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Introduction
DNA microarray experiments are commonly used to identify 

disease susceptibility genes efficiently. The experimental system for 
microarrays has progressed remarkably, and it has now become possible 
to measure the fluorescence intensities of hundreds of thousands of 
genes simultaneously. Genome-wide expression profiles that assess 
risk factors for a disease offer the possibility of more precisely defining 
clinical prognosis; however, compared with the number of candidate 
genes that can be used for DNA microarray experiments, the numbers 
of such expression profiles that are available are extremely limited. This 
situation may lead to a rise in the number false positive statistical tests 
across genome-wide association studies. 

In regression analyses, the precision of estimated parameters may 
decrease and overfitting of data may occur, yielding a regression model 
with poor predictive power and accuracy that cannot be used for other 
data sets [1]. As a result, researchers have tried and failed to identify 
robust and highly accurate prognostic biomarkers. To help address 
this problem, various multiple comparison methods or sequential 
step-by-step procedures have been applied to association studies, and 
several penalized regression models [2-5], such as the ridge model, 
the lasso method, and the elastic net method, have been advocated for 
regression analyses. Tibshirani et al. [2,4] developed an algorithm and 
R programs for the Cox’s proportional hazards model regularized by 
various penalties. In general, the validity of a regression model should 
be verified using a validation data set rather than the training data that 
was used to construct the regression model. However, at present no 

programs are available for calculating statistical properties, such as the 
statistical power of the Cox’s proportional hazards model regularized 
by various penalties, so the statistical properties of these regression 
models are not sufficiently clear. 

In this study, we created programs in the R language to calculate 
statistical properties, including the statistical power based on the 
prognostic index of the Cox’s proportional hazards model regularized 
by various penalties and on the prognostic index of the stepwise 
method. Using these programs, we conducted simulation studies 
for DNA microarray experiments under various conditions and 
compared various penalized regression models with a stepwise Cox 
regression analysis. Furthermore, the optimal solving method of 
the two-dimensional parameters (the tuning parameter λ and the 
mixing parameter α) of the penalized proportional hazards model is 
still controversial. Here, we determined these parameters using the 
prognostic indices mentioned above, and verified the reproducibility 
by actual gene expression survival data using these methods.
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Abstract
Background: Compared with the number of candidate genes used for DNA microarray experiments, the number of 

available samples is extremely limited. As a result, overfitting of the data may occur during regression analyses. To solve 
this problem, various penalized regression models have been suggested. In general, the validity of a regression model 
should be verified using a validation data set, as opposed to the training data used to construct the model. However, 
at present there are no programs available to calculate statistical properties, including the precision, validity, and the 
statistical power of the Cox’s proportional hazards model regularized by various penalties; therefore, the properties of 
these models are not sufficiently clear. 

Methods: In this study, we created programs using the R language to calculate statistical properties of the Cox’s 
proportional hazards model, including the statistical power based on the prognostic index, and conducted simulation 
experiments under various conditions of DNA microarray expression data with survival time. 

Results: The results showed that the power of a validation set for penalized methods is greater than for stepwise 
methods in many cases, particularly when n < p. This tendency is most remarkable for the penalized methods including 
both the L1-norm and the L2-norm. Furthermore, we tested our programs using actual microarray gene expression data 
with survival time data to confirm their validity. 

Conclusions: Our simulation programs for the Cox’s proportional hazards model regularized by various penalties 
are very useful for planning DNA microarray studies or for evaluating the results of such studies.
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Algorithm for simulation study of various penalized Cox’s 
proportional hazards models

1. Set conditions on the sample sizes (for the training set or
validation set), the number of true disease susceptibility genes, 
the number of candidate genes, the coefficients for each gene, and 
other parameters for the exponential distribution. The microarray 
fluorescence intensities of each gene are chosen from an arbitrary 
distribution. In this study, we used the multivariate standard normal 
distribution with the correlation coefficient between each gene.

2. Generate random survival times (T) from the Cox’s
proportional hazards model by the reverse function method for a 
training set. The reverse function method is performed by setting 

( ) ( )∑ =
⋅−=

p

k kk zUrT
1

explog β , where r is a mean of a probability 
density function and U is a uniform random number. Then, generate 
uniformly distributed random censored times and set a follow-up 
period. Let the minimums of those three periods (T, the uniformly 
distributed random censored times, and r) be an observation period, 
and let “1” be an endpoint time and “0” be a censored time.

3. Use the training set to calculate estimates of coefficients and
to select genes by the stepwise Cox regression model and by various 
penalized regression models including the ridge method, the lasso 
method, and the elastic net method. In the stepwise regression analysis, 
the candidates that achieve statistical significance in the univariate Cox 
regression analyses are used subsequently in a stepwise multivariate 
regression analysis.

4. Generate another set of random survival times from Cox’s
proportional hazards model for a validation set. To calculate the 
statistical power of the Cox model, use the information about the 
selected genes and estimated values of coefficients from the training set 
to calculate the prognostic index. The prognostic index is defined as the 
sum of the product of coefficients and fluorescence intensity values of 
selected genes for each case in the validation set.

5. Divide the validation set into a high-risk group and a low-risk
group using the median of the prognostic indices and conduct a log-
rank test between the two groups.

6. Repeat the above procedure 2000 times. Calculate the mean
coefficient of the selected genes, the mean number of selected genes, the 
true positive rate (TPR, the number of true genes among the selected 
genes divided by the number of true genes), the true negative rate 
(TNR, the number of no-true genes among the selected genes divided 
by the number of no-true genes), the positive predictive value (PPV, the 
number of true genes among the selected genes divided by the number 
of selected genes), the negative predictive value (NPV, the number 
of no-true genes among the selected genes divided by the number of 
unselected genes), and the statistical power (the proportion of p values 
less than 0.05) for the training and validation sets. 

7. For the simulation experiments, we first set the number of
true genes to 10, the true values of the coefficients to 0.2 and 0.4, 
the numbers of candidate genes to 100 and 1000, the values of the 
correlation coefficients to 0, and the sample sizes to 100, 150, and 200, 
and the survival time data as uncensored data sets and censored data 
sets. We set the censoring pattern as type I (meaning the censored time 
of the respective case is predetermined at the observation start time of 
each case) and set r and the follow-up period to 200 (the censor rate is 
set to 0.4). Next, we set the values of correlation coefficients to 0.1, 0.3, 
0.5, and 0.7, the numbers of candidate genes (= p) to 100 and 1000, and 
the sample size (= n) to 100 and 200. 

Methods
Cox’s proportional hazards model regularized by various 
penalties

Let t be a survival time, ( )'

1, , p= z zz  a vector of predictors,

1( , , ) ( )pr z z r= z  a function of z, ( )h t | z  a hazard at time t given 
predictor z, and 

0 ( )h t  an arbitrary baseline positive valued hazard 
function at time t. Then, the Cox’s proportional hazards model can be 
represented as:

 ( )1 0 1 0( , , ) ( ) ( , , ) ( ) ( )    0p ph t z z h t r z z h t r t| = = >  z .

If we assume r(z) to be

( )1 1 1 2 2( , , ) exp , , exp( )p p pr z z z z zβ β β ′= + + + =  β z  

where ( )1, , pβ β′ = β  indicates a parameter vector of the coefficients of 
predictors.

Assume that for each case from 1, …, n, we have predictors 

1,..., nz z and survival times 
1,..., nt t , including censoring times, 

and suppose that k out of n cases die. Let 
(1) (2) ( )kt t t< < <  be 

an increasing list of failure times and (1) ( ), , kz z  be a sequence of 
corresponding predictors where (1), , ( )k  index the number of 
observations. Let R(t(i)) be a risk set just before ( )it . Inference is then 
made via the partial likelihood as:
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and the log partial likelihood is
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Where, for convenience, 2/n is used to modify the equations.
The constraint using the L1-norm and the L2-norm, where α (

0 1α≤ ≤ ) and (1-α) are mixing parameters for the L1-norm and the 
L2-norm, respectively, is as follows:
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and the penalty term ( )Pαλ β  is determined using the constraint 
and the tuning parameter λ:
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Hence, considering the Lagrangian formulation, the estimate of 
coefficient β at a λ is calculated as:
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Where α = 0 is the ridge penalty, 0 < α < 1 is the elastic net penalty, 
and α = 1 is the lasso penalty.

Because it is impossible to solve the above formula analytically, 
numerical calculations are performed using algorithms from non-
convex optimization theory and the optimal value of λ is determined 
using a cross-validation method [4].
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The above-mentioned programs were created using the R language 
version 3.1.1 and are available from the authors on request. 

Results and Discussion
Simulated data sets

Results when the survival data were complete and the correlation 
coefficient was zero: The statistical powers of all the methods increased 
as both the sample sizes and the true values of coefficients increased, 
and the statistical powers decreased as the numbers of candidate genes 
increased. The statistical powers of the training sets for the stepwise 
methods and the ridge methods were the largest at 100%, followed by 
the elastic net methods and the lasso methods. However, the statistical 
powers of the validation sets were smaller compared with the statistical 
powers of the training sets for all the methods tested; in many cases, 
particularly when n < p, the powers of the validation sets for the elastic 
net method and the lasso method were the largest, followed by the ridge 
method and the stepwise methods (Figures 1 and 2).

Results when the survival data included censored times and the 
correlation coefficient was 0.1–0.7: When the data included censored 
cases, the statistical powers for each method decreased compared 
with uncensored data, but the shapes of the graphs were similar to the 
shapes of the graphs obtained using uncensored data (Figures 3 and 4).

When the correlation coefficients between each gene increased, the 

statistical powers for the penalized methods increased, and the powers 
for the stepwise methods decreased (Figure 5).

The results for the number of selected genes, coefficient of selected 
genes, standard deviation (SD) of coefficients for selected genes, TPR, 
and PPV are available as online supplementary material (Figures S1–
S12).

Actual data set

Serous ovarian cancer tumors are heterogeneous; therefore, it 
is necessary to classify ovarian cancers appropriately based on their 
biological characteristics so that the medical treatment can match the 
character of each serous ovarian cancer. DNA microarray analysis can 
be a useful tool for diagnosis and prognostic predictions for many 
diseases, but because there is a scarcity of available ovarian cancer 
samples compared with the number of candidate genes, it is difficult 
to identify gene expression signatures for serous ovarian cancers with 
high accuracy and reproducibility.

Microarray data sets for ovarian cancer

Three actual microarray data sets derived from studies of serous 
ovarian cancer patients were obtained: the cancer genome atlas 
(TCGA) data set [6], Tothill’s data set [7] and Bonome’s data set [8]. 
These data sets are from microarray experiments that were set up to 

Figure 1: Statistical power of the training sets for the stepwise method and each penalized method using uncensored data sets. Numbers of candidate genes p = 100 
and 1000, and true values of the coefficients = 0.2 and 0.4.
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Figure 2: Statistical power of the validation set for the stepwise method and each penalized method using uncensored data sets. Numbers of candidate genes p = 
100 and 1000, and true values of the coefficients = 0.2 and 0.4.

Figure 3:  Statistical power of the training sets for the stepwise method and each penalized method using censored data sets. Numbers of candidate genes p = 100 
and 1000, and true value of the coefficients = 0.2 and 0.4.
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Figure 4: Statistical power of the validation set for the stepwise method and each penalized method using censored data sets. Numbers of candidate genes p = 
100 and 1000, and true value of the coefficients = 0.2 and 0.4.

Figure 5: Statistical power of the training and validation sets for the stepwise method and each penalized method using censored data sets with correlation coef-
ficients. When the numbers of candidate genes p = 100, n = 200 (n > p; first column), and when p = 1000, n = 100 (n < p; second column), and true value of the 
coefficient = 0.2.
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investigate the survival of ovarian cancer patients. The data sets contain 
microarray expression data on a total of 1686 genes. The TCGA data set 
contains survival time data for 319 patients (follow-up period 1–154 
months; type I censor rate 0.41), Tothill’s data set contains survival 
time data for 131 patients (follow-up period 6–79 months; type I censor 
rate 0.54), and Bonome’s data set contains survival time data for 185 
patients (follow-up period 1–164 months; type I censor rate 0.30). 

Reproducibility of the survival gene expression signatures

We verified the reproducibility of the survival gene expression 
signatures by comparing the statistical indices from the three actual 
data sets using the penalized Cox’s proportional hazards model.

To choose the optimal mixing parameter α from the range 0–1, 
we calculated TPR, TNR, PPV, NPV, and statistical powers using our 
programs. We set the number of true genes to 100, the coefficient 
values to 0.7, the correlation coefficients between each gene to 0.01, the 
numbers of candidate genes to 1686, and the sample sizes to 100, 150, 
200 and 250. The survival data were set to include censored time and 
the follow-up period was set to 200. (These values have been reported 
previously [6-8].) 

The penalty term for the Cox’s proportional hazards model has 
two parameters, the tuning parameter λ and the mixing parameter α 
described in methods. To determine the λ and α parameters, the same 
fold was set in separate calls by setting the fold ID number to fix in the 
program, and a two-dimensional cross-validation with different values 
of α was conducted. A graph of α versus the statistical indices was drawn 
with α set between 0.0 and 1.0 (at intervals of 0.05) on the horizontal 
axis and the statistical indices on the vertical axis). The optimal mixing 
parameter α was selected as the point where the respective statistical 
indices crossed each other on the graph. 

The simulation showed that when the sample size was 200, the 
optimal mixing parameter α should be under 0.05 to detect coefficients 
of 0.7 or larger with at least 70% statistical power. When the sample size 
was 250, α should be under 0.05 to detect coefficients of 0.7 or larger 
with at least 80% power at the 5% level of significance (Figure 6, red 
arrow). 

Therefore, we conducted an elastic net analysis on the TCGA data 
set (training set, n = 319) using α set at 0.05 and detected 25 genes 
as prognostic factors for high-grade serous ovarian cancers. Next 
the predictive set of 25 candidate genes was tested with the Tothill’s 
data set (validation set, n = 185). Both the Kaplan–Meier method and 
the log-rank test showed that this set of 25 genes was significantly 
associated with overall survival time in the Tothill’s data set (p value = 
0.009, log-rank test). Furthermore, when the set of 25 genes was tested 
using Bonome’s data set (validation set, n = 131 similar results were 
obtained (p value = 0.049, log-rank test) (Figure 7). The survival gene 
expression signatures from the training set detected by the penalized 
Cox’s proportional hazards model showed good reproducibility with 
these independent validation sets.

 Regression model analysis is used often for prognostic predictions 
with DNA microarray data. In such cases, there may be a large input 
dimensionality and a paucity of patient samples. This means that 
overfitting of data may be a persistent problem, often referred to as the 
“p >> n” problem. 

Sparse estimation methods have attracted attention in recent years 
as a way for solving the p >> n problem. Solutions of the resulting 
simultaneous equation are found by regularization under the constraint 

that the number of solutions is sparse. The recommended constraints 
for the least squares method are the L1-norm (sum of absolute values of 
each coefficient) or the L2-norm (sum of squares of each coefficient), or 
a linear combination of the L1-norm and the L2-norm weighted by the 
mixing parameters α ( 0 1α≤ ≤ ) and 1-α. The constraint is weighted 
by the tuning parameter λ, called the penalty term, combined with 
the traditional formula of the sum of square errors. In the penalized 
Cox’s proportional hazards model, the formula, which consists of the 
log partial likelihood function, and the penalty term are maximized 
simultaneously to achieve a shrunken estimation of the coefficients and 
to select the variables.

Solving this formula for a penalized model analytically is 
impossible, so numerical calculations using methods from non-
convex optimization theory need to be used. Therefore, to clarify the 
statistical properties of the various penalized models, simulations are 
indispensable. Currently, no programs to calculate properties, such as 
the statistical power of Cox’s proportional hazards models regularized 
by various penalties, are available. Therefore, the statistical properties of 
such models, including the predictive validity of the Cox’s proportional 
hazards model or the penalized model, are not clear at present.

Furthermore, when a stepwise procedure using a very large 
number of candidate factors is performed, the calculation load for 
the stepwise procedure increases remarkably, making the calculation 
impossible. Therefore, the number of factors needs to be narrowed 
down with a series of univariate analyses so that a multivariate analysis 
can be conducted using a smaller list of factors. When a stepwise 
analysis was performed in our programs, the candidates that achieved 
statistical significance in the univariate Cox’s regression analyses were 
used subsequently in a stepwise multivariate regression analysis. A 
comparison of the statistical properties of such a stepwise method 
after univariate analyses with various penalized methods has not been 
performed until now.

In this study, we created programs using the R language to calculate 
various indices for the statistical validation of Cox models, including 
the number of selected genes, the mean coefficient of selected genes, 
mean SD of selected genes, TPR, TNR, PPV, NPV, and statistical 
power. We compared various penalized regression models with the 
conventional stepwise multivariate Cox regression analysis.

When the sample size was larger than the number of candidate 
genes, the number of selected genes for the stepwise method approached 
the true value asymptotically as the sample size and the true value of the 
coefficients increased, but when the number of candidate genes was 
larger than the sample size, the number of selected genes was much 
larger than the true value, indicating that the stepwise method was 
unable to narrow down many candidates to a smaller number (see 
Figures S1 and S6). However, the number of selected genes for two of 
the penalized methods (lasso and elastic net) was much smaller than 
for the stepwise method (see Figures S1 and S6). 

Tibshirani et al. [2] reported the results of a simulation study using 
50 datasets, which showed that the coefficients and mean squared 
errors for the lasso method using L1-norm in Cox’s model were smaller 
than those for the stepwise model. We observed a similar result in our 
simulations (see Figures S2, S3, S7, and S8). Furthermore, the simulation 
experiments using our programs indicated that the shrinkage effect of 
the coefficient and the SDs for L2-norm were higher than L1-norm. 
Thus, the L1-norm shrank the number of selected genes while L2-
norm did not have the shrinkage effect, meaning that L1-norm could 
shrink the coefficient towards zero. A linear combination of L1-norm 
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Figure 6:  Statistical power and TPR, TNR, PPV, and NPV of the validation set for the penalized Cox’s proportion hazard model using actual microarray data sets 
for ovarian cancer with mixing parameter α. The red arrow indicates α values under 0.05 can detect coefficients of 0.7 or larger with at least 80% power at the 5% 
significance level.

Figure 7: Verification of the validity of the penalized Cox’s proportional hazards model using actual microarray survival data. Three actual microarray data sets for 
ovarian cancer were used. A. The cancer genome atlas (TCGA) data set [6] was used as the training data set; B. Tothill’s data set [7] was used as a validation data 
set; and C. Bonome’s data set [8] was used as a validation data set.

weighted by the mixing parameter α and L2-norm weighted by (1-α) 
had intermediate properties between L1-norm and L2-norm. When 
the mixing parameter α was larger, the contribution of L1-norm is 
larger, and when the mixing parameter α was smaller, the contribution 
of L2-norm was larger (see Figures S2, S3, S7, and S8).

The TPR that indicates the sensitivity for the penalized methods 
was larger than the TPR for the stepwise method when the sample size 
was larger than the number of candidate genes and the true value of 
coefficients was comparatively large. A larger contribution of L2-norm 
led to a higher TPR (see Figures S4 and S9). The PPVs for the penalized 
methods, other than the ridge method that uses all the candidates, were 
larger than for the stepwise method when the number of the candidate 
genes was larger than the sample size. A larger contribution of the L1-

norm gave a larger value for the PPV (see Figures S5 and S10).

The statistical power of a validation set for the penalized methods, 
except the ridge method, in many cases was larger than the statistical 
power of the stepwise methods, particularly when n < p. Thus, when the 
number of candidate genes is larger than the sample size, a reasonably 
effective and reproducible narrowing-down of candidate genes may be 
possible using the penalized methods, including both L1-norm and L2-
norm. 

When the survival data included censored cases, the SDs of 
coefficients for each method increased and the TPRs, PPVs, and the 
statistical powers for each method decreased compared with the 
uncensored data (see Figures S6, S7, S8, S9, and S10). This means that 
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because of the increase in the number of censored cases, and thus a 
decrease of information about the events, the prediction abilities of the 
model decreased. 

With increasing the correlation coefficients between each gene, 
the numbers of selected genes and the SDs of coefficients for each 
method increased. The TPR and the PPVs for each method decreased 
(see Figures S11 and S12). That means that due to the increase of the 
correlation coefficients between each gene, and thus the increase of 
the noisy information about the disease susceptibility genes followed 
by, the prediction abilities decrease. With increased correlation 
coefficients between each gene, the statistical powers of the validation 
sets seemed to increase for the penalized method; however, because 
this phenomenon was accompanied by a remarkable increase in 
the numbers of selected genes, the shrinkage effect was lost. That is, 
although the increase in statistical power looked good, it was actually 
not good because the number of selected genes increased and the aim 
of decreasing the number of genes was not achieved. This suggests that 
the increase of correlation coefficient is not good for these penalized 
methods. However, the rate of decrease of the TPRs for the elastic 
net method was smaller than for the lasso method, meaning that the 
penalized methods including both L1-norm and L2-norm may have 
a more narrowing down effect for the true genes with correlation 
compared with other penalized methods (see Figures S12).

In this study we analyzed actual DNA microarray expression 
survival data using a penalized Cox’s proportional hazards model. To 
use the penalized Cox’s proportional hazards model, some important 
points should be noted. One such point is the choice of the optimal 
value of the tuning parameter λ and the optimal mixing parameter α. 
The package for the two-dimensional cross-validation of λ and α has 
been reported previously [9]; however, this package supports only 
categorical and plain numeric data, so the survival data will not be 
passed through the function correctly.

Therefore, in the present study, the two-dimensional cross-
validation was performed to choose the optimal λ and α using the 
pre-computed same fold vector in separate calls to cross-validate with 
different values of α. (i.e. two parameters are selected by the same fold 
with different values of α, then another two parameters are selected by 
another same fold with different values of α, and so on).The optimal 
value of λ was determined using the cross-validation method with 
different values of α. The optimal value of α was determined as follows: 
first, the candidate mixing parameter α was set to between 0.0 and 1.0 
in intervals of 0.05; then, the optimal α was selected as the point where 
the graphs of the TPR, TNR, PPV, NPV, and statistical powers crossed 

each other. In this way, the actual microarray gene expression survival 
data were verified and their good reproducibility was confirmed.

The simulation experiments and verified actual data examples 
showed that each of the penalty methods reduced overfitting, thereby 
improving the precision of prognostic prediction. In particular, the 
statistical power of validation sets for the penalized methods including 
both the L1-norm and the L2-norm may be the largest. However, some 
bias may have been introduced by the penalty term; therefore, the 
estimate may not be the best unbiased estimate. In such cases, penalized 
methods have a comparatively high value as primary screening analyses 
tools for the identification of the leading disease susceptibility genes 
from a collection of candidate genes.

Conclusion
Our simulation programs for the Cox’s proportional hazards 

model regularized by various penalties are very useful for planning 
DNA microarray studies or for evaluating the results of such studies.
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