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Introduction 
Clustered data arise often in studies of clinical and health care 

research. Clusters are formed either by natural matching, for example in 
family or twin studies, or by matching on some characteristics that may 
have associations with the outcomes, and the exposure (confounders). 
In general, subjects in a cluster are correlated, and the strength of 
correlation depends on the nature of outcomes and the clustering 
criteria. 

This paper focuses on clustered Poisson data, in which some 
subjects are ‘exposed’ and some, are not in a cluster. Exposure may 
refer to any variable, including treatment that varies among units 
(typically subjects), in a cluster. A covariate in clustered data generally 
has two components, between-cluster component represented by the 
cluster mean of the covariate, and within-cluster component which 
is the deviation from the cluster mean [1]. Our interest is to estimate 
the within-cluster exposure effect. Several statistical methods can be 
considered to assess the effect, including 1) Independent Poisson model 
(IP); 2) Fixed Cluster effects Poisson model (FCP); 3) Conditional 
likelihood Poisson estimation (CP); 4) Generalized Estimating 
Equations (GEE); and two versions of random cluster effects Poisson 
models; one that does not attempt to estimate separate between- and 
within-cluster effects (5, RCP), and one that does (6, RCP_bw). Detailed 
descriptions of these methods are given in the next section, along with a 
review of relevant literature. 

Several features are important in design and analysis of studies with 
clustered data, including number of clusters, number of subjects per 
cluster (cluster size), and the ratio of number of exposed to unexposed 
subjects in each cluster (termed “exposure ratio” in this paper). The 
objective of this paper is to compare the performance of above six 
methods, for estimating the exposure effect for clustered Poisson data 

in a variety of designs. Similar investigations have been performed 
for binary outcomes [1-6], but our theoretical and simulation results 
are unique for clustered Poisson data. It will be seen that the exposure 
ratio plays a key role in determining behavior and choice of statistical 
methods. Constant exposure ratio will be shown to have several 
advantages and can be achieved in designed studies, for example: 
sampling from large databases, based on subjects’ characteristics or 
propensity scores [7,8]. 

The motivation for this paper was a study conducted in young 
children in Indonesia, to examine the association of incidence of 
Respiratory Syncytial Virus (RSV) infection, with characteristics of the 
mother. RSV is the major cause of viral lower respiratory tract infections 
in infants and young children worldwide. The outcome variable was 
the number of RSV infections, during the follow-up period. It was 
thought that the time during the year when the child was born could be 
an important factor, due to temperature and rainfall variation, across 
the year. To adjust for this effect, children were grouped into 24 birth 
cohorts of half month each, according to their birth dates. 

Statistical Methods
We assume clustered Poisson data from the following scenario. Let 
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Abstract
Clustered Poisson data frequently appear in medical research. Interest often focuses on examination of an 

exposure effect within clusters. The objective of this paper is to compare the performance of six methods for estimating 
the exposure effect for clustered Poisson data: 1) independent Poisson; 2) fixed cluster effects Poisson; 3) conditional 
likelihood Poisson estimation; 4) Generalized Estimating Equations (GEE); 5) random cluster effects Poisson; and 6) 
random cluster effects Poisson, with separate between- and within-cluster effects. Biases and standard errors of within-
cluster exposure effects are compared across the six statistical methods considering constant or varying exposure ratio 
(number of exposed to unexposed subjects), constant or varying cluster sizes, different within-cluster exposure effect, 
different cluster variances, and number of clusters. Simulations and theoretical results show that exposure ratio is a 
key quantity. With constant exposure ratio designs, maximum likelihood estimates and asymptotic standard errors were 
obtained in closed form. All models, except GEE, give equivalent estimates and standard errors of the within-cluster 
exposure effect. With varying exposure ratio designs, conditional likelihood and fixed cluster effects methods yield the 
same estimates and standard errors for the exposure effect. Results from the random cluster effects Poisson model with 
separate between- and within-cluster effects are very similar to those from fixed cluster effects Poisson and conditional 
Poisson methods. We applied the above approaches to birth cohort data, to analyze incidence of Respiratory Syncytial 
Virus (RSV) infection in young children in Indonesia.

Institute for Health Research, Kaiser Permanente Colorado, Denver, Colorado, USA

Journal of Biometrics & Biostatistics         Jo
ur

na
l o

f B
iometrics & Biostatistics

ISSN: 2155-6180



Citation: Gao D, Grunwald GK, Xu S (2013) Statistical Methods for Estimating Within-Cluster Effects for Clustered Poisson Data. J Biomet Biostat 4: 
159. doi:10.4172/2155-6180.1000159

J Biomet Biostat
ISSN:2155-6180 JBMBS, an open access journal

Page 2 of 6

Volume 4 • Issue 1 • 1000159

Yij denote the outcome for the jth subject (j=1,…,ni) in the ith cluster 
(i=1,…,K), E(Yij =λij, and there is an exposure indicator variable xij equal 
to 1 for exposed and 0 for unexposed subjects. We assume a log link 
function,

 log(λij)=α+βxij+γi                   (1)

Where α is the intercept, β is a parameter for the exposure variable 
xij, and γi are cluster specific effects, and independent across clusters. We 
assume that Yij|λij~Poisson (λij) and Yij are independent across clusters, 
and within clusters conditional on γi. The following six statistical 
methods were considered for analyzing this type of clustered Poisson 
data.

Independent Poisson model (IP)

IP assumes that there are no cluster effects, γi=0 for all clusters. 
Maximum Likelihood Estimates (MLE) can be obtained with standard 
softwares, using likelihood techniques. In this paper, SAS PROC 
GENMOD with log link function and Poisson distribution were used to 
fit this model. The IP model ignores the correlation among observations 
within a cluster, and thus serves as a standard for other models, if the 
correlation is zero. It also serves as a benchmark indicating how biased, 
inefficient or invalid it is to ignore the correlation, when the actual 
correlation is not zero.

Fixed Cluster effects Poisson model (FCP)

FCP assumes that the γi is unknown, but fixed coefficients. MLEs 
for β and γi are obtained from standard softwares (e.g. SAS PROC 
GENMOD), by including clusters as fixed effects in the model. 
However, the usual asymptotic theory does not hold when the number 
of parameters increases with the number of clusters. The FCP model 
cannot be used to estimate between-cluster effects, since they are 
collinear with the γi.

Conditional likelihood Poisson estimation (CP)

In CP, the γi are treated as nuisance parameters, and are conditioned 
out of the likelihood function [9,10]. The conditional joint density of 
the ni observations in cluster i is
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density function is free of the cluster effects, γi,due to conditioning on its 
sufficient statistics. The cluster effect γi are not necessarily independent 
of the covariates xij, although dependencies are conditioned out along 
with the γi. To obtain MLEs, SAS PROC NLMIXED was used to fit the 
CP model, by defining the log likelihood function and using the general 
(ll) statement. The CP model estimates purely within-cluster effects, 
and cannot estimate effects of between-cluster covariates.

Generalized Estimating Equations (GEE)

GEE is used to estimate population average parameters, where 
marginal models are specified. It is not a likelihood based approach. 
The model is specified as log(λij)=α*+β*xij, and the correlation 
among subjects in a cluster is accounted for, by assuming a ‘working’ 
correlation matrix, in this case Corr(Yij,Yih)=ρ for all pairs, with j≠h 
[11]. We used SAS PROC GENMOD to fit the model with the empirical 
corrected variance estimate for its robustness throughout this paper. 

Random Cluster effects Poisson model (RCP)

RCP assumes that the γi in (1) are independently and identically 
distributed N(0,σ2), with σ2 representing between cluster variance. The 
likelihood of observations in a cluster conditional on γi is a product of 
Poisson densities, and the marginal likelihood is obtained by integrating 
over the γi. In general, the integral cannot be evaluated in closed form. 
Numerical integrations were carried out, and MLEs were obtained with 
SAS PROC NLMIXED. 

Random Cluster effects Poisson model separating between- 
and within-cluster effects (RCP_bw)

If the clusters do not have the same exposure ratio, the cluster 
means of exposure ratios represent between-cluster information, and 
between- and within-cluster exposure effects are separable [1]. We refer 
to this model as RCP_bw. Equation (1) is modified to

 ij ijlog( ( )w b
i i ix x xλ α β β γ) = + −  + +

Where βb represents the between-cluster exposure effect, βw 
represents the within-cluster exposure effect, and is the focus of this 
paper, ix   is the mean of xi. Likelihood ratio tests can be used to test, if 
βw=βb. If they are equal, RCP_bw reduces to RCP.

Issues related to appropriate statistical approaches for analysis 
of clustered data have been investigated in a number of studies with 
binary outcomes, as mentioned previously. The FCP method accounts 
for cluster differences, but has been shown to have severe biases in the 
case of matched pairs [14]. The CP method accounts for clustering 
effect, and is consistent and asymptotically efficient for matched pairs 
with binary outcomes [15]. It is also robust to the distribution of 
random effects, and to the association of random cluster effects γi with 
covariates xij. However, it cannot estimate effects of between-cluster 
covariates. GEE accounts for clustering of subjects, and is easy to carry 
out using standard software (e.g. SAS PROC GENMOD). However, it 
has been noted to have high type I error rates for between-cluster effects 
in clustered binary data [5]. RCP and RCP_bw account for clustering 
of subjects, and when applicable, they seem to be the best models for 
analyzing clustered binary outcomes [1,2]. They do make distributional 
assumptions on the γi, however, it has been shown in other studies 
[16,17], that these assumptions do not substantially affect estimates of 
covariate effects.

There have been fewer studies with clustered Poisson data as 
outcome. It has been shown that with Poisson outcomes, FCP and CP, 
give the same estimate of within-cluster exposure effect, regardless of 
equality of exposure ratios [18]. Demidenko [19] studied clustered 
Poisson models and showed equality of some of the estimators described 
above, assuming constant and balanced (equal numbers of exposed and 
unexposed in each cluster) exposure ratios and equal cluster sizes. Gail 
[20] and Petersen and Deddens [21] showed that in designs balanced in 
all covariates with Poisson data as outcome, removing covariates does 
not affect estimates of effects of other covariates, which is related to 
equality of FCP and IP in our situation.

Theoretical Results
With constant exposure ratio, regardless of the number of subjects 

in each cluster being constant or not, IP, CP, FCP, and RCP methods 

The coefficients α* and β* are estimated by solving the generalized 
estimating equations. In the Poisson case, the marginal parameter 
β* from GEE corresponds to the subject-specific parameter β in (1), 
although the intercepts α and α* differ [12,13]. 
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have the same MLE of β
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And its asymptotic variance is
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In (2) and (3), n1 and s1 are the total number of subjects, and total 
number of events for the exposed group (x=1), and n0 and s0 are the 
corresponding numbers for the unexposed group (x=0). Note that 

Square root of 
^

var( )β  is the standard error of 
^
β  (Appendix).

With constant exposure ratio designs, the results show that cluster 
effects γi can be ignored, and simple Poisson regression can be used to 
estimate the exposure effect, which does not require cluster size being 
constant. Equations (2) and (3) provide straightforward sample-based 
expressions of the similar results, with less restrictive assumptions, 
compared to studies by Gail [20], Petersen and Deddens [21] and 
Demidenko [19]. Calculation of the marginal likelihood for the RCP 
method requires integration over the random effects, and in general, 
the integral cannot be evaluated in closed form, so a simple analytical 
result is unexpected. In our case, g(γ), the density function of γ, needs 
not be Gaussian as typically assumed, and (2) and (3) hold generally for 
random effects distributions, that are sufficiently smooth. 

Assuming normally distributed random effects in the RCP 
model, the theoretical asymptotic variance of 

^
β  using the expected 

information is
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It is not intuitive that 
^

var( )β  in equation (4) is inversely 

proportional to the between cluster variance σ2. This is due to the 
fact that the mean of log normal distribution is proportional to the 
σ2, E(Y)=exp(α+βx+σ2/2), consequently the standard error of β 
estimate is smaller because of larger mean of Y. Equation (4) is useful 
in interpreting the simulation results, and in sample size estimation for 
designs with constant or near constant exposure ratio across clusters. 
Another common random effects model uses Poisson distribution 
conditional on the random effects that follow a gamma distribution 
[22,23]. The marginal likelihood of this model is in closed form, and 
the corresponding MLE and its asymptotic variance can be derived 
algebraically. 

 Note that the equalities derived and discussed above refer to 
estimates and standard errors for the coefficient of exposure effect, β, 
only. Other aspects of the models (e.g. intercept α, likelihood) may 
differ.

Simulations and Results
We performed simulations to study the impact of exposure ratio, 

cluster size, and between cluster variance on bias and precision of 
estimates of β, the within-cluster exposure effect. 500 data sets were 
simulated under each condition.

Simulations 

Clustered Poisson data were simulated according to model (1) with 

γ independent and identically distributed N (0,σ2). A single binary 
exposure variable was included. The following parameter values were 
selected: α=0; β=0 and 0.25 (results with β=0.5 were not reported, as 
they are similar to the results with β=0.25); and σ2=0, 0.5, 1.0, and 2.0, 
describing cluster heterogeneity. 

We considered the following cluster characteristics: 1) cluster size 
(ni). Two designs were used, constant cluster size with ni=6 subjects per 
cluster, or varying cluster size with cluster sizes ni=6 to 42 subjects, by 
an increment of 6 among clusters. 2) Number of clusters (K), K=20, 
30 or 50 clusters for constant cluster size design, and K=30 clusters for 
varying cluster size design. 3) exposure ratios, exposure ratios 3:3 for 
each cluster, describing constant ratio and balanced clusters; 1:5 (one 
exposed and 5 unexposed subjects) for each cluster, describing constant 
ratio, but unbalanced clusters; and a varying ratio design, where the 
exposure ratio varies randomly among clusters. 

Evaluation measures

Simulation results

Bias of β̂ : Our theoretical derivations showed that under constant 
exposure ratio designs four models, IP, FCP, CP, and RCP, generate the 
same estimate of β, which is a simple closed form as in (2). Simulation 
results (not shown) verified these theoretical results, and also indicated 
no bias of practical importance in any cases, including the varying 
exposure ratio and varying cluster size designs. 

Precision of β̂ : Table 1 shows the precision of estimation of β, 
measured in three ways. For constant exposure ratio designs, theoretical 
results show that the asymptotic standard errors are the same for IP, 
FCP, CP and RCP, which is verified by simulations. It is also shown that

ˆavg{SE( )}β correctly depict the variability of β̂  since they agree with 
ˆ( )SD β , and both agree with the theoretical result, ˆ( )SE β   as in (4). For 

GEE approach, ˆ( )SD β   is very similar to that of the other methods, but   
ˆavg{SE( )}β tends to be slightly smaller with larger σ2 values, or varying 

exposure ratio designs, or smaller numbers of clusters (K=20, data not 
shown). Implications of this for type I error rates are discussed below.

It also shows greater precision of β̂  for 3:3 designs, compared to 
1:5 designs with the same number of clusters and subjects. This can also 
be seen from equations (3) and (4), and it mirrors the usual benefits 
in precision from balanced designs (e.g. equal group size t-tests). 
For constant exposure ratio designs, precision of β̂  increases as σ2 
increases, this agrees with equation (4). Equation (4) also shows that

ˆvar( )β  is inversely proportional to β, and to the numbers of exposed 
and unexposed subjects, which agrees with our simulations (data not 
shown). Note that these results relating precision to cluster variance 
depend on the normality assumption of the random effects. For 

The six statistical methods were compared based on bias and 
standard error of the estimates. Bias was calculated as the average of 
the 500 estimates of β minus its true value. The Standard Error (SE) 
of the estimate of β was calculated three ways: as the average of the 
500 standard errors given by the procedures, denoted ˆavg{SE( )}β ; as 
the standard deviation of the 500 estimates of β, denoted ˆSD( )β , which 
in general represents the true variability empirically; and using the 
theoretical expression in (4), denoted ˆSE( )β , which is available only 
for constant exposure ratio designs. If the theory used by the procedure 
is appropriate and there is no bias, 

^ˆavg{SE( )} ( )SDβ β= ; if the theory 
used to derive (4) holds, the three expressions are equal. Because little 
bias was noted in any cases, ˆavg{SE( )}β  is approximately the root mean 
squared error. We also examined type I error rates with β=0 in simulations, 
and calculated as percentage of samples with p-values less than 0.05.
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models of the form (1), the method used in the appendix can be used 
to derive the corresponding theoretical results for other random effect 
distributions. All of these patterns continue to hold when the cluster 
sizes are not equal. The varying and fixed cluster size results are not 
directly comparable, because of different numbers of subjects in a 
cluster. 

For varying exposure ratio designs (Table 1), IP does poorly as 
expected, since it ignores clustering, giving very high ˆ( )SD β  that is 
not reflected by ˆavg{SE( )}β . FCP and CP have the same likelihood 
function (Appendix), and give identical results. Table 1 shows that 
under varying exposure ratio designs, regardless of the cluster size being 
constant or not, FCP/CP and RCP_bw have the same ˆavg{SE( )}β  and  

ˆ( )SD β . Close examination of individual results (not shown) indicates 
that there may be slight differences between FCP/CP and RCP_bw for 
individual samples, so this may not be a mathematical equality. These 
three methods use purely within-cluster information. The ˆ( )SD β  from 
RCP and GEE are similar, yet the procedure average standard error 

ˆavg{SE( )}β  of GEE tends to be slightly smaller than that of RCP. Again, 
this affects type I error rates. Compared to RCP and GEE, estimates of 
β from FCP/CP and RCP_bw tend to have slightly larger variability, as 
the latter are based on only the within-cluster information, while RCP 
and GEE use both within- and between-cluster information. Similar 
patterns have been noted in the binary outcome case [5]. 

Type I error rates: Table 2 shows type I error rates under the null 
hypothesis, β=0. Type I error rates for constant exposure ratio designs 
remain at, or near 0.05 for IP, FCP, CP, and RCP in balanced 3:3, 
unbalanced 1:5, and varying cluster size designs. Type I error rates for 
GEE tend to be greater than 0.05, up to 0.10, with higher type I error 
rates occurring for larger σ2. This corresponds with the slightly smaller 
procedure standard errors ˆavg{SE( )}β  which underestimate ˆ( )SD β in 
table 1. Again, ˆ( )SD β  represents the true empirical variability. Inflated 
type I error rates have also been observed for GEE with binary outcomes 
[5]. Patterns are similar for varying exposure ratio designs, except that 
IP is, as expected, invalid with very high type I error rates. ˆavg{SE( )}β   
from GEE in table 1 is the empirical standard errors, as commonly 
recommended for their robustness. We repeated the analyses with the 
model-based standard errors. We found that when the between-cluster 
variance is zero, the model-based standard errors are very similar to the 
empirical standard errors, but as the between-cluster variance increases, 
the model-based standard errors become substantially larger than those 
from other methods, resulting in loss in estimation efficiency. 

Respiratory Syncytial Virus (RSV) Infection in 
Indonesian Infants

We applied these six approaches to the Indonesian infant RSV 
data. One of our objectives was to examine if child’s frequency of RSV 

ˆˆ{ ( )}avg SE β 1 ( ˆ( )SD β )2 3ˆ( )SE β

Expos. ratio ni 2σ IP/FCP/CP/RCP GEE theory

Constant 3:3 6 0 0.141 (0.133) 0.138 (0.133) 0.141
0.5 0.125 (0.118) 0.121 (0.118) 0.124

1.0 0.112 (0.113) 0.106 (0.113) 0.109
2.0 0.090 (0.091) 0.082 (0.091) 0.085

6-42 0 0.070 (0.069) 0.068 (0.069) 0.070
0.5 0.063 (0.058) 0.060 (0.059) 0.062
1.0 0.056 (0.054) 0.054 (0.055) 0.055
2.0 0.046 (0.044) 0.043 (0.047) 0.043

Constant 1:5 6 0 0.181 (0.176) 0.178 (0.176) 0.181
0.5 0.161 (0.144) 0.155 (0.144) 0.159
1.0 0.144 (0.136) 0.135(0.136) 0.141
2.0 0.117 (0.118) 0.107 (0.118) 0.110

6-42 0 0.090 (0.092) 0.088 (0.092) 0.090
0.5 0.081 (0.082) 0.076 (0.082) 0.080

1.0 0.072 (0.074) 0.068 (0.074) 0.070
2.0 0.059 (0.057) 0.054 (0.060) 0.055

IP FCP/CP RCP GEE RCP_bw
Varying 6 0 0.141 (0.141) 0.154 (0.153) 0.142 (0.142) 0.136 (0.142) 0.154 (0.153)

0.5 0.126 (0.180) 0.138 (0.141) 0.135 (0.141) 0.130 (0.141) 0.138 (0.141)
1.0 0.113 (0.213) 0.123 (0.124) 0.122 (0.123) 0.115 (0.122) 0.123 (0.124)
2.0 0.091 (0.293) 0.099 (0.107) 0.099 (0.107) 0.090 (0.107) 0.099 (0.107)

6-42 0 0.070 (0.069) 0.089 (0.089) 0.071 (0.068) 0.067 (0.069) 0.089 (0.090)
0.5 0.063 (0.186) 0.080 (0.085) 0.079 (0.083) 0.075 (0.083) 0.080 (0.085)
1.0 0.057 (0.272) 0.072 (0.074) 0.071 (0.073) 0.067 (0.074) 0.072 (0.074)
2.0 0.047 (0.405) 0.058 (0.060) 0.058 (0.060) 0.054 (0.066) 0.058 (0.060)

Exposure ratio=ratio of number of exposed to control subjects in a cluster; Varying ratio means the exposure ratios vary randomly from cluster to cluster;  in =number of 
subjects in a cluster; σ2=between cluster variance; IP=Independent Poisson model; FCP=Fixed Cluster Poisson model; CP=Conditional likelihood Poisson estimation; GEE-
Generalized Estimating Equations with empirical standard error; RCP=Random Cluster effects Poisson model; RCP_bw=Random Cluster effects Poisson model where the 
within- and between- cluster effects were separated.
1 ˆˆ{ ( )}avg SE β , average of procedure standard errors across 500 samples
2 ˆ( )SD β , standard deviation of the 500 estimates of β
3 ˆ( )SE β , theoretical standard error in (4) calculated from expected information 

Table 1: Precision of estimates of β obtained from 500 replications with β=0.25 and 30 clusters per replication.
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(outcome variable) is associated with mother’s education, which is also 
a reflection of the family’s socio-economic status. Mother’s education 
level is a dichotomous ‘exposure’ variable, with 0 representing less 
than elementary education and 1 representing elementary or higher 
education. The data consisted of 557 subjects born in 1999, who were 
followed to the end of January of 2001. Children were grouped into 
24 birth cohorts (clusters), of about a half month each, according to 
their birth dates. The clusters were used to adjust for birth cohort 
effects, since there is thought to be an irregular seasonal pattern in RSV 
incidence. Natural log of person times was included as offset in models. 

The number of children in a birth cohort (cluster size) ranges 
from 13 to 36. The percentage of maternal education level higher than 
elementary education (exposure ratio) ranges from 40 to 82.6% among 
the birth cohorts, with 20 out of 24 cohorts having 60-80% of mothers 
with elementary or higher education. The RSV count for children 
varied from 0 to 3. 

Results of analyses of the RSV data are shown in table 3. Consistent 

with our theoretical and simulation results, for varying exposure ratio 
designs, FCP and CP generated the same estimates and standard errors, 
and the estimate and standard error for RCP_bw are also very similar, 
since all of these methods use within-cluster information. Estimates 
from IP and RCP methods differ only slightly from those of FCP, CP, 
and RCP_bw methods and standard errors are only slightly smaller due 
to the similar exposure ratios across clusters, suggesting that there is 
not much between cluster information to improve the precision over 
within-cluster methods. GEE method provided slightly larger estimate 
and standard error.

Overall, children of mothers with elementary or higher education 
had lower risk of RSV, by a factor of about 50% (95% CI 0.29, 0.89). 

Discussion
We have studied the behavior of six common methods for 

estimating the within-cluster exposure effects, under a variety of cluster 
characteristics for clustered Poisson data. Our results show that the 
exposure ratio plays a key role in determining the behavior of these 
approaches. For simplicity, we considered a single binary exposure 
variable, but results can be extended to a covariate with multiple levels, 
or to multiple within-cluster covariates provided the covariates are 
balanced across clusters. When exposure ratio is constant, MLE of β 
and its asymptotic variance are available in simple forms, and several 
common methods (i.e., IP, CP, FCP, and RCP) give identical estimates 
and standard errors. Note that neither equal cluster size, nor equal 
numbers of exposed and unexposed subjects within each cluster are 
required. When exposure ratio varies across clusters, there is also 
between-cluster information due to different mean exposure ratios in 
clusters. Our results indicate that the within-cluster exposure effect 
can be correctly estimated by CP, FCP and RCP_bw. This agrees with 
findings in studies with binary outcome. In addition, studies with 
binary outcomes [24,25] showed RCP_bw is an appropriate approach, 
even when mean exposure ratio is a potential confounder with cluster 
effects, i.e., exposure is correlated with cluster effect. RCP_bw also 
estimate between-cluster exposure effects, which is not available 
through CP or FCP. Inflated type I error rates for GEE in situations, 
including some constant exposure ratio designs raise caution in its use. 
GEE could be formulated with separate between- and within- cluster 
exposure effects, but due to the inflated type I error rates, we did not 
pursue this extension. However, it should be noted that GEE does offer 
protection against over dispersion, or unusual forms of correlation, 
which without modification the other methods do not.

Our results also have implications for design of studies with 
clustered Poisson data. When investigators have control over cluster 
characteristics, for example, when sampling from large databases 
or creating matched pairs or groups (e.g. using propensity score 
values), our results indicate advantages of holding the exposure ratio 
constant across clusters, including simplicity of analysis, robustness 
to the distribution of random effects, availability of simple theoretical 
expressions (equation (4)), that can be used for sample size estimation, 
and apparent improvement in precision over varying ratio designs.
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