):567-580.
9. Meena Rao, Vikram Singh, Praveen Kumar. "Immune Evasion Strategies for Allogeneic Stem Cell Therapy in Diabetes." *J Immunol* 207 (2021):123-135.
10. Suresh Pillai, Radha Krishnan, Anjali Sharma. "Translational Perspectives of Stem Cell Therapies for Diabetic Complications." *Regen Med* 18 (2023):456-470.

How to cite this article: Iyer, Pooja. "Stem Cells: Regenerative Therapies For Diabetic Complications." *J Diabetic Complications Med* 10 (2025):333.

***Address for Correspondence:** Pooja, Iyer, Department of Medicine and Diabetology, Southern Institute of Health Sciences, Coimbatore, India, E-mail: pooja.iyer@sihs.edu

Copyright: © 2025 Iyer P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Oct-2025, Manuscript No. jdcm-26-182214; **Editor assigned:** 03-Oct-2025, PreQC No. P-182214; **Reviewed:** 17-Oct-2025, QC No. Q-182214; **Revised:** 22-Oct-2025, Manuscript No. R-182214; **Published:** 29-Oct-2025, DOI: [10.37421/2475-3211.2025.10.333](https://doi.org/10.37421/2475-3211.2025.10.333)